
D2008: Creating Object Classes in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 1

Creating Object Classes
in True BASIC

by Thomas E. Kurtz
Co-inventor of BASIC

Introduction
Now that we have seen and experienced the use of an object class, through the dri-
ver StackDriver.tru, let’s now see how this object class is coded in True BASIC
using modules.

You should extract the code included later in this note, save it on your computer,
compile it, and test it using the access program contained in the note Object Ori-
ented Programming in True BASIC.

What are Modules?
Modules are constructions in True BASIC that allow groups of subroutines to
share data that are otherwise private. Without modules, or their equivalent, data
entities (i.e., variable and array names) are either global or local. That is, the vari-
able names are global to the entire program, or they are local to a particular exter-
nal subroutine. (The LOCAL statement allows internal subroutines to have pri-
vate variables names.)

In technical terms, modules provide “controlled scope” for variable names. Many
other languages provide this capability in some form, but I will not go into compar-
ative details here.

Modules in True BASIC provide the encapsulation of data together with the sub-
routines that use that data.

A module is bounded by MODULE and END MODULE statements. The general
structure is:

MODULE example

-- module header

-- module initialization

-- external routine
...

-- external routine

END MODULE

D2008: Creating Object Classes in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 2

The module header consists first of all the declarative statements that are needed.
These include PRIVATE, PUBLIC, DECLARE PUBLIC, and SHARE statements.
Compiler directives such as OPTION TYPO and OPTION NOLET should go here
as well.

The module initialization includes regular True BASIC statements. These will be
executed at program startup time, and provide for initialization of any variables,
etc., for which the initial value is important. For example, values should be
assigned to variables used as constants in module initialization. And variables
designed to distinguish between first and subsequent uses of a routine should be
initialized in the module initialization.

After module initialization come any number of external routines. These can be
subroutines, defined functions, or pictures. Any variables used within these exter-
nal routines, other than SHAREd or PUBLIC variables, are local to the routine in
which they appear, since the routines are considered to be external.

Variables that are designed to be shared by the external routines within a module
must appear in a SHARE statement in the module header. Such variables are like
global variables in a program, but they are not accessible from outside the module!
This provides the data isolation or data encapsulation so crucial to OOP.

Implementation Details
The push-down stack object in True BASIC takes advantage of the fact that arrays
and strings occupy dynamic storage (on the heap.) The size of an array can grow
or shrink. The length of a string can grow or shrink arbitrarily, up to the amount
of available memory. Most requirements for dynamic storage can therefore be met
by storing the desired data in arrays or strings. There is no need for an alloc func-
tion.

Since True BASIC does not provide pointers (e.g., to allocated storage) per se,
linked data structures must be implemented with arrays, with one array set aside
for use a the contents of a node, and another set aside for use as the pointer to the
next node.

Push down stacks can, of course, be implemented using linked lists. But it is also
possible to implement them with strings or arrays, since all the activity is from the
front end of the stack. Here, we chose to implement a particular stack as a string.
We keep the list of stack names in a string array.

Here is the code.

MODULE Stack

! This module provides for multiple stacks, and has as its
! purpose illustrating modules.

! The operations on stacks include:

D2008: Creating Object Classes in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 3

!
! DEF Create (stack_name$) Creates a new stack.
! Returns number of the new
! stac, which is >= 1;
! returning -1 means that the
! stack name is already in use.
!
! DEF Push (stack_name$, item) Pushes an item onto a stack.
! Returns the status;
! 0: ok
! -1: stack doesn't exist.
!
! DEF Pop$ (stack_name$) Returns item popped from stack
! Returns the popped element,
! except
! Returns "empty" if stack is empty.
! Returns "not there" if the stack
! is not there.
!
! DEF IsEmpty (stack_name$) Returns 0 if nonempty,
! 1 if empty,
! -1 if not there.
!
! DEF Close (stack_name$) Closes a stack.
! Returns -1 if not there.

OPTION TYPO

! Declarations in the module header apply throughout the module.

DECLARE DEF StackClass$, Create, Push, Pop$, IsEmpty, Close,
DECLARE DEF NameIsThere

! PRIVATE routines are NOT available from outside the module.

PRIVATE Parse, Create, Push, Pop$, IsEmpty, Close, NameIsThere,
PRIVATE ListStackNames

! SHAREd data elements are available to all routines in the
! module, but are not accessible from outside the module.

SHARE stacknames$(0)
SHARE stack$(0) The stack storage
SHARE exists(0) ! Distinguishes between an empty

! and a non-existent stack

! First, here is the (only) access function for the object class

DEF StackClass$ (message$)

LOCAL command$, stack_name$, contents$, status, result$, list$

CALL Parse (message$, command$, stack_name$, contents$)

SELECT CASE command$
CASE "create"

IF Create (stack_name$) = -1 then
LET StackClass$ = "That stack name is already taken;

try another."
ELSE

LET StackClass$ = "You just created a new stack with
name " & stack_name$

END IF

D2007: Object Oriented Programming in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 4

CASE "push"
IF Push (stack_name$, contents$) = -1 then

LET StackClass$ = "That stack doesn't exist."
ELSE

LET StackClass$ = "You have just pushed " & contents$ &
" into stack: " & stack_name$

END IF

CASE "isempty"
LET status = IsEmpty (stack_name$)

IF status = -1 then
LET StackClass$ = "That stack doesn't exist."

ELSE IF status = 1 then
LET StackClass$ = "Stack is empty; sorry."

ELSE IF status = 0 then
LET StackClass$ = "Stack is not empty."

END IF

CASE "pop"
LET result$ = Pop$ (stack_name$)

IF result$ = "empty" then
LET StackClass$ = "That stack is empty."

ELSE IF result$ = "not there" then
LET StackClass$ = "That stack does not exist."

ELSE
LET StackClass$ = "Top element of that stack is:

" & result$
END IF

CASE "close"
IF Close (stack_name$) = -1 then

LET StackClass$ = "That stack doesn't exist."
ELSE

LET StackClass$ = "Stack " & stack_name$
& " no longer exists."

END IF

CASE "quit", "stop"

CASE "names"
CALL ListStackNames (list$)
LET StackClass$ = "Current stacks are: " & list$

CASE "?"
PRINT "Commands are:"
PRINT " create stack_name"
PRINT " push stack_name item"
PRINT " isempty stack_name"
PRINT " pop stack_name"
PRINT " close stack_name"
PRINT " names"
PRINT " quit"
LET StackClass$ = ""

CASE else
LET StackClass$ = "Don't recognize: " & message$

END SELECT

END DEF

D2008: Creating Object Classes in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 5

! Now, the definitions of the supporting routines.

SUB Parse (command_line$, command$, stack_name$, contents$)

LOCAL p, c$

! Peel off the first component

LET c$ = lcase$(trim$(command_line$))
LET p = pos(c$, " ")
IF p = 0 then LET p = len(c$) + 1
LET command$ = c$[1:p-1]

LET p = ncpos(c$, " ", p)
LET c$ = ltrim$(c$[p:1000])

IF c$ = "" then EXIT SUB

! Peel off the second component

LET p = pos(c$, " ")
IF p = 0 then LET p = len(c$) + 1
LET stack_name$ = trim$(c$[1:p-1])

LET p = ncpos(c$, " ", p)
LET c$ = ltrim$(c$[p:1000])

IF c$ = "" then EXIT SUB

! Take the third component

LET p = pos(c$, " ")
IF p = 0 then LET p = len(c$) + 1

LET contents$ = trim$(c$[1:p-1])

END SUB

DEF Create (stackname$)

LOCAL n, i

LET n = ubound(exists)

IF NameIsThere (stackname$) > 0 then
LET Create = -1
EXIT DEF

END IF

FOR i = 1 to n ! First, try to find a unused spot
IF exists(i) = 0 then ! Found one

LET exists(i) = 1 ! So, use it ..
LET stacknames$(i) = stackname$
LET Create = 0
EXIT DEF ! .. and exit

END IF
NEXT i

! New spot needed; allocate new storage

MAT Redim stack$(n+1), exists(n+1), stacknames$(n+1)
LET exists(n+1) = 1 ! Use it

D2008: Creating Object Classes in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 6

LET stacknames$(n+1) = stackname$
LET Create = 0

END DEF

DEF NameIsThere (name$)

LOCAL n, i

LET n = ubound(exists)

LET NameIsThere = -1
FOR i = 1 to n

IF lcase$(name$) = lcase$(stacknames$(i)) then
LET NameIsThere = i
EXIT DEF

END IF
NEXT i

END DEF

DEF Push (sn$, item$)

LOCAL sn, numchars

LET sn = NameIsThere (sn$)

IF sn = -1 then
LET Push = -1
EXIT DEF

END IF

LET numchars = len(item$)
LET item$[1:0] = num$(numchars)
LET stack$(sn)[1:0] = item$! Insert new element on front
LET Push = 0 ! Signal "no error"

END DEF

DEF Pop$ (sn$)

! Pops the top element from the stack named sn$.
! Returns: "no there" if the stack doesn't exist
! "empty" if the stack is empty
! the value otherwise.

LOCAL sn, numchars

LET sn = NameIsThere (sn$)

IF sn = -1 then ! Check to make sure stack sn is there
LET Pop$ = "not there"
EXIT DEF

END IF

IF len(stack$(sn)) = 0 then ! See if stack sn is empty
LET Pop$ = "empty"
EXIT DEF

END IF

! Next, REMOVE the top element of the stack.

D2008: Creating Object Classes in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 7

LET numchars = num(stack$(sn)[1:8]) ! Number of characters
LET Pop$ = stack$(sn)[9:numchars+8] ! The actual string

LET stack$(sn)[1:numchars+8] = "" ! Erase 8+numchars bytes

END DEF

DEF IsEmpty (sn$)

! Determines if the stack named sn$ is empty.
! Returns: -1 if stack doesn't exist
! 0 if the stack is NOT empty
! 1 if the stack IS empty

LOCAL sn

LET sn = NameIsThere (sn$)

IF sn = -1 then ! Make sure stack sn is there
LET IsEmpty = -1
EXIT DEF

END IF

IF len(stack$(sn)) = 0 then ! See if any elements in stack
LET IsEmpty = 1

ELSE
LET IsEmpty = 0

END IF

END DEF

DEF Close (sn$)

! Attempts to close the stack named sn$.
! Returns 0 if ok, -1 if stack doesnn't exist.

LOCAL sn

LET sn = NameIsThere (sn$)

IF sn = -1 then ! Check to make sure stack sn is there
LET Close = -1
EXIT DEF

END IF

LET stack$(sn) = "" ! If there, remove its contents and ..
LET exists(sn) = 0 ! .. remove it from existance

END DEF

SUB ListStackNames (m$)

! Lists the names of the available stacks,
! and if they are empty or not.

LOCAL i, lm

LET m$ = ""
FOR i = 1 to ubound(exists)

IF exists(i) = 1 then
LET m$ = m$ & stacknames$(i) & ", "

END IF

D2008: Creating Object Classes in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 8

NEXT i

IF m$ = "" then
LET m$ = "There are none."

ELSE
LET lm = len(m$)
LET m$[lm-1:lm] = ""

END IF

END SUB

END MODULE

Notice that this code is robust. There is no limit on the number of push-down stacks, nor
the size of any stack, nor of the length of any element in a stack (except for the total
amount of memory available.) Furthermore, nothing the user can enter as a command will
cause the object class to collapse; error messages are returned for all invalid command
sequences. Robustness is a most important property of an object class!

Whether this is the best way to implement push-down stacks is open to question. However,
the purpose of this example is to illustrate how one can obtain most of the advantages of
OOP in True BASIC using Modules. But it is hard to imagine that the coding details would
be more easily understoood in any other language.

Thomas E. Kurtz, April 17, 2000

Comments or questions to: tom@truebasic.com

