30-1

CHAPTER

30

PRINT USING Procedures

True BASIC normally prints numbers in a form convenient for most purposes. But on
occasion you may prefer a more elaborate form. For example, you may want to print
financial quantities with two decimal places (for cents) and, possibly, with commas
inserted every three digits to the left of the decimal point. PRINT USING provides a
way to print numbers in this and almost any other form.

Here is an example of the PRINT USING statement.
PRINT USING format$: x, y, z

Format$ is a string of characters that contains the instructions to PRINT USING for
“formatting” the printing of x, y, and z. This string is called a format string. It may be a
string variable (as shown above), a quoted-string, or a more general string expression.

PRINT USING also allows one to print strings centered or right-justified, as well as
left-justified. (The normal PRINT statement prints both strings and numbers left-jus-
tified within each print zone; see Chapter 34, the PRINT statement.)

The function USING$ duplicates the PRINT USING statement almost exactly but
returns the result as a string rather than printing it on the screen. For example, the
following two statements yield the same output as the preceding PRINT USING state-
ment.

LET outstring$ = using$(format$, x, y, z)
PRINT outstring$

The USINGS$ function allows you to modify or save the string outstring$ before print-
ing it. You can also use this function with WRITE and PLOT TEXT statements. (See
Chapter 32, for the USING$ function.)

We will first examine how to format numerical output.

11/92-1

30-2 PC Pro Version Reference Manual

Formatting Numbers
The basic idea of a format string is that the symbol “#” stands for a digit position. For

example, let us compare the output resulting from two similar PRINT statements, the
first a normal PRINT statement and the second employing USING.

PRINT x
PRINT USING "HHH": X

“l”

In the following table, the symbol
actually appear on the screen.

is used to denote the left margin and does not

X PRINT x PRINT USING "#HH": x
1 | 1 | 1
12 | 12 | 12
123 | 123 |123
1234 | 1234 | ***

We notice several things. Without USING, the number is printed left-justified with a
leading space for a possible minus sign, and occupying only as much space as needed.
With USING, the format string “###” specifies a field length of exactly three charac-
ters. The number is printed right-justified in this field. If the field is not long enough to
print the number properly, asterisks are printed instead, the unformatted value (here,
of x) is printed on the next line and printing continues on the following line. If all you
need to do is to print integer numbers in a column but with right-justification, then the
preceding example will suffice.

Printing financial quantities so that the decimal points are aligned is important. Also,
you may want to print two decimal places (for the cents) even when they are “0”. The
following example shows how to do this. (In order to print negative numbers, the for-
mat string must start with a minus sign.)

X PRINT x PRINT USING "-#H#.#H#": x
1 | 1 | 1.00
1.2 | 1.2 | 1.20
-3.57 |-3.57 |- 3.57
1.238 | 1.238 | 1.24
123 | 123 | * %k k%
0 | 0 | .00
-123 |-123 | * %k k%

Notice that two decimal places are always printed, even when they consist of zeroes.
Also, the result is first rounded to two decimals. If the number is negative, the minus
sign occupies the leading digit position. If the number is too long to be printed properly

11/92-1

PRINT USING Procedures 30-3

(possibly because of a minus sign), asterisks are printed instead, the unformatted
value is printed on the next line, and printing continues on the following line.

Financial quantities are often printed with a leading dollar sign ($), and with commas
forming three-digit groups to the left of the decimal point. The following example
shows how to do this with PRINT USING.

X PRINT USING "S$#,HHH, HHH HH": x
0 |'$.00

1 |'$ 1.00

1234 I$ 1,234.00
1234567.89 1$1,234,567.89

1e6 |$1,000,000.00

137 |*************

Notice that the dollar sign is always printed and is in the same position (first) in the
field. Also, the separating commas are printed only when needed.

You might sometimes want the dollar sign ($) to float to the right, so that it appears
next to the number, avoiding all those blank spaces between the dollar sign and the
first digit in the preceding example. The following example shows how to do this.

X PRINT USING "$SSSSSSH. HH": x
0 | $.00

1 | $1.00

1234 | $1234.00
1234567.89 | $1234567.89

Digit positions represented by “$” instead of “#” cannot surround or be next to commas.

In the previous two examples, no negative amounts can be printed since the format
string does not start with or contain a minus sign.

The format string can also allow leading zeroes to be printed, or to be replaced by aster-
isks (*). You might find the latter useful if you are preparing a check-writing program.

X PRINT USING "$%,%%%, %u% HH": X
0 1$0,000,000.00
1 1$0,000,001.00
1234 1$0,001,234.00
1234567.89 1$1,234,567.89

11/92-1

30-4 PC Pro Version Reference Manual

X PRINT USING "$* **% k% fg": x
0 | $xxkkkkxxx (0
1 | $**kkkkxk1 00
1234 | $****1 234,00
1234567.89 |$1,234,567.89

You can also format numbers using scientific notation. Because scientific notation has
two parts, the decimal-part and the exponent-part, the format string must also have
two parts. The decimal-part follows the rules already illustrated. The exponent-part
consists of from three to five carets (") that must immediately follow the decimal-part.
The following example shows how.

X PRINT USING "+H#.HHHHHAAAA" 1 X
0 |+0.00000e+00
123.456 |+1.23456e+02
-.001324379 |-1.32438e-03
7e30 |+7.00000e+30
.5e100 | +5.00000e+99
56100 | %k ok k ok ok ok ok ok ok

Notice that a leading plus sign (+) in the format string guarantees that the sign of the
number will be printed, even when the number is positive. Notice also that the last
number cannot be formatted because the exponent part would have been 100, which
requires an exponent field of five carets. Notice also that if there are more carets than
needed for the exponent, leading zeroes are inserted. Finally, notice that trailing
zeroes in the decimal part are printed.

Floating Characters

You'll notice that one of the previous examples includes several “$”, but that only one of
them is actually printed. It is printed just to the left of the left-most non-zero digit, but
always within the positions given by the sequence of “4”. We say that the sequence of
“$” defines a floating region and that the spot where the “$” is printed floats within this
region.

Besides the “$”, the plus sign (+) and the minus sign (-) can also define floating regions.
The rules are:

1. You can use either zero, one, or two different floating characters (“+” and “-” cannot
both appear, and neither can commas.)

2. You can repeat the first (or only) floating character an arbitrary number of times,
but not the second.

11/92-1

PRINT USING Procedures 30-5

3. Zero to two different floating characters generate a sequence of zero to two charac-
ters called a header, as follows:

The Floating Header

First Second Positive Negative

$ + n$+n n$_u

$ _ u$ " n$_u

$ none "$" error

+ $ H+$H H_$H

+ none H+H H_H

_ $ " $H H_$H

_ none "mn ll_‘l
none none error

Notice that the header contains the same number of characters as the number of
different floating characters.

4. The zero to two character header will be printed as far to the right as possible
within the floating region.

5. The numerical value’s leading digits can overflow into the floating region, thereby
“pushing” the header to the left.

6. Ifthe numerical value exceeds the total space provided, the entire space is filled
with asterisks.

The following example illustrates some of these rules.

| 1.23456789e+7
|-1.23456789e7 $-12345,678.90
| 1000000000 $ 1000000,000.00
|-1000000000 | $-1000000,000.00

Notice that the “$” is never printed outside the floating region. A place is allocated for
the minus sign. The leading digits of the numerical value can overflow into the floating
region, which does not (and cannot) contain commas.

$ 12345,678.90

PRINT x PRINT USING "S$$SSSS—#, #HH HH": x
| 0 | $.00
| 1 | $ 1.00
|-1 | $- 1.00
| 4321.5 | $ 4,321.50
|-4321.5 | $-4,321.50

|

I

|

11/92-1

30-6 PC Pro Version Reference Manual

Formatting Strings

Strings can also be formatted through PRINT USING or the function USINGS,
although there are fewer options for strings than for numbers. Strings can be printed
in the formatted field either left-justified, centered, or right-justified. As with num-
bers, if the string is too long to fit, then asterisks are printed, the actual string is
printed on the next line, and printing continues on the following line. The following
example shows several cases.

USING String to be Printed

string "0k" "Hello" "Goodbye"
N<HEHE |0k |HeLLo |*******
"HHRHR" | 0k |Hello | *okkhkk
S HEHHY | Ok |HeLLo |*******

Notice that if centering cannot be exact, the extra space is placed to the right.

Any numeric field can be used to format a string, in which case the string is centered.
This is especially valuable for printing headers for a numeric table. The following
example shows how you can format headers using the same format string we used ear-
lier for numbers.

s$ PRINT USING "$# , #HH HHH . HH": s3
"Cash" | Cash
"Liabilities" | Liabilities
"Accounts Receivable" | ¥rrkkkhkdhhkk

Multiple Fields and Other Rules

A PRINT USING format string can contain several format items. For example, to print
a table of sines and cosines, we may want to use:

LET format$ = "—H.### -H.HHHHHE -H . HHHHHR"
PRINT USING format$: x, sin(x), cos(x)

The value of x will then be printed to three decimals, while the values of the sine and
cosine will be printed to six decimals. Notice also that spaces between the format items
will give equal spaces between the columns in the printed result.

If there are more format items than there are values (numbers or strings) to be
printed, the rest of the format string starting with the first unused format item is
ignored. Ifthere are fewer format items than values to be printed, the format string is
reused, but starting on the next line. Thus,

PRINT USING " -#.##HHH": 1.2, 2.3, 3.4

11/92-1

PRINT USING Procedures 30-7

will yield:

1.20000
2.30000
3.40000

Literals in Format Strings

We have just seen that spaces between format items in a format string are printed.
That is, if there are four spaces, the four spaces are printed. The same is true for more
general characters that may appear between format items. The rule is simple: you can
use any sequence of characters between format items except the special formatting
characters. The characters you use will then be printed.

The special formatting characters are:
% * < > A .+ - , $
The following example illustrates this use.
PRINT USING "#.## plus #.## equals #.##": 1.2, 2.3, 1.242.3
will yield:
1.20 plus 2.30 equals 3.50

If there are fewer values than format items, the unused format items are ignored, but
the last intervening literal string is printed. Thus,

PRINT USING "#.## plus #.## equals #.##": 1.2, 2.3
will yield
1.20 plus 2.30 equals

If you need to have one of the special formatting characters appear in the output — for
example, if you want to have a final period, as in the last example — you can simply add
a one-character field to the format string and add the quoted-string “.” to the PRINT
statement. Thus,

LET x = 1.2

LET y = 2.3

PRINT USING "#.## plus #.## equals #.## #": x, y, x+y, "."
will yield

1.20 plus 2.30 equals 3.50 .

11/92-1

30-8 PC Pro Version Reference Manual

True BASIC employs two forms of the PRINT USING and Using$ functions. The
first is the version used since version 1.0 of the Language System. This is the default
in the professional version.

The other is a completely ANSI-standard version, which is slightly more restrictive.
If you wish to use this version, you may include the statement OPTION USING
ANSI in your program before the first USING statement that you wish to conform to
the ANSI standard.

To switch back to the default version, you may include the statement OPTION
USING TRUE before the first USING statement that you wish to conform to the
True BASIC specifications.

Exceptions
The following runtime errors can arise:
Exceptions: 8201 Badly formed USING string.
8202 No USING item for output.

8203 USING value too large for field. (nonfatal)
8204 USING exponent too large for field. (nonfatal)

11/92-1

