BRONZE Edition Reference Manual

John G. Kemeny

Thomas E. Kurtz
Edited by John Arscott & Anne Taggart

Bronze Edition Guide

for the True BASIC Language System
Copyright © 2002-2010 by True BASIC Incorporated

ISBN: 0-939553-39-2

All rights reserved. No part of this manual may be reproduced by any means, electronic,
mechanical, or photocopying, without the prior written permission of True BASIC, Inc.
Address any request for reprinting portions of any material contained in this documentation,
listing the purpose of the reprint or citation, and the expected edition size of the publication to
True BASIC as the address listed below.

Trademarks and their owners: True BASIC: True BASIC, Inc.; IBM: International Business Machines; Apple
Macintosh, MacOS: Apple Computer; MS-DOS, Windows, Windows95, Windows98, Windows Vista, Windows 7: Microsoft.

Published by:
True BASIC
PO Box 204
Gaysville, VT 05746-0204 USA

MANUAL NUMBER: 7222/M

1-888 282-9873 Sales Department

1-888 282-9873 Fax (24-hour availability)
support@truebasic.com Customer Support
http://www.truebasic.com Website

Printed in the United States of America. 01/2002

4 BRONZE Edition Reference Manual

7. More on INPUT and OUTPUTccccooiiiiiiieeee et 41
Printing Zones and the PRINT Statement...........cccccceevvviiiiiiiiiiiiieeieee e, 41
More about Controlling Outputccceeiieeiiiiiiiiiiee e 43
More about the INPUT Statementcccccueiiieiiiiiiiiiiiiieeceieee e 43
The LINE INPUT Statement..........cccccciiiiiriiiiieeeiiieeeeeeieee et eveee e 44
The TD_LineInput Subroutineccccceeieeiiiiiiieiiiiee et 45

8. LiOOP SEIUCLUIES.......cc.evviiiiiiiiiieeetee ettt e st e e e e e e e e s erreeeeensbaeaeenns 47
How a FOR-NEXT L00P WOTKS ...ccccoiiiiiiiieiiiieeeeiiee e ceieee et eireee e 47
Step SIZe 1N A LL0OP .eviiiieiiiiiiieiiiee et 48
NESEEA LiOOPS c.uvtiiieieiiiiee ettt e ettt e e eeite e e e e e tteeeeeentbeeeeeenssaaeeeesnsaeaeeeannns 50
An Introduction to Conditionsccceeeeuiiiiiiiiiiiiieeiiiee e 52
An Introduction to DO Loops and Counters...........ccccueeeeeeiiiieieeciieeeeeciieeee e 53
Variations on DO Loops, and Combining Conditionsccccccevveeeeecrireeennns 55

9. DeCiSioN StrUCLUIESccccvviiiiiiiiie ettt e e e e eaaeeeeenes 57
Simple IF-THEN DeCISIONScceeieiiiiiieeiiiiiieeeeiiieeeeeriiieeeeesireeeeesenveeeeesnnens 58
Single-line IF-THEN-ELSE DeCISIONScccvvttiiiiiiiieeeiiiieeeeeriieeeeeeiieee e e 58
Multiple-line DeCISIONS........ceeiieciiieeeeiiiiiee et e e eeieee e eeiveeeeeearreeeeeseaeeeeeennnns 58
More About COUNTETScceviiiiiieiiiiie ettt e et e e e eaaeeeeeenenee 60
The RANDOMIZE Statementcccceviiieiiiiieeeiiiiee ettt 61
The STOP Statement..........ccceiecciiiiiieiiiiee et e e e e e e e 61
Generating Random Whole Numbers.........cccccoeeeiiiiiieeiiiiieeecieee e 62
Other DecisSion Structures........c.uuieeeiciiiieeeiiiiee e eereee e e e e e e e e e 63

10. Formatting and Printing Your Programc..ccccoevviviiiniiiiieeencnneennn. 65
Guidelines for Good Programmingcccccceeeeiiiieeeeiiiieeeeeniieeeeeeiveee e e 65
Indenting with DO Formatccoooiiiiiiiiiiiiiieeciiee e 66
Indenting Blocks wWith > and <.........ccccciiiiiiiiiiieiiiiiic e e 67
Listing Your Programs on a Printer........ccccoovviiiiiiiiiiiiiiiceceee e, 68
Listing Output from your Programs..........cccccceeeeiiiiieeeiiiiieeeeciiee e 68
Using Line NUMDETSccccuviiiiieiiiiie ettt eettee e et e e s eaveeeeeenenes 69
Using the Command WIndowccccceeiieriiiiiiiniiiiee e e 69

11. Editing Hints and Shortcuts...............coccoviiiiiiiiiiiicec e 71
UNAOING .tttieeeiiiiiee ettt ettt e et e e e ettt eeeeeaaeeeeeessaaaeeeessseaeesasssaeeesennsseaeesannnns 71
Selecting, Deleting, Moving, and COpYing........cccccvveeeeerivreeeeeriieeeeenineeeeeennnens 77
Find and Changecoccoviiiiieiiiiiccie ettt e e e e e 73
Keep and INCIUAeoooieiiiiiiiiiecc et 75

Select ALl and MOVe T0... oot 76

Contents 5

12. Using and Storing Datacccciiiiiiiiiiiiieeee e 77
The DATA and READ Statements.........ccccoccuiiiiiiiiiiiiiiiiiieee e 77
Checking for More Datacccceeeeeeeiiiiiiiiiiiie ettt 79
Reusing Data Valuesccuvviiiieiiiiicciicc ettt e e e 81
Storing Data in Filesc.coiiiiiiiiiiiiii e 82
Reading Data from Text Filesccccocoiiiiiiriiiiiieeiiiee et 83
Creating Text Filesoocviiiiieiiie et e e e 85
Printing String Data to Text Files......cccccccoeviiiiiiiiiiiiiieee e 86
Reusing Stored Data for Input.........ccccvviiiieiiiiiiiiiiec e 88
Printing Numeric Data to Text Files........cccovvviieiiiiiiiiiiiiieeeeeee e 89
More about File Input and Outputcccoeeeuiiiiiiiiiiiiieeeeee e 91

13. Arrays and MatriCesccccooviiiiiiiiiiiiiiiieecee et 93
One-dimensional ATTAYScccccviiieiiiiiieeeeiiieee et e e eeeireeeeeereee e e esrreeeeeennreeeas 93
ATTaY SUDSCIIPES .eeiiiiiiiiee et e et e e e e vt e e e e s ebaeeeeennsbaeaeens 95
ArTay BOUNAS ...ooiiiiieeiiiiceeeee e e e e e e araea e 96
Arrays of Two or More DIimensionsccceeeviiieeeeiiiieeeeeieeeeeeeiiee e eeveee e 97
The MAT Statementscccceeiieeiiiiiiieciiee ettt e e e eeeeaaeeeeeenenne 99
Advanced Work with Arrays and Matricesccccoeoveeeeeriiiiieeeiiiiee e, 101

14. Functions and Subroutinescccccoveiieiiiiiiiieiiiiiee e 103
SUDTOULINESeeieieiiiiiee ettt e e e e sree e e e e ettee e e eennaeeeeeennnnes 103
Subroutines with Parameters...........cccccoovviiiiiiiiiiiiiiiee e 105
Built-in FUNCHIONS.ooiiiiiiiei et 106
One-line FUNCHioNScceiiiieiiiiiie ettt e e e e 107
Multi-line FUNCIONScccviiiiiieiiiie ettt e e e e 108
GLobal Variablesccoccvuiiiiieeiiiieeeeiiee ettt etee e e e e e e e naee e e e 109
External Subroutines and Functions...........cccvveieeiiiiiiieciiiieccciieee e 111
The LOCAL Statement...........coccoiiiiieeiiiiieieiiiee ettt e e e e evaeee e 112

15, LADIATIES.viiiiiiiiiiiee ettt ese e e et e e e e sttt e e e e tbaeee e e ssaaeeeeensaeeeeeennsees 113
| B3] o)z = SRS PR SRR 113
ATTASES .eeviiieeeeieeee e ettt e ettt e e et e e e et e e e e bt e e e e e tbbeee e e taaeeeeantaraeeennnraeeens 116
(070311 031 13 Y= PSPPSR 116

16. GraphiCs........oooiiiiiiiiii ettt e e e e e e e e e e aae e e e e nees 117
Drawing Pointsoooooiiiiiiiiieee e 117
Drawing Lines......oooveiiiiiiiiieieee et e e s e s 118
Changing the Coordinates..........cccceeeviiiiiiiiiiieieeiieee e e 119
Drawing SHapes......c..ceiiieeiiiiiiccieee e e et e e aae e e e 120
USING COLOTS ...uiiiiiieiiiiee ettt ettt e ettt e e e et e e e eeaeeeeesentbeeeeeesssaeeesennsaaeeesanns 122

ADNIIMATION. 1oitiiiiiiiieee e e ettt e e e et e e e e e et e e e e e taaeeeaaens 124

6 BRONZE Edition Reference Manual

PaCUTES e e e e e ———————— 125
Transformationscooceiiriiieiiiieee e 126
Creating Complex Picturescooeeeiiiiiiiiiieie et 128
The GraphLib LiDTaryccooeciiiiiieiiiee et 128
Other Graphics Features.........cccccoooeuiiiiiiiciiiieccceee e 129
Text in Graphics OUtPULccoiiiiiiiiiiee e 129
Graphics INPUL........uuiiiiiiieiic e e e e 129
MAT PLOT Statements.........cooecuiiiiiiiiiiieeieiiiee et eeteee et e s eiaeee e 129
Printing A Graphic Imagecoooooiiiiiiiiiicccceeeeee e 130
Working with Sensitive Graphical Objectsccoeeeuiiiiiiieeiiiiiiiicciiiieeeee. 130
Graphical Objects Demo Programs...........ccccooeeeiiiiiiiieeeecceeeccccciiiireeeeee e 132
17. Sound and MUSICccccuvviiiiiiiieee et e e e e e e e e aaaaareeees 135
The PLAY Statementccccooviiiiiiiiiiiiiiieeeieeeee et 135
The SOUND Statement.........ccocuuieeiiieiiiiieiee ettt 137
18. Correcting Errors and Debuggingccccccoeeviiiiiieiiiiieeeeeee e, 139
Tllegal StatemeEntscciiiiiiiiieeieeeee e e e e e e e e e e e 139
Errors During Program Runs — Exceptionscccccoovviiiieiiiiiieiiicciineneee, 140
Correcting Bugs in Your Programs..........ccccooeeeiiiiiiiieiiee et ee e 140
Appendix A. ASCII Character Set.............cccovvviiiiiiiiieeiieeee e 145
Appendix B. Summary of True BASIC Statements................ccccceeevnvieiennnnen. 147
Appendix C. True BASIC Built-in Functionscccococciiiiiiiiiiiniienee, 167
Appendix D. Explanations of Exrror Messages................cccccccvveveieeeeiicninnnnennnnn. 185
Appendix E. Making Your Own DO Programscccceeeeeeiiiiieeencieeeeenns 211
Appendix F. PRINT USING Statementcccccceeeiiiiiiiiiiniiiiieeeeieee e, 215
Appendix G. True BASIC File Typescccocvvveiiiieieeeiieeeeeee e 223
Appendix H. Basic to True BASIC Converter................cccccovvivvieeeeeeeeeeecnnnnns 239

Using This Guide

The BRONZE Edition of the True BASIC Language System is an ideal way to start using
this unique and powerful programming language created by the original inventors of
BASIC. You are able to write or run programs of any size, use libraries and modules, and
invoke DO programs. All the powerful True BASIC statements and functions are included
in this inexpensive starter edition.

The functionality to create independent free-standing double-click applications is not
included in the BRONZE Edition. For this the SILVER Edition of True BASIC is required.
A GOLD Edition of True BASIC will be of special interest to advanced developers, corpo-
rate or academic multi-user sites. Specifications and prices of all True BASIC books and
products can be found at the True BASIC website: http://www.truebasic.com

This BRONZE EDITION has been enhanced with an expanded HELP utility. Be sure to
read Appendix F (page 207) for an introduction on how to use this powerful tool. The con-
tents of an extensive reference manual are included in the HELP utility. Sample code for
many routines are also included. You can copy and paste code from HELP to your program.
Appendix B gives you a quick overview of the primary True BASIC statements and func-
tions. The HELP utility provides more information about each statement and function.

Many of the concepts and operations described in this manual will be new to you. To make
it easier for you to understand, we use the following style conventions to make clear the
many new concepts you will encounter:

Important new terms:

Variable names:

words in bold type

words in italic

True BASIC keywords: ~ ALL CAPS
Program listings: Code font
Items to be typed by user: ~ Code font
Important concepts: V' Bold type within lines
Menus & menu commands: ~MENU font
Names of programs: ALL CAPS
Names of built-in functions: ~ ALL CAPS

CHAPTER

An Introduction to Programming 1

What is a computer program? What is a programming language? Why should you want
to learn to write programs?

A computer program contains the instructions that tell the computer to do a certain
task, such as play a game of football, format and print a letter, or predict the survival
of lemmings over several generations. People who used the earliest computers had to
know how to write their own programs. There were no stores down the block where
they could buy a ready-to-use package that would track cash flow for their company.

Today, most people who use computers are not programmers. Instead, they use appli-
cation packages such as word processors, spreadsheets, address organizers, or flight
simulators. You can become a very sophisticated computer user and know nothing
about writing programs.

Yet even if you have no intention of becoming a software developer or writing complex
applications packages, you can still learn to program and enjoy solving your own prob-
lems in your own way. Why should people learn to program and why would you want
to write your own programs?

There are several personal and practical reasons for learning to program:

¢ Acquire training and practice in logical thinking. Many business schools continued
to teach programming to their students even after spreadsheets and database pack-
ages became widely available.

* Get a better understanding of how computers work. Everything a computer does
boils down to programmed instructions.

10 BRONZE Edition Reference Manual

® Create your own solutions to those little tasks that aren’t easily handled by general-
purpose applications. Calculate the results of a multi-race sailing regatta. Or com-
bine judges’ scores and distances for a ski jumping meet.

¢ Explore a new career field. Computer specialists have to start somewhere. And the
computer industry needs “new blood” if we are to avoid becoming “hostage” again to
those few who know how to program.

¢ Just have fun! Write a program to simulate a baseball game, or analyze a bridge
hand, or solve a puzzle.

The True BASIC BRONZE Edition package introduces you to programming using
statements and structures common to today’s structured programming languages. The
best way to learn is to sit down at a computer and do all the examples as you go through
this book. This book does not cover all features in-depth, but it will give you a good
start and hint at some of the additional power available with the True BASIC language.
If you wish to explore beyond the scope of this Bronze Edition, we suggest the follow-
ing books:

Avery Catlin, Let’s Program It... in True BASIC, True BASIC Press, 416 pp.
Third Edition 1996. (ISBN 0-939553-34-1)

Stewart M. Venit & Sandra Schleiffers, Programming in True BASIC: Problem
Solving with Structure and Style. PWS Publishing Co., 2nd Edition: 544 pp
1998. (ISBN 0-534-95351-4)

Brian D. Hahn, True BASIC by Problem Solving, VCH Publishers, 337 pp.
1988 (ISBN 3-527-26863-4)

The above books are available directly from True BASIC (where all the listed titles
are carried in stock) or from the individual publishers.

Visit our Web Site at http://www.truebasic.com for more information.

12 BRONZE Edition Reference Manual

As a structured language, True BASIC promotes good programming skills. True
BASIC programs are easy to read. From the beginning, you’ll learn modern looping
and decision structures. You’ll learn about using blank lines, comments, and indent-
ing to make your programs easy to follow and modify later on.

You’ll also learn how to use functions and subroutines to break your programs into
small, manageable units. These units simplify your programming task. They let you
concentrate on one problem at a time. They also let you create programs that are easy
for humans to read and understand! (Users of other versions of BASIC may notice this
book uses no line numbers or potentially confusing GOTO statements. True BASIC
allows these holdovers from an older style of programming, but we do not recommend
them.)

Dartmouth College Professors John G. Kemeny and Thomas E. Kurtz invented BASIC
in the 1960s. The modern True BASIC language maintains their original philosophy.
They designed alanguage that was easy for beginners, but provided power for advanced
programmers. In the 1970s, graphics devices appeared and the concept of structured
programming was widely accepted. At Dartmouth, BASIC continued to grow with these
developments. Unfortunately, some of the earlier versions on the first personal com-
puters were limited and did not benefit from new developments. Since 1985, True
BASIC has provided an easy-to-use yet powerful, fully structured language for users of
personal computers. Dr. Kurtz remains active in True BASIC affairs and has taken a
leading role in insuring that this latest BRONZE Edition combines the traditional sim-
plicity of BASIC with a wealth of powerful new features.

23

CHAPTER

Writing and Running 4
Your First Program

Start True BASIC, if you haven’t already, as described in the preceding chapter. This time,
instead of using an existing program, you'll create your own in the editing window. If you’ve
just started True BASIC BRONZE Edition and chosen "New", you'll have a blank editing
window called “Untitled 1” because you haven’t yet named your program. If you’ve been
running an existing program, choose New in the File menu to get a blank window which is
automatically named “Untitled #”.

~ Untitled! FEX
File Edit Run ‘Window Settings Help for True BASIC
o T = = T - 1 T O o A X

4 b~

Line:| 1 Char| 1 [Ready

Creating a Program

Suppose you've driven 420 miles on 14.3 gallons of gas. To compute your gas mileage, you
would divide 420 by 14.3. You can write a program to do this for you. Type the following
into the editing window. Press the Return key at the end of each line.

LET miles = 420

LET gallons = 14.3

PRINT miles, gallons, miles/gallons
END

24

% Untitled]
File Edit Run Window Settings Help for True BASIC

oo DiSE Helsl A=l Bk T

BRONZE Edition Guide

[E=SEE=|

3 1%

LET miles = 420

LET gallons = 14.3

PRINT miles, gallons, miles/gallons
END

<

Linesl 1 Char 1 | Ready

It doesn’t matter whether you use capital or lowercase letters or more spaces than shown.. It
only matters that you enter the program in a fashion similar to what is shown on the previous
page. Don’t forget that the digits one (1) and zero (0) and the letters “el” (1) and “oh” (O) are

four distinct keys on a computer.

If you make a mistake while you are typing, you can use the BACKSPACE or Delete key to
erase characters you have just typed. Press BACKSPACE once to erase the preceding char-
acter; press it several times to erase several characters. You can also use the arrow keys to
move the cursor bar anywhere on the screen to make a correction. Move the mouse cursor
with the mouse and click at the point where you wish to make a correction. Or drag and
highlight several characters that you may then delete. (The next chapter tells how to make
simple corrections to your program; Chapter 11 gives more details on editing.)

File Edit [Run] Window Settings Help for True BASIC
P Run ALT-R-R ST

B Untitled 1.TRU F=RER

LET mi. Breakpoint ALT-R-P
LET 98 Compile ALT-R-C
PRINT ; 1lons
END Bind ALT-R-B

Trace ALT-R-T

Do..

Do Format ALT-R-D
Do Upper ALT-R-U
Do Lower ALT-R-L

<

Line:[1 Char:[1 | Ready

Now let’s see what the program does. Select Run in the Run menu. You should see the

following “output”:

4. Writing and Running Your First Program 25

[B% Untiied 1R =N

File Edit Run Window Settings Help for True BASIC

o DisE Mer] A=s] Sk Fliel
LET miles = 420

LET gallons = 14.3

PRINT miles, gallons, miles/gallons

END

> [

R —
@ TrueBASIC all editions. Program finished - click mouse or press any key .E‘é‘g

420 14.3 29.3708628%

<
Line:| 1 Char:| 1 | Running....

The result is a little more than 29 miles per gallon. (If you get different results or if the pro-
gram doesn’t run, check that you entered the numbers correctly in your program and that
you spelled the words miles and gallons the same way throughout. LET, PRINT, and END
must also be spelled correctly.)

Each line in the program is a statement in True BASIC. Like sentences in English, each
statement contains an instruction that True BASIC can follow. Each statement begins with
a keyword. Your program uses three types of statements: LET, PRINT, and END. You
don’t have to type keywords in uppercase, but we’ve done that throughout this manual to
clearly distinguish them from the rest of the information in the statement. Keywords must
end with a space unless there is nothing else on the same line.

The LET Statement

The keyword LET tells True BASIC to assign a value to something. LET statements are
sometimes called assignment statements. The first line of the program assigns the value
420 to the word miles. When you again use miles in the PRINT statement, True BASIC
knows to use the value 420.

In programs, values such as 420 are called constants, and a name such as miles, which
could be assigned various values, is called a variable. You’ll learn more about constants
and variables in Chapter 6.

26 BRONZE Edition Guide

The PRINT Statement

The PRINT statement shows the results of a program on your screen. Your program uses
one PRINT statement to display three values: the values assigned to miles and gallons, and
the value obtained by dividing the value of miles by the value of gallons.

You can use PRINT statements to print constants, variables, or expressions (formulas that
combine constants and variables). For example, the PRINT statement in your program
could have been:

PRINT miles, 14.3, 420/gallons

and the results would have been exactly the same.

Chapter 7 describes the PRINT statement in more detail; Chapter 6 introduces expressions.

The END Statement

The last statement in your program is an END statement. It’s the signal to True BASIC
that there are no more instructions to carry out.

M Every True BASIC program must finish with an END statement.

How True BASIC Runs a Program

When you ran your program, True BASIC carried out (executed) the statements one by one,
from the first to the last — the same order in which you would read them. No statement
was skipped or carried out more than once. This is called a straight-line flow of control.
In later chapters, you'll learn about structures that create branches and loops in the flow of
control.

Saving Your Program

To save your program, return to the editing window if necessary and select Save in the File
menu. Since this is the first time you have saved this program, you will be presented with
a dialog box which allows you to choose the directory where your file will be saved. Call this
program MPG and press Return or click with the mouse.

You will again use this file in the next chapter where you’ll learn how to make changes to
an existing program.

27

CHAPTER

Modifying and Saving Programs 5

In the previous chapter, you learned how to write a simple program and save it. Now, you’ll
make some modifications to that program and save those changes. In the process, you'll
learn how to add comments to a program and how to have the program ask for information
when it runs.

If it is not still in your editing window, open the MPG program you created and saved in the
last chapter. You can use the Open command in the File menu for any program that you
saved, just as you did with GALTON.)

LET miles = 420

LET gallons = 14.3

PRINT miles, gallons, miles/gallons
END

Using Source and Output Windows

So far, we have been looking at the Editing Window which contains the program state-
ments. As you begin to modify and test programs, you will be able to see both your output
window and your editing or “source window” on the screen. When you run your program,
the results appear in the Output Window.

True BASIC uses an Error window to report errors, while actual output is sent to the
Output window. When your program has finished, True BASIC will wait for you to press a
key or click the mouse. Then the output screen will be erased and you will be returned to
the Source and Command Windows again.

(You can also keep the Output Window visible by selecting Output Window in the Window
menu.)

28 BRONZE Edition Guide

Making Simple Changes

Before you can edit your source program, you must learn how to move the text cursor. First,
make sure that the text cursor is in the desired window.

In the source window, a blinking vertical bar | indicates the insertion point. When you
type something on the keyboard, the new text appears at the insertion point. If you want
to change 420 to 420.6, you must first put the insertion point after the 0 in 420 and then
type .6 . You can move the insertion point with the mouse or the arrow keys.

The arrow keys move the insertion point a character or line at a time throughout the text.

There are two ways you can change existing text, such as replacing 14.3 with 15.7 in the
second line:

* Move the insertion point to follow 14.3 and press the Delete (or Backspace on
MacOS) key four times. You may then type the new number.

* Highlight (“select”) the number 14.3 by dragging across it with the mouse. Now
when you begin to type, the highlighted text disappears and is replaced by what
you type. (You can also select a word by double-clicking on that word.)

You can add new or blank lines by pressing the Return key at the beginning or end of an
existing line. To remove a blank line, place the cursor at its beginning and press the Detete
(or Backspace) key.

You can split or join lines in much the same way: split a line with the Return key at the
split point; join two lines by moving the cursor to in front of the first word of the second
line and press Delete or Backspace. The second line will be joined to the end of the line
above.

Adding Comments to Your Program

Comments and blank lines have absolutely no effect on how your program runs, but they
make programs much easier to read. From the very start, you should develop the habit of
adding comments to your program.

In True BASIC, comments start with exclamation points (!). Everything from the excla-
mation point to the end of the line is part of the comment. You may put a comment on a line
by itself or add one at the end of regular statement. Add some comments to your MPG pro-

gram:

5. Modifying and Saving Programs 29

! Compute miles per gallon
1

LET miles = 420 ' miles traveled
LET gallons = 14.3 ! gas used
PRINT miles, gallons, miles/gallons

END

To add the comments to an existing line, first move the insertion point to the end of the line
and then use the space bar to move out to the right a bit before you type the comment.

Saving Your Changes

You've now improved your MPG program by adding comments to it. The saved version
doesn’t have those changes, however, until you again save the program. To do that choose
Save in the File menu. True BASIC replaces the old copy of MPG with a copy as it now
appears in your source window.

If you've saved a program once and named it, the Save command doesn’t ask for a file name
for subsequent saves. It assumes you want to use the same name and replace the existing
version. If you wanted to keep the old copy and save the new, edited one with a different
name, you should use the Save As command. We will do that a bit later.

The INPUT Statement — Getting Information From the User

The way the MPG program is written, you have to edit it in the source window whenever
you want to compute miles per gallon for different numbers of miles or gallons. A program
like this is more useful if you can enter values when the program runs.

Instead of LET statements, you can use INPUT statements to assign values while the pro-
gram is running. Replace the LET statement lines in your program with INPUT statements
as shown in the program below.

!' Compute miles per gallon

1

INPUT miles

INPUT gallons

PRINT miles, gallons, miles/gallons
END

When you're satisfied you've typed the changes correctly, run the program to see how the
INPUT statement works.

30 BRONZE Edition Guide

When the program starts, it prints a “?”, which is a signal that it is waiting for you to enter
a number of miles. Type the number 100 and press the Return key. The program then
prints another question mark, now looking for the number of gallons. Type the number 4
followed by the Return key. Next, the program prints the results and stops. Your output
window should look like this:

? 100
? 4
100 4 25

Whenever it sees an INPUT statement, True BASIC prints a question mark and waits for
you to enter a response. Whatever you enter is assigned to the variable in the INPUT state-
ment. True BASIC knows that you are finished entering your number when you press the
Return key.

How will someone running your program know what they are supposed to enter when they
see a question mark? The simplest way to fix this problem is to use PRINT statements with
text for the program to print:

! Compute miles per gallon

|

PRINT "How many miles";

INPUT miles

PRINT "How many gallons'";

INPUT gallons

PRINT miles, gallons, miles/gallons
END

Notice that the text to be printed is in quotation marks. This is necessary so that True
BASIC won’t think the words are variables such as miles and gallons. Chapter 6 explains
this more fully. Chapter 7 explains the semicolon (;) at the end of the PRINT statement —
the semicolon makes the question mark appear on the same line as the text, and close to it.

Add the PRINT statements shown above to your program and run it again. You should see
the following output:

How many miles? 100
How many gallons? &4
100 4 25

5. Modifying and Saving Programs 31

Saving Your Program With a Different Name

You've now made additional changes to the MPG program since you last saved it. What if
you want to save these additions but you also want to keep the version as it was when you
last saved it? In other words, you want two versions of the program — one with the data
supplied by LET statements and one that requests the information with INPUT statements.

To save a copy of a program under a new name, use Save As in the File menu. Save this
version of your program with a name such as MPG2. The MPG program as you last saved
it is not changed or replaced.

Opening or Quitting without Saving
If you have edited a program and then attempt to Quit True BASIC without saving the pro-
gram, True BASIC asks if you want to save the file. You have three possible responses:

click Save to save the program (or replace a version with the same name)
and quit True BASIC

click Discard to quit True BASIC without saving your current program

click Cancel to get back to the program, where you could then use Save As

if you wish to save under a new name

True BASIC

Untitled 1 has been modified.
Do vou want to save before closing?

Save | Discard Cancel

33

CHAPTER

Constants, Variables and Expressions 6

True BASIC lets you work with two kinds of information — numbers and strings. By defi-
nition, strings are any combination of characters. Examples of string data include names,
addresses, or phone numbers. Let’s look first at numbers in True BASIC programs.

When you use numbers in a True BASIC program, they may be constants, variables, or
expressions (expression is just another name for formula). Look again at the simple MPG
program that you created earlier:

' Compute miles per gallon
1

LET miles = 420 ' miles traveled
LET gallons = 14.3 ! gas used
PRINT miles, gallons, miles/gallons
END
Constants

The MPG program contains two numbers: 420 and 14.3. These are called constants or
numeric constants.

M Constants are quantities whose values can’t change during a program run.

You can write constants as whole numbers, such as 420, or as decimals such as 14.3
Note, however, that you can’t include any spaces or commas in numbers in True BASIC.
Thus 10,000 must be written as 10000.

34 BRONZE Edition Guide

The following table shows some rules for writing numeric constants:
Number Constants

Acceptable Not Acceptable
6 VI
1002 1,002
321.33 1.2.3
0.003 1 000 000
.25

Variables
In the MPG program, the variables are miles and gallons.

@ Variables are names for quantities whose values may change during the
run of a program.

You could think of a variable as a box that can contain a value. A variable name (such as
miles or gallons) identifies a box and that name remains the same throughout the program,
but the value put into that box — assigned to that variable — can change each time the pro-
gram runs or even during a program run.

The LET statement assigns a value to a variable. After the first line in the MPG program,
the variable miles contains the value 420. The value of miles remains the same in this par-
ticular program, but you'll see later how values of variables can change within a program.

You can pick any names you want for variables in True BASIC as long as you follow certain
“spelling” rules explained below. Although the computer doesn’t care what names you use,
it’s usually a good idea to pick a name that somehow conveys what the variable means. For
example, miles is a better choice than the letter m to represent miles traveled.

Variable names can be up to 31 characters long. You may use either capital or small let-
ters, or any combination. True BASIC ignores the difference. The main rule is:

@ Variables names must begin with a letter, but subsequent characters can
be letters, digits, or the underscore (_) character.

6. Constants, Variables, and Expressions 35

The underscore is the only punctuation mark allowed in variable names. You can’t use
spaces or hyphens because these mean something special to True BASIC. (A hyphen is
the same as a minus sign.)

Variable Names

Acceptable Not Acceptable
miles # of miles
miles_per_gallon miles.per.gallon
profits 13
tax1040 Tworld
time_of_day time-of-day

Expressions and Formulas

Since computer keyboards don’t have all the arithmetic symbols (or operators) on them, True
BASIC has made a few substitutions. The symbols or arithmetic operators that True
BASIC uses are:

Symbol Meaning Example
+ addition a+b
- subtraction 3-2
* multiplication length*width
/ division miles/gallons
A exponentiation (x2) xM2

You can use constants and variables to do arithmetic calculations. When you combine con-
stants or variables using arithmetic symbols, you are writing an expression, which is just
another name for a formula.

For example:
miles/gallons

is an expression that divides the value of miles by the value gallons.

True BASIC does not notice spaces in expressions. For example, “a+b” means the same
thing as “a + b”, and “miles/gallons” is equivalent to “miles / gallons”. Remember, however,
that variable names cannot contain spaces.

36 BRONZE Edition Guide

Notice the symbols for multiplication and division. Computer keyboards don’t usually con-
tain the + symbol. Similarly True BASIC wouldn’t know if an X were a variable name or
amultiplication symbol. Therefore, you must always use the multiplication symbol (*) when
you want to multiply. In algebra, the expression “ab” means “a Xb”. True BASIC, however,
would assume that “ab” is a variable name unless you specify “a*b”. (The expression “a b”
is “illegal” because variable names cannot contain spaces and expressions must contain an
arithmetic operator.)

There is also a special symbol for exponentiation (raising to a power) because most com-
puters cannot write superscripts properly.

In the MPG program, for example, the expression that computes miles per gallon must be
written as:

miles/gallons

not

miles + gallons
or

miles

gallons

True BASIC follows rules that decide the order of calculation in an expression. You
can also control the order of calculation with parentheses.

* True BASIC performs multiplications and divisions before it performs additions and
subtractions. Thus, if you type

6+10/2
the computer first divides 10 by 2 and then adds the 5 from that operation to the 6, getting

11. If you want to add 6 to 10 and then divide the sum by 2, you must use parentheses to
force True BASIC to do that calculation first.

(6+10)>/2
¢ If you have several multiplications and/or divisions in one expression, True BASIC com-
putes them in order, from left to right. Thus, if you type

12/6%2
True BASIC first divides 12 by 6, and then multiplies the result (2) by 2 giving 4 as the final

result. If you want to divide 12 by the result of 6 times 2 (giving 1 as the final result), you
must again use parentheses to tell True BASIC to do that first:

12/(6*2)
* True BASIC computes exponents first, even before multiplications and divisions.

6. Constants, Variables, and Expressions 37

True BASIC does arithmetic as follows: exponentiation first, then multiplication and divi-
sion, and finally addition and subtraction. To be sure you get the results you want, use
parentheses even if you think you don’t need them.

The following table shows some examples of the differences between writing regular math-
ematical formulas and expressions in True BASIC:

In Mathematics In True BASIC
1T+ 2 + 3 T+ 2 + 3
3 X (4 + 5) 3*(4 + 5)
1 + 2 (1 + 2)/4
A
AB (A*B)/(C*D)
CD
x2 xA2

@ All expressions in True BASIC must contain appropriate arithmetic oper-
ators and must be typed entirely on one line; that is, you must not press
the Return key before you finish typing the expression.

If a line is to long to fit on a single line of the screen, you can use the True BASIC line con-
tinuation feature. To continue a line in this way, type an “&” at the point you want the line
to be broken and then press Return. At the beginning of the next line, type another “&” and
then the rest of the line.

Changing Values of Variables

The MPG program contains both constants and variables but it is a very simple program
where each variable retains the same value throughout one program run.

Consider the following COST program that adds the cost of three items, computes a sales
tax, and then gives the total purchase cost:

LET item1 = 250

LET item2 = 26

LET item3 = 1200

LET total = item1 + item2 + item3

LET tax = .04 * total
LET total = total + tax
PRINT total

END

38 BRONZE Edition Guide

Notice the variable total. In the fourth line, an arithmetic expression assigns a value to total
(the sum of the three items, or 1476 in this case):

LET total = item1 + item2 + jtem3

The next line uses that value of total with the constant .04 to compute the value of tax (.04
*1476 = 59.04). Now examine the next statement:

LET total = total + tax

This statement assigns a new value to total by adding the previous value of total (1476) to
the value of tax (59.04). After this statement, total has this new value (1535.04), and thus
the PRINT statement uses that value when you run the program.

You could rewrite the COST program to use a separate variable (such as itemtotal or subto-
tal) for the intermediate total. Indeed, using two different variables may often be the wis-
est choice. However, this ability to add to the value of a variable is important as you'll see
when you begin to use loops in your programs (see Chapter 8).

An Introduction to Strings

True BASIC processes words as well as numbers. In computer terminology, anything that
doesn’t have a numeric value is called a string. Your age is a number, but your name or
street address is a string. Strings can include any character your computer can display.
Like numbers, strings can be constants, variables, or expressions.

In the Chapter 5, you used strings with PRINT statements to tell the user what to enter for
the INPUT statements in your MPG2 program:

' Compute miles per gallon
1

PRINT "How many miles";

INPUT miles

PRINT "How many gallons";

INPUT gallons

PRINT miles, gallons, miles/gallons
END

Another common use of strings in computer programs is to print text with the output, to
make it clear what the numbers mean. You could add another PRINT statement near the
end of the above program:

PRINT "Miles", "Gallons", "Miles per Gallon"
PRINT miles, gallons, miles/gallon
END

6. Constants, Variables, and Expressions 39

The pieces of text in all but the last of the PRINT statements are string constants; they
cannot be changed when the program runs.

@ String constants (text) must be enclosed in double quote marks.

The double quotation marks keep True BASIC from treating those words as variable names.

Add the new PRINT statement to your MPG2 program and run it. You should see a result
similar to:

How many miles? 450

How many gallons? 13.6

Miles Gallons Miles per gallon
450 13.6 33.0882

Save your MPG2 program again to keep the new PRINT statement.

Using String Constants and Variables

Just as you can have numeric constants and numeric variables, you can have string con-
stants and string variables. String variables are names that represent strings, just as
numeric variables are names that represent numbers. String variables may have different
string values assigned to them during the run of a program.

@ String variable names must end in a dollar sign ($) to differentiate them
from numeric variables.

Other than that, rules for string variable names are the same as those for numeric vari-
ables. That is, string variable names can consist of a letter followed by up to 30 letters, dig-
its, or the underline character.

Programs often ask for your name and then use it again later. In a language lab, for exam-
ple, a program that teaches Spanish might start by asking “Como te llamas?” and then
PRINT good morning to you in Spanish. Your answer would be stored in a string variable;
the Spanish phrases would be string constants.

The demo program SPANISH uses one string variable and three string constants to say
hello in Spanish. (Open this program from the TBDEMOS Directory.)

40 BRONZE Edition Guide

' Ask for a name, then say good morning.
1

PRINT "Como te Llamas"; ' "What's your name"
INPUT name$! Get the answer.

PRINT "Buenos dias, "; name$; "." ' Y"6ood morning..."
END

Run the program, and enter your name when it asks “Como te llamas?” For example:

Como te llamas? Sara
Buenos dias, Sara.

The next chapter gives more information on using strings with PRINT and INPUT statements.

A Brief Look at String Expressions

Just as there are numeric expressions, you can also use special string expressions in your
programs.

You can combine, or concatenate, string constants or variables with the & (ampersand):

LET first$ = "Orville"
LET Llast$ = "Wright"
LET full$ = first$ & " " & last$
You can also use just part of a string — called a substring. The following statements
create a code name from the first four characters of the last name plus the first three
characters of the first name — similar to codes used on mailing labels.

LET first$ = "Orville"

LET Last$ = "Wright"

LET code$ = last$[1:41 & first$[1:31]

PRINT code$

END

will print
WrigOrv

(See Appendix C for a complete list of string functions.)

41

CHAPTER

More on Input and Output 7

You've seen how INPUT and PRINT statements let you get information into and out of a
program. This chapter explains these statements more fully and then introduces the LINE
INPUT statement.

Printing Zones and the PRINT Statement

Look again at the MPG2 program and the output you get when you run the program:
' Compute miles per gallon

PRINT
INPUT
PRINT
INPUT
PRINT
PRINT
END

"How many miles";

miles

"How many gallons";

gallons

"Miles", "Gallons", "Miles per Gallon"
miles, gallons, miles/gallons

How many miles? 450
How many gallons? 13.6

Miles
450

Gallons Miles per gallon
13.6 33.0882

Note that the text and the numbers in the last two lines of output line up neatly in columns.
That’s done by the commas in the PRINT statements.

@ The commas tell True BASIC that you want the items to be in print zones,
or columns, that are 16 characters wide.

42 BRONZE Edition Guide

Change the commas to semicolons in those last two PRINT statements, and run the pro-
gram again:

PRINT "Miles"; "Gallons"; "Miles per Gallon"

PRINT miles; gallons; miles/gallons

Your results should look something like this:

How many miles? 312

How many gallons? 8
MilesGallonsMiles per gallon
312 8 39

@ The semicolons tell True BASIC to print the output items right next to
each other.

True BASIC leaves a space on each side of a printed number, but none around strings. (True
BASIC replaces the space in front of a negative number with the minus sign.)

When you write a PRINT statement to give several values, you’ll probably want to use com-
mas to separate those values into neat columns. The semicolon is useful when you are print-
ing prompts for INPUT statements.

PRINT "How many miles";
INPUT miles

The semicolon tells True BASIC to print the ? for the INPUT statement in the space imme-
diately following the text “How many miles”.

How many miles?

With no punctuation after the PRINT statement, True BASIC would have put the ? on the
next line, just as it usually puts the information from each PRINT statement on a new line.

@ Unless a PRINT statement ends with a comma or semicolon, True BASIC
prints the next item on a new line.

You can create blank lines in your output by using a blank PRINT statement. You can
“tie” two or more PRINT statements together by ending the line with a comma or semi-
colon. Consider the following statements:

PRINT "Congratulations,
PRINT
PRINT “You have won'"; number_of_wins; "games out of";
PRINT number_of_attempts; "tries."

; name$;

7. More on Input and Output 43

Can you figure out how True BASIC would print this? Make up values for the variables,
but don’t peek below!

Notice that the PRINT statements include string constants (the information in quotes), a
string variable (name$), and two numeric variables (number of wins and
number_of _attempts). Notice also, that the string constant “Congratulations, “ includes a
space so that there will be a space before the value of name$. But you don’t need spaces in
the strings that will print next to the numeric values. Remember that True BASIC puts
strings right next to each other when you use semicolons, but it puts a space before and after
any positive numeric value that it prints. (True BASIC puts a minus sign instead of the
space before negative numbers.) Thus, True BASIC would print:

Congratulations, Chris!

You have won 12 games out of 25 tries.

More about Controlling Output

The comma and semicolon in PRINT statements let you control the appearance of your out-
put. These two punctuation marks and the use of spaces in text constants should be ade-
quate for most of your early ventures in programming.

The PRINT USING, SET MARGIN, and SET ZONEWIDTH statements and the TAB func-
tion let you control your True BASIC output even more precisely. PRINT USING (see
Appendix G) is especially helpful if you want numeric output to follow a specific pattern.

You can also send your output to a printer or another file on your disk. As you’ve seen, the
PRINT statement “prints” in the output window of your computer screen. Chapter 10
explains briefly how you can send output to a printer or a file.

More about the INPUT Statement

True BASIC provides a special form of the INPUT statement that lets you write your own
prompt without a PRINT statement. For example, you could rewrite the MPG2 program
to look like this:

' Compute miles per gallon

1

INPUT PROMPT "How many miles?": miles

INPUT PROMPT "How many gallons?": gallons

PRINT "Miles", "Gallons", "Miles per Gallon"

PRINT miles, gallons, miles/gallons

END

(Don’t forget the quotes and the colons.) The results will be exactly the same as before.

44 BRONZE Edition Guide

One last refinement of the MPG2 program: you can input both values with a single state-
ment. You could combine the two INPUT PROMPT statements as follows:

INPUT PROMPT "Miles, gallons?": miles, gallons

When you run the program, you must now give two numbers, separated by a comma:

Miles, gallons? 429, 12
Miles Gallons Miles per gallon
429 12 35.75

Save this version of MPG2 if you wish.

The LINE INPUT Statement

When you use a comma in response to an INPUT statement, True BASIC assumes you are
entering another item. What happens if you want to enter a string that contains a comma?

Look again at the SPANISH demo program you saw in the last chapter:

' Ask for a name, then say good morning.
1

PRINT "“Como te llamas"; ' "What's your name"
INPUT name$! Get the answer.
PRINT "Buenos dias, "; name$,; "." ' "Good morning..."
END

If you use a comma when you give your name, you will get an error message:

Como te Llamas ? Ruy Diaz of San Antonio, Texas
Too many input items. Please Reenter input Lline.

Como tl Llamas ? Ruy Diaz of San Antonio
Buenos dias, Ruy Diaz of San Antonio.

One way to avoid this problem is to put quote marks around your reply:

Como te lLlamas? "Ruy Diaz of San Antonio, Texas"
Buenos dias, Ruy Diaz of San Antonio, Texas.

People who use your programs may not know they must use quotes, however. The LINE
INPUT statement provides a better solution.

M LINE INPUT tells True BASIC to take the entire line as a single item, no
matter what it looks like.

7. More on Input and Output 45

Here’s the SPANISH program written with a LINE INPUT statement:

' Ask for a name, then say good morning.
1

PRINT "Como te Llamas"; ' "What's your name"
LINE INPUT name$! Get the answer.
PRINT "Buenos dias, "; name$,; "." ' "Good morning..."
END

Now you can run the program and include commas in the input line:

Como te Llamas? Ruy Diaz of San Antonio, Texas
Buenos dias, Ruy Diaz of San Antonio, Texas.

You can even enter no reply to a LINE INPUT by just pressing the Return key. (If you
just press Return with an INPUT statement, True BASIC complains that you did not give

enough input.)

The TD_Linelnput Subroutine
An alternative to the LINE INPUT statement is the TD_LineInput dialog box. To use it
you must include a library statement in your program to tell True BASIC which library
file contains the subroutine. Then use a CALL statement. Both are shown below.

' Ask for a name, then say good morning.

1

LIBRARY "TrueDial.trc"

CALL TD_LinelInput ("Como te Llamas", name$)
PRINT "Buenos dias, "; name$,; "."

END

The CALL TD_LineInput statement displays a dialog box on the screen; it looks something
like this:

Como te llamas

You can then type your name into the small box.

46

BRONZE Edition Guide

47

CHAPTER

Loop Structures 8

So far you’ve seen only “straight-line” programs. True BASIC starts at its top line, and goes
straight through the program. Each statement is carried out in turn and only once. A loop
structure lets you repeat a group of statements more than once. In a FOR-NEXT loop, you
tell True BASIC exactly how many times you want to execute the statements in the loop.
The DO loop lets the program decide how many times to repeat.

How a FOR-NEXT Loop Works

Let’s start with the simple problem of printing the numbers from 1 to 10. Instead of a PRINT
statement with ten items, or ten different PRINT statements, you can use a FOR-NEXT
loop. Type in the following program and run it:

' Count from 1 to 10.
1

FOR i = 1 to 10 ' For each value from 1 to 10
PRINT i; ' Print current value

NEXT i ' Increase i

END

Since the PRINT statement uses a semicolon, the results look like:
1" 2 3 & 5 6 7 8 9 10

Let’s look at what happens to i, the loop index variable. The first time True BASIC sees
the FOR statement, it gives i the value 1. The PRINT statement uses that current value of
i. Then, the NEXT statement increases the value of i by one and sends True BASIC back
to the FOR statement. Now i equals 2.

This loop repeats ten times, until reaches the value 11. At this point, i is greater than the
high end (10) given in the FOR statement, and so True BASIC goes to the first statement
after the NEXT statement, the END statement. Thus, this FOR-NEXT loop means “for each
number from 1 to 10, print the number.”

48 BRONZE Edition Guide

The FOR-NEXT loop is a structure in True BASIC, or a kind of framework that organizes
other statements. The variable i in this program is called the index variable; it acquires
a new value each time the loop runs.

M The same index variable must appear in both the FOR statement and the
NEXT statement.

The statement(s) between the FOR and the NEXT statements are carried out (or executed)
as many times as the loop is repeated. In this book, the statements inside the loop (in this
case, the PRINT statement) are indented more than the FOR and NEXT statements. This
is a matter of style; it’s not required in True BASIC, but it makes the program much easier
to read.

The loop alters the straight-line flow of control by repeating a group of statements. Such
structures let you take advantage of the great power of computers.

Step Size in a Loop

The NEXT statement above added 1 to the index variable each time through the loop. You
can make the NEXT statement add something other than 1 by putting your own step size
in the FOR statement. For example, if you want a table of square roots in increments of
one-tenth, you can use .1 as the step size.

Open the demo program SQROOT from your True BASIC BRONZE Edition disk:

! Square roots.

1

PRINT “Number", "Square Root"

PRINT

FOR number = 0 to 1 step .1
PRINT number, Sqr(number)

NEXT number

Print labels

Leave blank Lline

From 0 to 1 in small steps
Print number & square root

END
and run it:

Number Square Root
0 0
. .31622777
.2 4472136
.3 547722256
b .63245553

8. Loop Structures 49

.5 .70710678
.6 77459667
.7 .83666003
.8 .89442719
.9 .9486833
1. 1

This program uses the built-in function SQR to obtain the square root of number. (Chapter
14 explains built-in functions.)

If you want, you can have a negative number for a step size. This makes the loop count down
instead of up. Change the FOR statement so that your program looks like this:

! Square roots.
1

PRINT “Number", "Square Root" ' Print labels
PRINT ! Leave blank Lline
FOR number = 10 to 5 step -1 ' Go from 10 down to 5
PRINT number, Sqr(number) ' Print number & square root
NEXT number
END

When the step size is negative, the starting and ending conditions for the loop must also be
backwards — that is, they must go from large to small. In the first version of SQROOT, the
loop stopped when the number became greater than one. In the version with a negative step
size, the loop stops when number becomes less than five. (If you forget to change the step
from .1 to -1, your loop won’t execute at all, because number can’t get from 10 to 5 without
a negative step.)

Number Square Root
0 3.1622777

.8284271
.6457513
4494897
.236068

Ul O\ N 00 N0 —
NN NN W

You can use the index variable (here, number) outside its loop. But what value will it have
outside the loop? Add a PRINT statement to SQROOT so you can see what value number
has after the loop stops:

50

! Square roots.

1

PRINT "“Number", "Square Root"

PRINT

FOR number = 10 to 5 step -1
PRINT number, Sqr(number)

NEXT number

PRINT number

END
and run it again:

Number Square Root
10 3.1622777
9 3

8 2.8284271
7 2.6457513
6 2.4494897
5 2.236068

4

As you can see, number equals 4 after the loop ends.

BRONZE Edition Guide

Print labels

Leave blank Lline

Go from 10 down to 5

Print number & square root

M A FOR-NEXT loop always leaves the index variable with the first value

that fails the end test.

Nested Loops

You may use any True BASIC statements inside a FOR-NEXT loop, even another loop.
Some problems are best solved by using loops inside loops, that is, nested loops.

As an illustration, open the demo program EXES:

' Print pattern of x's.
1

FOR row = 1 to 6

FOR xcount = 1 to row
PRINT "x";
NEXT xcount

PRINT
NEXT row
END

8. Loop Structures 51

This program prints a pattern of x’s on the screen:

X

XX

XXX
XXXX
XXXXX
XXXXXX

Let’s analyze this program. It has two loops: an outer loop with the variable row as the
loop index, and within that an inner loop with the index variable xcount.

@ The inner or nested loop must be entirely inside the outer loop.

Each time the outer loop goes through one big cycle, the inner loop goes through as many
cycles as the current value of row. This creates the triangle pattern. As you can see, the
first row has one x, the second has two, and so on.

Note the empty PRINT statement just after the inner loop and just before the end of the
outer loop. This second PRINT statement is carried out only at the end of a row. It tells
True BASIC to start a new line. If it wasn’t there, the program would just print 21 x’s on
one line.

If you want to print more than one triangle, you’ll have to use three loops, not just two. Nest
a new loop between the row and xcount loops. Notice how the indenting and blank lines
help you keep track of which loop is which:

' Print pattern of x's.
1

FOR row = 1 to 6
FOR triangle =1 to 3 ' new loop starts here
FOR xcount 1 to row

PRINT "x";
NEXT xcount

PRINT, ' new PRINT with comma
NEXT triangle ! new Loop ends here
PRINT
NEXT row

END

52

BRONZE Edition Guide

Just as you need an empty PRINT statement to move to the next line before the NEXT
row, you also need a PRINT statement with a comma before the NEXT triangle, to move

to the next PRINT zone.
X X
XX XX
X X X XX X
XX XX XX XX
XX XXX XX XXX
XX XXX X XXX XXX

An Introduction to Conditions

X

XX

XXX
XXXX
XXXXX
XXXXXX

In the FOR-NEXT loop, you must specify how many times you want the loop to repeat.
Computers, however, are quite capable of making decisions based on an arbitrary condition
that you specify. The DO loop, introduced in the next section, and the decision structures
you'll see in the next chapter both use conditions.

A condition in True BASIC is a comparison of values. Conditions use relational operators:

Operator Meaning

= equal to

<> or >< not equal to

< less than

<=0r =< less than or equal to

> greater than

>=or => greater than or equal to

Conditions themselves have either true or false values. For example:

Condition Value
1<2 true
1+2<3 false
5+3>=8 true
“abe” <> “ABC true
“yes” = “no” false
“elephant” < “spider” true
“elephant” < “Spider” false

“moon” < “moonbeam” true

8. Loop Structures 53

Notice that you can compare strings as well as numbers. True BASIC orders string values
containing letters alphabetically except that all uppercase letters come before (are less than)
any lowercase letters. Shorter strings come before longer strings that begin with the same
characters. Most other characters (such as !, ¢, #. and $) and numbers come before letters.
The order for string characters is based on the ASCII character set, which is the standard
code that most computers use to represent keyboard characters. (Appendix A of this book
lists the ASCII character set.)

The next section shows how you can use conditions in DO statements.

An Introduction to DO Loops and Counters

The DO loop lets you repeat a group of statements just like the FOR-NEXT loop except that you
don’t specify number of repetitions. Instead, you specify a condition and True BASIC repeats
the loop until the condition becomes true or while (as long as) the condition remains true.

Let’s say you have $10,000 in a savings account, and the bank gives 5.5% interest. At the
end of the first year, the bank will pay you $550. If you leave this money in the account, the
next year you'll earn interest on $10,550, which yields slightly more than another $580, and
so forth. Each year you'll make a little more in interest than the year before. How long will
it take for your money to double?

Open the program INTEREST from the TBDEMOS Directory on your True BASIC
BRONZE Edition disk:

' Program to compute interest on a bank account.

! Stop when the money has doubled.
1

LET years = 0

LET money = 10000 ' Start with $10,000
LET original = money ! Remember original amount
LET interest = 5.5/100 ' Interest is 5.5%
DO until money >= 2 * original ! Loop until money doubles
PRINT years, money ' Print year and money
LET years = years + 1 ! Keep track of how Llong
LET money = money + (interest * money) ! Add in interest
LOOP

PRINT "In",; years ; "years, you'll have $"; money
END

54 BRONZE Edition Guide

Run the program:

10000
10550
11130.25
11742.414
12388.247
13069.6
13788.428
14546.792
15346.865
16190.943
0 17081.445
1 18020.924
12 19012.075
In 13 years, you'll have $ 20057.739

—_ 2000 ~NONUVITH~WWNND -0

Let’s analyze how this program works. It starts off with three LET statements assigning
starting values to the variables years, money, original, and interest. (It’s a good idea to treat
original and interest as variables instead of constants, because then it’ll be easier to change
the program later on.)

The DO UNTIL statement means “repeat the following group of statements until money is
greater than or equal to two times the original amount.” The PRINT statement displays
the current values of years and money, and the first LET statement inside the loop adds 1
to the value of years. The second LET statement in the loop takes the “old” value of money,
computes the interest on that value, adds the interest to the “old” value, and puts that sum
into the “new” value of money. The LOOP statement marks the end of the group of state-
ments, and tells True BASIC to go back to the DO UNTIL statement.

True BASIC checks the condition (money > = 2 * original) each time before it executes the loop.
If it had been true the very first time, True BASIC would never have executed the loop!

The second time around, money is 10550, still less than $20,000, so True BASIC repeats the
loop. The third time it’s 11130.25 so True BASIC repeats the loop, and so on. The last time
through, money reaches the value 20057.739. Then, when True BASIC returns to the DO
UNTIL statement, money is greater than 2 * original. So the loop ends.

True BASIC then continues with the next statement after LOOP, which is the last PRINT
statement. Thus the loop finishes when money has doubled (or more).

Notice again the LET statement inside the loop that adds 1 to the value for years. The vari-
able years is a counter. It is counting the number of times True BASIC goes through the
loop, which in this case is the number of years the money has been in the bank.

8. Loop Structures 55

Change the interest rate and see how that affects the DO loop. Edit the LET statement that
assigns the initial value to interest and run the program again.

LET interest = 8.5/100 ' Interest is 8.5%

With 8.5% interest, you should find that the DO loop works only nine times instead of thir-
teen as it did before. However, the condition (money > = 2 * original) is still met.

Note: The INTEREST program doesn’t format dollar amounts as you are used to seeing
them:

In 9 years, you'll have $ 20838.557

True BASIC’s PRINT USING (see Appendix G) statement lets you control the exact format
of numeric (and string) output. For example, you could replace the last PRINT statement
in INTEREST with the following two PRINT statements:

PRINT "In",; years ; "years, you'll have ";
PRINT USING "S$#H, #H##H.H##": money

With those statements, the final output line looks like:
In 9 years, you'll have $20,838.56

Variations on DO Loops, and Combining Conditions
With the UNTIL condition test on the DO statement, it is possible that the statements in the
loop will never run. You can put the test on the LOOP statement instead of the DO statement.

In that situation, the statements in the loop will always run at least once, because True
BASIC won’t check the condition until it reaches the end of the loop.

DO
PRINT years, money ' Print year and money
LET years = years + 1 ! Keep track of how long
LET money = money + (interest * money) ' Add in interest
LOOP until money >= 2 * original ! Loop until money doubles

Instead of repeating the loop until the condition becomes true, you can loop while the con-
dition remains false. The two statements:

LOOP until money >= 2 * original
and
LOOP while money < 2 * original

are equivalent. “While” and “until” are opposites, just as >= and < are opposites.

56 BRONZE Edition Guide

As with UNTIL, you can use either DO WHILE or LOOP WHILE. A DO WHILE loop may
never be used if the condition is false the first time; a LOOP UNTIL loop always runs at
least once since the test is made at the end of the loop.

You can also combine conditions with True BASIC’s logical operators: AND, OR, and
NOT. You can use a combined condition anywhere a simple condition works. For exam-
ple, the following statement would continue the loop until either the money doubles or 8
years go by:

LOOP until money >= 2 * original OR years >= 8

57

CHAPTER

Decision Structures 9

So far, you've seen simple programs where every statement is carried out in turn straight
through the program. You've also learned about using loops where a group of statements
may be used several times or not at all. In this chapter, you'll write programs that can
decide which of two sets of statements to use.

Simple IF-THEN Decisions

The IF-THEN statement in True BASIC forms a structure, or framework, for a decision.
The IF part of the structure contains a condition that True BASIC uses to decide which parts
of the structure to use.

IF statements use conditions just as the DO loop introduced in the last chapter. (If you need
a quick review, refer to “An Introduction to Conditions” in the previous chapter.)

The simplest IF-THEN decision carries out a single statement if a certain condition is true.
Call up the demo program COINS to see an example of a simple decision.

' Flip a coin five times.
1

FOR toss = 1 to 5
IF Rnd<.5 then PRINT "Heads, you win"
NEXT toss

END

This program simulates tossing a coin by using the RND, or random number, built-in func-
tion. RND gives a different random number between 0 and 1 each time it’s used. Half the
time, the random number will be greater than 1/2, half the time it will be less. The COINS

58 BRONZE Edition Guide

program prints “Heads, you win” each time the random number is less than 1/2. The rest
of the time, it doesn’t print anything. (Chapter 14 explains built-in functions more fully.)
For example:

Heads, you win
Heads, you win

Two out of the five times, the “coin” came up “heads” or less than 1/2. The other three
times it was “tails” or greater than or equal to 1/2. You can’t tell which tosses were heads
or tails, however. When it was tails, True BASIC just ignored the PRINT statement and
went on to the NEXT statement.

Single-line IF-THEN-ELSE Decisions

The ELSE keyword lets you write a statement that will be carried out only when the con-
dition is false. To print a different message for tails, add an ELSE and another PRINT
statement to the IF-THEN structure in the COINS program:

' Flip a coin five times.
1

EOR toss = 1 to 5
IF Rnd<.5 then PRINT "Heads, you win" ELSE PRINT "Tails,

you lose"
NEXT toss
END

Remember that you must enclose text in double quotes (“). Run this new version:

Tails, you lose

Heads, you win

Tails, you lose

Heads, you win

Tails, you lose
Now you know that the second and fourth times were heads, and the first, third, and fifth
were tails. Just as the THEN keyword precedes the statement to be executed when the con-
dition is true, the ELSE keyword precedes the statement to be executed when the condition
is false.

Multiple-Line Decisions

Quite often you want to execute more than one statement if a condition is true or false. In
that case, you need to use more than one line for the IF-THEN or IF-THEN-ELSE struc-
ture. You also need an END IF keyword to mark the end of the structure.

9. Decision Structures 59

Even though it has only one statement each for true or false conditions, you can change your
COINS program to use a multiple-line IF-THEN-ELSE structure. Press the Return key to
split the IF-THEN statement onto several lines, and add an END IF statement.

' Flip a coin five times.
1

FOR toss = 1 to 5
IF Rnd<.5 THEN
PRINT "Heads, you win"
ELSE
PRINT "Tails, you lose"
END IF
NEXT toss

END

Run this program. You should see the same results as when it was a single-line IF-
THEN-ELSE structure.

If you get an error message such as “Can’t use this statement here”, “Doesn’t belong
here”, or “Ending doesn’t match beginning”, you probably haven’t started the new lines in
the right places.

@ In the multiple-line IF structures, the keyword THEN must be the last
word in the IF statement. The two keywords ELSE and END IF must be
on lines by themselves.

Each statement (such as a PRINT or LET) within the structure must also be on a line by
itself.

When the condition is true, True BASIC executes the statements between the IF statement
and the ELSE keyword, ignores the statements between the ELSE keyword and the END
IF keyword, and jumps to the statement right after the END IF statement. When the con-
dition is false, True BASIC ignores the statements between the IF Statement and the ELSE
keyword, executes the statements between the ELSE keyword and the END IF keyword,
and continues with the statement right after the END IF statement.

60 BRONZE Edition Guide

More About Counters

In the previous chapter, you saw how a variable can count the number of times something
happens in a program run. The counter there was the variable years. The statement

LET years = years + 1
added 1 to the value stored in years each time the loop was run.

You can use variables such as heads and tails in the COINS program to count the number
of times the toss comes up heads or tails. Add the two LET statements to the IF structure
as shown below along with the two new PRINT statements after the FOR-NEXT loop.

' Flip a coin five times.

|

FOR toss = 1 to 5

IF Rnd<.5 then
PRINT "Heads, you win"

LET heads = heads + 1 ' Count heads
ELSE
PRINT "Tails, you lose"
LET tails = tails + 1 ' Count tails
END IF
NEXT toss
PRINT

PRINT “You won'"; heads; "times. I won"; tails; "times."

END

Run this version of COINS. Each LET statement assigns the variable its “old” value plus
one whenever its group of statements are used. (In True BASIC, every numeric variable
starts with the value of zero.)

Tails, you Llose
Heads, you win
Tails, you lose
Heads, you win
Tails, you lose

You won 2 times. I won 3 times.

9. Decision Structures 61

The RANDOMIZE Statement

You may notice that each time you run Coins, the tosses come out the same: tails, heads,
tails, heads, tails. The “random number generator” for the RND function creates the same
sequence of “random” numbers each time. This makes it easier for you to “debug” or check
your programs for accuracy. Even if it uses random numbers, your program will work the
same each time you run it. However, this feature also makes your programs less random.

To scramble the sequence of random numbers, add a RANDOMIZE statement to the start
of your program. You only need one RANDOMIZE statement in a program to make the RND
function unpredictable in that program. (In fact, using RANDOMIZE more than once can
actually make your random numbers less random.) It’s a good idea to put the RANDOMIZE
statement after the comments at the very beginning of the program and before any other
“executable statement”.

' Flip a coin five times.
1

RANDOMIZE

FOR toss = 1 to 5
IF Rnd<.5 then
PRINT "Heads, you win"

LET heads = heads + 1 ' Count heads
ELSE
PRINT "Tails, you lose"
LET tails = tails + 1 ! Count tails
END IF
NEXT toss

PRINT
PRINT "You won'"; heads; "times. I won"; tails; "times."

END
Run this version of COINS several times. You should get different results each time.

Save a copy of this version of the program if you wish — perhaps with a different name.
You may want to use all or part of it in your own programs later on.

The STOP Statement

Many programs use IF structures to decide when to stop. The program could ask the user
if they wish to continue and then make a decision based on the response, or the program
could “decide” to stop when it completes its task.

62 BRONZE Edition Guide

Call up and look at the demo program GUESS. This program uses the built-in functions
INT and RND to “think” of a number between 1 and 6. (The next section describes how that
works.) You then have three chances to guess the number. A FOR-NEXT loop gives you
the three guesses. If you guess correctly before you've used all three chances, a STOP state-
ment in the IF structure ends the program at that point.

' Program to play a guessing game.
1

éANDOMIZE
LET answer = Int(Rnd*6) + 1 ' Choose number from 1 to 6

PRINT “I'm thinking of a number from 1 to 6."
PRINT "You have 3 chances to guess it."

PRINT
FOR chance = 1 to 3
PRINT "Enter your guess"; ' Ask for number

INPUT guess
IF guess = answer THEN
PRINT "Correct!!t"
STOP ' Stop here, you guessed it
END IF
NEXT chance
PRINT
PRINT “The number was"; answer
END

Run the program a few times to see how lucky you are. The output will be different each
time, because the program has a RANDOMIZE statement.

Generating Random Whole Numbers

You’ve now seen two programs that use the RND built-in function to produce a number ran-
domly. The RND function always gives a decimal value between 0 and 1 (but never exactly
1). In the COINS program, you didn’t care what the number was, you just needed to split
the numbers into halves — less than .5, or .5 or greater.

The GUESS program is a bit trickier:
LET answer = Int(Rnd*6) + 1

First the RND function gives a decimal value between 0 and 1 (but never exactly 1). That
value is multiplied by 6 to create a value between 0 and 6 (but never exactly 6). As that
valueis very likely a decimal value (such as 4.327), the statement also uses the INT (Integer)
function to take just the integer or whole number part: 0, 1,2, 3, 4, or 5. Finally, 1is added
to give a whole number between 1 and 6.

9. Decision Structures 63

Other Decision Structures

The IF-THEN-ELSE structure gives you two possible branches for your decisions. The
program makes a decision and then carries out one of two sets of statements. You can nest
an IF structure inside another if you wish to make additional decisions, but this can be awk-
ward if you have several related decisions.

True BASIC includes two more decision structures that let you choose among three or more
sets of statements. The programs shown below provide a quick introduction; these programs
are in the TBDEMOS Directory.

The ELSE IF statement expands the IF structure to allow for multiple decisions. Consider
the guessing game played in the GUESS program. In that program there are just two things
that might happen after you guess: the program says you are wrong, or it says you are cor-
rect and the game ends. The program GUESS2 can do one of five things based on your guess:

' Program to play a guessing game.

1

RANDOMIZE

LET answer = Int(Rnd*10) + 1 ' From 1 to 10

PRINT "I'm thinking of a number from 1 to 10."
PRINT "You have 3 chances to guess it."
PRINT

FOR chance =1 T0 3
PRINT "Enter your guess"; ' Ask for number
INPUT guess! Get a guess

IF guess < 1 THEN! Check it out
PRINT "Must be at least 1."
ELSE IF guess > 10 then
PRINT "Can't be more than 10."
ELSE IF guess < answer then
PRINT "Too Llow."
ELSE IF guess > answer then
PRINT "Too high."
ELSE! Must be right
PRINT “Correct!!!"
STOP
END IF
NEXT chance
PRINT "The number was"; answer; "."
END

64 BRONZE Edition Guide

The SELECT CASE structure lets you choose among several alternatives as does the IF-
THEN-ELSE IF statement, but it handles the condition test a bit differently. The CRAPS
program plays the dice game “Craps”. The rules are simple. You play ten times. Each time
you roll two dice. If youroll 2, 3, or 12, you lose; roll 7 or 11 and you win outright. Otherwise,
you remember your “point” on that first roll, and keep rolling until you get either a 7 or your
point again. If you get your point, you win; but if you get a 7, you lose. If you don’t know
the game, the True BASIC program might make the rules easier to follow:

' Craps game.
1

RANDOMI ZE

FOR game = 1 to 10 ' Play 10 games
LET diel = Int(6*Rnd + 1) ' Roll 1 die
LET die2 = Int(6*Rnd + 1) ' And the other
LET dice = diel + die?2 ' Sum of two dice
PRINT dice; ' Print this roll
SELECT CASE dice ' Branch on roll
CASE 2, 3, 12 ' dice =2, 3, or 12
PRINT "You Llose."
CASE 7, 11 ' dice = 7 or 11
PRINT “You win."
CASE ELSE ' Anything else
LET POINT = dice ' Remember that roll
DO
LET diel = Int(6*Rnd + 1) ' Roll again
LET die2 = Int(6*Rnd + 1) ! Both dice
LET dice = diel + die2
PRINT dice; ' Print this roll

LOOP until dice = 7 or dice = point

IF dice=point then PRINT "You win" else PRINT "You lose"
END SELECT

NEXT game

END

65

CHAPTER

Formatting and Printing Your Program 1 0

You’ve now learned the basic elements of programming. This is a good time to review and
add to your knowledge of program format. First, a quick review of the “facts”:

* True BASIC programs can contain comments, blank lines, or “executable” statements that
give instructions to True BASIC.

* Statements always begin with a keyword. A space must separate the keyword from
anything else on the same line.

* Comments begin with an exclamation point. They may be on a line by themselves or at
the end of an executable statement. They have no effect on how the program runs, but they
make it much easier for a person to understand what the program does.

¢ Blank lines have no effect on how the program runs, but like comments they make a pro-
gram much easier to read.

* Variable names may be up to 31 characters long. They must begin with a letter, but
may then contain any letters, digits, or underscore characters (_). String variable names
must end with a dollar sign ($).

¢ All string constants (text) must be inside double quotation marks.

¢ All True BASIC programs must end with an END statement.

Guidelines for Good Programming

The program examples in this book illustrate some simple guidelines that can make your
programs easier to read and lead you to good programming style:

66 BRONZE Edition Guide

* Use comments at the beginning of a program to tell what the program does. This is also
a good place to add your name and information about the date and version of the program.

® Use comments throughout the program to explain what each segment or structure does.

® Use variable names that give some clue about what they are used for. Miles, years, orig-
inal, roll, toss, guess, and answer say a lot more than m, y, o, r, ¢, g, or a.

¢ Indent multiple-line structures such as loops and decision structures to show more clearly
the structure itself and the blocks of statements that are contained within the structure.

Indenting with Do Format

True BASIC comes with a formatting tool that can indent your program for you. The
NOINDENT demo program in the TBDEMOS subdirectory is another version of the
GUESS program with no blank or indented lines. This version has a nested IF structure.
Open this program and try to follow the structures in the unindented format.

' Program to play a guessing game.

1

randomize

let answer = Int(Rnd*6) + 1 ' Choose number from 1 to 6
print "I'm thinking of a number from 1 to 6."

print "You have 3 chances to guess it."

print
for chance = 1 to 3
print "Enter your guess"; ' Ask for number

input guess

if guess = answer THEN

print "Correct!!!"

stop! Stop here, you guessed it
else! Analyze wrong answers

if guess > answer then

print "Too high. Guess again.
else

print "Too lLow. Guess again."
end if

end if

next chance

print

print "The number was"; answer
end

10. Formatting and Printing Your Program 67

Now select the Do Format command in the Run menu. This command indents the state-
ments inside structures and puts all keywords into uppercase. You should find the struc-
tures much easier to follow. (In fact, Do Format is a good first step in debugging your pro-
gram. Chapter 18 has more information on that.)

' Program to play a guessing game.
1
RANDOMIZE
LET answer = Int(Rnd*6) + 1 ! Choose number from 1 to 6
PRINT “I'm thinking of a number from 1 to 6."
PRINT "You have 3 chances to guess it."
PRINT
FOR chance = 1 to 3
PRINT "Enter your guess"; ! Ask for number
INPUT guess
IF guess = answer THEN
PRINT "Correct!!!"
STOP ! Stop here, you guessed it
ELSE ! Analyze wrong answers
IF guess > answer then
PRINT "Too high. Guess again."

ELSE
PRINT "Too low. Guess again."
END IF
END IF

NEXT chance
PRINT
PRINT "“The number was"; answer
END

You should now be able to easily see and follow the nested IF structure that is in the
ELSE segment of the first IF structure.

To make this program even more readable, you could add some blank lines. Remember
how to do this? Place the cursor (horizontal blinking bar) at the end or beginning of a line
and press the RETURN-key. Use the DELETE-key at the beginning of the line to remove
undesired blank lines.

Indenting Blocks with > and < keys
You can, of course, indent single lines by adding spaces at the beginning of the line.

You can also easily indent a block of lines in True BASIC. First, select the lines you wish
to indent by dragging across those lines with the mouse cursor. (Make sure than the entire

68 BRONZE Edition Guide

lines are selected, not just the first part.) Then you can use the > or < keys to move all the
selected lines to the right or left. Each time you press > the block moves one space to the
right; each time you press <, it moves one space to the left. (Notice that you must hold the
Shift key to get < or > instead of a comma or period.)

Listing Your Programs on a Printer

You can get a paper (or hard-copy) listing of your program by chossing Print ... in the File
menu of the editing window.

To print just part of your program, first use the mouse to select the desired lines and then
choose Print Selection ... in the File menu. Select multiple lines by dragging across them
with the mouse.

If you have trouble printing, check the following:

* Be sure your printer is turned on.
® Check that the printer cable is firmly connected at both ends.

See the last section in this chapter “Using the Command Window” for information on the
LIST command that also prints all or part of your program.

Listing Output from Your Programs

When you run your programs, the results are “printed” on the screen in the output window.
If you wish to send those results to your printer, you must “open a channel” to the printer.
Here is a quick introduction:

OPEN #1: printer 'Opens channel #1 for the printer
FOR i =1 to 10
PRINT #1: i 'Print to #1 -- the printer
NEXT i
END

After the OPEN statement that identifies the printer, a plain PRINT statement will still
“print” to the screen, but PRINT #1 will send output to the printer. You may want to print
input prompts on the screen, but send the results of a calculation to the printer. If you want
results to go to both the printer and the screen, you must have two print statements for each
output line.

10. Formatting and Printing Your Program 69

The ECHO command, which you use in a command window, also lets you send program out-
put to a printer. The last section in this chapter describes how to use the command window
and the ECHO command.

Printing graphics output is even easier. Just choose Print in the menu of the output window.

Using Line Numbers

True BASIC’s structures and editing features make it unnecessary to use line numbers in
your programs. Although True BASIC recognizes and allows statements that rely on line
numbers (such as GOTO 1025), such statements are a holdover from the days before
structured programming languages were developed. You won’t find them described in this
manual. However, we do include a very useful True BASIC utility, the Basic to True
BASIC Converter which will translate many earlier Basic programs into useful True
BASIC code. The Converter is described in Appendix H.

Using the Command Window

So far, you’ve told True BASIC what to do with menu choices. You can also give commands
by typing them in a command window. This window has two parts. The actual command
part is limited to a single line at the bottom. The rest of the command window is actually a
"history" window containing all the commands you have typed recently.

Click in the command window to make it active and allow you to type a command.

You may type many commands that are also available in the menu, such as RUN, SAVE,
OLD (to open an existing program), NEW (to create a new untitled window), or DO FOR-
MAT. There are also several True BASIC commands that are not in the menu. Some of
these let you print copies of your program or output:

LIST Prints all or part of your program on your printer (indicate
lines to print just part of the program, such as LIST 1-10 for
the first ten lines).

ECHO Sends a copy of your output to a printer when you next use the
RUN command. This stays in effect until you use ECHO OFF.
(You can send output to a file with ECHO TO filename.)

ECHO OFF Stops echo of subsequent output to a printer or file
RUN >> filename Sends a copy of your output to the named file.

Other commands are helpful in debugging or correcting errors in your programs. Chapter
18 introduces some debugging commands.

70

BRONZE Edition Guide

71

CHAPTER

Editing Hints and Shortcuts 1 1

You've already edited several small True BASIC programs, and you’ve seen in the previous
chapter how you can improve the format of your programs. True BASIC has some special
editing commands and shortcuts that you may find useful as you continue working with
more and larger programs.

The Edit menu contains five sections of commands. This chapter explains the first three
groups of commands. The last two groups are introduced briefly; you'll find them more help-
ful later as you begin to work with larger programs.

Most of the editing commands have keystroke equivalents. For example, to Cut text on the
Macintosh, you could use command-X. On Windows you could use Alt followed by E followed
by T. The details of these keystroke equivalents are not included here as they differ between
operating systems. They are listed in detail in Appendix E.

Undoing

The Undo command in the Edit menu helps you recover from an editing mistake. For instance,
if you have just deleted text (rather than cutting it to the clipboard,) simply select Undo.

This command will “undo” the effects of the most recent Cut, Delete, or Paste operation (see
the next section.) And it will undo all typing since the last Cut, Delete, or Paste operation,
or mouse click.

Selecting, Cutting, Copying, and Pasting

Deleting, Cutting, Copying, and Pasting text are important editing tools. The Cut, Copy, and
Paste commands in True BASIC’s Edit menu work just like those commands in most other
applications. They all depend on selecting text — selecting single words, parts or all of lines,
or blocks of lines.

72 BRONZE Edition Guide

Selecting Text. To delete, move, or copy something, you must first select or highlight the
desired text using the mouse in one of the following ways:
® drag across the desired words or lines

e double-click on a word to select that word

You can extend a selection by moving the mouse pointer and then holding the Shift key while
you click with the mouse.

If you are not familiar with Cut, Copy, and Paste, practice using them with the SMOKY demo
program as described below. (Just don’t save your changes without using Save As to rename
the program; you’ll use SMOKY again in Chapter 17.)

Open the demo program SMOKY and run it to see what it does. Now practice selecting the
four lines of DATA statements.

Deleting Lines. Once you've selected something, use the Cut command to remove the text.
Select the two comment lines in the SMOKY program and choose Cut in the Edit menu. The
lines will disappear.

The Cut command puts these lines into the “clipboard” so you can get them back later. Choose
Paste in the Edit menu. True BASIC will put the lines back where they were originally.

@ The Cut command removes selected text from your program and puts
it in the clipboard.

Note that you can also use the Delete key to remove selected lines. But, unlike Cut, the
Delete key does not put anything in the clipboard. You cannot Paste something that has
been “deleted”.

Moving Lines. Use Cut and Paste to remove selected lines and then insert them else-
where in the file.

This time, select the four DATA lines in the SMOKY program. Use the Cut command to
remove the lines (and put them in the clipboard). Then move the insertion point to the
left of the DO statement. Now choose the Paste command. True BASIC puts the DATA
lines before the DO loop.

11. Editing Hints and Shortcuts 73

@ The Paste command puts the current contents of the clipboard at the
current insertion point in your program.

Run the program again. It still works, regardless of the location of the DATA lines. You’ll
learn more about this statement in Chapter 12.

Notice that the two comment lines disappeared from the clipboard when you copied the four
DATA lines. The clipboard holds only one selection at a time. It contains the last thing you
cut or copied. Previous contents are lost each time you use Cut or Copy, but you may Paste
the same text from the clipboard as many times as you wish.

Copying Lines. You can copy selected lines to another part of your program by using Copy
and Paste. Copy puts the selected lines into the clipboard without removing them from the
program. You can then Paste a copy to another spot.

Make a second copy of the four DATA lines to follow the existing DATA lines. Select the
four DATA lines in the SMOKY demo program and choose Copy in the Edit menu.

@ The Copy command puts a copy of selected text in the clipboard with-
out removing the text from your program.

Move the insertion point to the line below the last DATA statement, and choose Paste in
the Edit menu. True BASIC inserts a new copy of the four DATA lines.

Run the program again. You'll hear the same lines twice.

Find and Change
Finding Words. Put the insertion point at the beginning of the SMOKY program, and
choose Find from the Edit menu. True BASIC will present a Find dialog. Type:

Data

in either upper or lowercase. Press the Return or the Enter key, or click the Find but-
ton on the lower part of the box. True BASIC will select (display in reverse video) the
first occurrence of the word data in the program:

DO while more data

74 BRONZE Edition Guide

_ Find

Search for: |Data |

[~ Case Sensitive
[~ Wrap
[~ Entire Word

Find | Cancel |

To find the next occurrence of the word data, choose Find Again in the Edit menu. True
BASIC will select the next occurrence of the word data, which is the first DATA statement.

Finding Parts of Words. Choose the Find command again. This time, type:
dat

and press the RETURN key or click Find. True BASIC will select the next occurrence of dat,
which is the first part of the next occurrence of the word data.

If you want to find just part of a word and distinguish between upper or lower case, click in
the box “Case Sensitive” in the Find dialog box. If you want to find the exact word, click in
the box “Entire Word” in the Find dialog box.

Without moving your insertion point, choose Find one more time. This time look for the word:
read

Even though the program SMOKY contains a READ statement, True Basic won’t find it
because the insertion point was below the READ statement when you used Find. Instead,
you’ll be told

“read” not found
in the message line at the bottom of the Editing Window.

If you want to go back to the beginning of the file to continue the search, click in the box
“Wrap” in the Find dialog box.

@ True BASIC always searches from the insertion point to the end of
the program, and then stops, unless Wrap has been selected.

11. Editing Hints and Shortcuts 75

Move the insertion point to the very beginning of the program. Choose Find Again. True
BASIC will find the READ statement now, because you started the search at the very begin-
ning of the program.

Changing Text. The Change command lets you change all occurrences of a word or num-
ber to a different word or number. Choose Change... from the Edit menu. Type the word
music$ in the first line, and the word notes$ in the second line. Now click on the Replace All
button.

. Change
Search for: |music$
Replace with: |nutes$

[Case Sensitive
[~ Wrap
™ Entire Word

Find | Cancel |

Replace One | Replace, Find | Replace All |

Look at the READ and PLAY statements, and you’ll see that the variable names have
changed.

The Change command works over the entire contents of the Source Window. Otherwise,
the Change command works like the Find command. You can make it case sensitive. And
you can have it apply only to entire words and not parts of words.

Keep and Include

The next two commands in the Edit menu will become useful as you begin to work with larger
programs.

If you want to remove all but one section of a program, use the Keep command. Select the
part you want to keep and then choose Keep from the Edit menu. True BASIC will delete
everything in your program except the selected text. True BASIC will also change the name
of what is left to "Untitled ?" to prevent your accidentally saving it over the original file.

The Include command lets you add the contents of another file to your program. Put the
insertion point at the place where you wish to add the new file and select Include from the
Edit menu. You'll get a dialog box where you can specify any existing file in any directory

76 BRONZE Edition Guide

on any disk. True Basic will insert the contents of that file at the insertion point of your
current program.

Select All and Move To

The Select All command will select the entire contents of the Editing Window, whether vis-
ible or not. This can be useful if you want to move the entire file to another Editing Window.

The Move To commands lets you move to a specific place in the program by specifying line
numbers or the name of a particular subroutine or function. For example, you can move to
the beginning of your program by using Move To and specifying line 1.

As another example, if you want to work with your subroutine Makelmage, just type its
name in response to the Move To dialog box.

7~ Smoky_tru o [=]

File Edit Bun ‘Window Settings: Help

! Plays the beginning of ﬂ
Poron Top of ©ld Smoky™.

D2 while more data
True BASIC E

Move to line, subroutine, or function:

‘Makelmage |

N Ok | List Cancel |

77

CHAPTER

Using and Storing Data 1 2

So far, you've used the LET and INPUT statements to assign values to variables. These
work fine if you have just a few values. The READ and DATA statements described in this
chapter let you supply a list of numbers or strings in your program and assign them, one by
one, to variables. They always go together: the DATA statement lists all the values, and
the READ statement assigns them to variables.

The DATA and READ Statements

Call up the demo program TRIVIA and look at how it uses READ and DATA statements.
' Trivia quiz.
1
READ num_quest ' Number of questions
FOR i = 1 to num_quest ' Read all questions

READ question$, answer$

PRINT question$;

LINE INPUT reply$ ' Get user's guess

IF reply$ = answer$ THEN ' If correct...
LET right = right + 1 ' Count right replies
PRINT "Correct." ' And say bravo

ELSE
PRINT "No, the correct answer is "; answer$; "."

END IF

NEXT i

78 BRONZE Edition Guide

PRINT "“You got"; 100 * right/num_quest; "% right."
DATA 5

DATA What is the capital of Austria, Vienna

DATA What year did Franklin Pierce take office, 1853
DATA "What is the capital of Manitoba, Canada", Winnipeg
DATA "How many years, on average, does a baboon Llive", 20
DATA How about a gray squirrel, 5

END

The first executable statement after the initial comment lines is a READ statement. This
“reads” the first item in the first DATA statement and assigns that value to the variable
num_quest. The value of num_quest determines how many times the program goes through
the FOR-NEXT loop.

The second READ statement is inside the FOR-NEXT loop. It gets the next two values from
the list of DATA statements and assigns them to the two variables in the READ statement.
Question$ takes the value “What is the capital of Austria” and answer$ gets the value
“Vienna”. The next time through the loop, question$ and answer$ take the next two values
in the DATA statements, and so on.

Run the program to see how it works. You can give any answers you want; the dialog below
is just a sample.

What is the capital of Austria? Salzburg

No, the correct answer is Vienna.

What year did Franklin Pierce take office? 1844
No, the correct answer is 1853.

What is the capital of Manitoba, Canada? Winnipeg
Correct.

How many years, on average, does a baboon Llive? 20
Correct.

How about a gray squirrel? 15

No, the correct answer is 5.

You got 40 % right.

M DATA statements may be placed anywhere in your program.

You saw that the location of the DATA statements didn’t matter when you moved them in
the SMOKY program in the last chapter. Often they go at the very end of a program; some-

12. Using and Storing Data 79

times it’s more convenient to put them right after a READ statement. You may use a sep-
arate DATA statement for each item, or use commas to put several items on one statement.
True BASIC lumps all the DATA statements in a program together, in order, into one long
list of data items. Each time it executes a READ statement, True BASIC reads the next
item in the DATA list, regardless of where it appeared in the program.

@ READ and DATA statements can use either numbers or strings.

You may freely mix strings and numbers in your DATA statements. Just be sure that the
variable name type (numeric or string) is reading an appropriate type of data item. You
can’t read a string data item into a numeric variable, but you can read a number into a string
variable. The TRIVIA program reads some numbers for the string variable answer$. This
is perfectly legal in True BASIC, as long as you don’t try to use that variable to do arith-
metic calculations.

M You must put double quote marks around string data items that contain
commas, or around items that begin or end with spaces.

If you don’t use quote marks, True BASIC will assume that any commas are separating data
items, and it will ignore any extra spaces before or after the data.

Checking for More Data

The TRIVIA program stores the number of questions in the first item in the DATA state-
ments. The number of questions then controls the FOR-NEXT loop so that it reads the cor-
rect number of items. If the program tried to read more items than are contained in the
DATA statements, True BASIC would give you an error message.

It is not always convenient to count the number of DATA statement items, however. True
BASIC provides a way that you can use a DO loop to check whether there are any more data
items available. The SMOKY demo program you edited in the last chapter illustrates this
method. You haven’t learned the PLAY statement yet for performing music, but you should
be able to follow the logic of the program.

! Plays the beginning of
' "On Top of OlLd Smoky".

DO while more data

80 BRONZE Edition Guide

READ music$! Get the string representations
PLAY music$ ' And play the notes

LOOP

DATA 04 L4 C C E G 05 L2 C. 04 A.

DATA L4 A F G A LT G

DATA L4 C C E G L2 G. D.

DATA L4 E F E D L2 C.

END

The DO WHILE MORE DATA statement means “keep looping while there are more data
items to read”. This is why the program still worked even when you copied and pasted an
extra set of the DATA statements.

M MORE DATA is true as long as there are more items in the DATA list.

DO WHILE MORE DATA makes it easier to change the amount of data at the end of the
program. You never have to count the data items, or remember to change the number say-
ing how many data items there are. After all, the computer should do all this bookkeeping
work!

(As a practice exercise, rewrite the TRIVIA program to use a DO WHILE MORE DATA
statement instead of the FOR-NEXT loop.)

Besides the MORE DATA condition, True BASIC also has an END DATA condition, which
works just the opposite way. END DATA is true if you’ve run out of data to read. It’s prob-
ably easiest to use END DATA with a DO UNTIL or LOOP UNTIL statement. For exam-
ple, you could rewrite the SMOKY program to use a plain DO statement with a LOOP
UNTIL END DATA statement.

M END DATA is true when there are no more items in the DATA list.

12. Using and Storing Data 81

Reusing Data Values
So far, the TRIVIA and SMOKY programs have read each data item once and only once.

@ Summary: True BASIC’s RESTORE statements lets you reuse data values
that have already been assigned to variables.

After you use a RESTORE statement, True BASIC begins reading again at the first item
in the list of DATA statements. The following version of SMOKY uses a RESTORE state-
ment whenever the end of the data is reached. This program also illustrates the END
DATA condition which is the opposite of MORE DATA.

' Plays the beginning of
' "On Top of OlLd Smoky".
PRINT "Now playing 'On Top of Old Smoky'"

DO while more data
READ music$! Get the string representations
PLAY music$'! And play the notes

IF end data then RESTORE

LOOP

DATA 04 L4 C C E G 05 L2 C. 04 A.
DATA L4 A F G A LT G

DATA L4 C C E G L2 G. D.

DATA L4 E F E D L2 C.

END

Notice that this program now contains an infinite loop. The program will never end on its
own. First, it will play through to the end of the data. When the last item is read, the IF
END DATA condition will then be true and the RESTORE statement will “reset” True
BASIC to the beginning of the DATA items. DO WHILE MORE DATA will therefore still
be true. Thus, the data will play again, and again be restored after the last item. (Click in
the close box of the output window to stop the program.)

Notice also, that you may use the END DATA or MORE DATA conditions anywhere that
you can use a logical condition. Thus, you can use them in IF-THEN statements as well as
on a DO WHILE or DO UNTIL.

82

You can also combine checks for END DATA or MORE DATA with other conditions using
AND or OR. With AND, both conditions must be true. With OR, if just one condition is true
then the test is true. Can you figure out how the following version of the TRIVIA program

will work?

BRONZE Edition Guide

' Trivia quiz.

!
DO

READ question$, answer$

PRINT question$;

LINE INPUT reply$! Get user's guess

IF reply$ = answer$ THEN ' If correct...
LET right = right + 1 ' Count correct replies
PRINT “Correct." ' And say bravo

ELSE

PRINT "No, the correct answer is "; answer$; "."

END IF

IF end data and right < 3 then

RESTORE
LET right = 0
END IF

LOOP until end data or right >=3
DATA What is the capital of Austria, Vienna
DATA What year did Franklin Pierce take office, 1853
DATA "What is the capital of Manitoba, Canada", Winnipeg
DATA "How many years, on average, does a baboon Llive", 20
DATA How about a gray squirrel, 5
END

Storing Data in Files

True BASIC also lets you write and read data to and from a wide variety of files. A file is a
collection of information saved on a disk in your computer. Files may contain text, data, or
programs; each of the True BASIC programs you've been creating are saved in separate files.
Because files continue to exist after your program stops and even after you turn off your

12. Using and Storing Data 83

computer, they serve as long-term storage. There are several advantages to storing your
data in one or more files separate from the file containing your program:

¢ [t is easier to create and maintain a large amount of data in a separate file. You don’t need
DATA statements, and your data takes no space in your program.

* You can run a program with several different sets of data (each stored in a different file),
or have one set of data that can be used by several programs.

* A program can change or make additions to data stored in files. You can store results for
use in later program runs.

True BASIC programs can read and write to five kinds of files: text, record, random,
stream, and byte files. Here, we'll look at just text files as these are the easiest to create
and understand.

A text file contains lines that True BASIC can display on the screen. You can create text-
file lines at the keyboard using True BASIC's screen editor or by printing output from a True
BASIC program to a file. All of the True BASIC programs you've been looking at are actu-
ally text files.

Reading Data From Text Files

The demo program TRIVIAZ2 is a version of the Trivia Quiz that gets its data from the text
file TRIVDATA. Open the TRIVIA2 program and notice how it differs from the versions
you've seen so far:

' Trivia quiz -- reads data from a file.
1
OPEN #1: name "TrivData.tru" ! Open file as channel #1
DO
INPUT #1: question$, answer$! Get data from channel #1
LET total = total + 1 ' Count the questions
PRINT question$;
LINE INPUT reply$! Get user's guess
IF reply$ = answer$ THEN ' If correct...
LET right = right + 1 ' Count correct replies
PRINT "Correct." ' And say bravo
ELSE

PRINT "No, the correct answer is "; answer$;

END IF

84 BRONZE Edition Guide

LOOP until end #1

PRINT "ALLl done. You answered"; right; "out of"; total;
PRINT "questions correctly."

CLOSE #1

END

The OPEN statement "opens a channel" to the file TRIVDATA. This channel, #1 in this
case, then serves as a shorthand name for the file you have opened. (This is similar to the
way you “open a channel” to the printer as seen in Chapter 10. The PRINTER and NAME
keywords tell True BASIC what you want. By using different channel numbers, you can
open a printer and one or more files at the same time.)

The INPUT #1: statement looks at the opened file for input rather than asking for it at the
keyboard. The LOOP UNTIL END #1 statement works as does LOOP UNTIL END DATA,
but it looks for data in the opened file rather than in DATA statements within the program.
You may also use MORE #1 wherever you might use a MORE DATA statement.

Similarly, if you add the statement:
IF end #1 then RESET #1: begin

just before the LOOP statement, the program will run continuously using the TRIVDATA
questions over and over again. In that case, you would have to use the Stop command in
the File menu of the Output Window, or click the close box of the Output Window to stop
the program.

The CLOSE #1 statement closes the channel to the file. Although True BASIC automati-
cally closes any open files at the end of a program, it's a good idea to close a channel when
you no longer need it.

The TRIVDATA file must contain the data just as you would type it on the keyboard in
response to an INPUT statement. The INPUT #1 statements asks for two input items. Look
at TrivData.tru and you'll see that each line contains two input items separated by a comma.

Which part of a lemon provides the zest, skin

What is a German motorway or freeway called, Autobahn

Which is the most populous country in the world, China

What year did the SS Titanic sink, 1912

What is the largest snake in South America, Anaconda

What shape does a honeybee make its cell, hexagonal

What is the main power source for orbiting research satellites,
solar

12. Using and Storing Data 85

M The data-file lines must exactly match the INPUT requests as the pro-
gram cannot "re-ask" a file for input.

If there are too few or too many items, or the types do not match, your program will stop
with an error. If you can't fit all required input items on one line (as with the last question),
you can end a line with a comma to indicate that another input item follows on the next line.

Use the arrow keys to move to the end of the TRIVDATA file and you'll see that the last
line of data is the last line of the file. There are no extra CR or CR-LF sequences at the end
of the file. (If a data file ends with a blank line, you may receive an error message such as
"Too few input items" when True BASIC expects more data but finds no input items on the
line.)

You may also use the LINE INPUT, MAT INPUT, and MAT LINE INPUT statements to
read from text files. LINE INPUT is, in fact, the best statement to use with strings that
might have commas or quotes in them; see the section "Using LINE INPUT with String
Data in Text Files" below. Just be sure that the data in the file matches the appropriate for-
mat for the input statement or statements in the program. (The MAT statements read into
arrays and are explained in the next chapter.)

Creating Text Files

You may use True BASIC's screen editor to enter data into a text file. Create a new file as
if you were creating a new program, and then type in your data in the proper format. Do not
use any DATA statements — and of course no line numbers!

You can also create data files with any application (such as a word processor, spreadsheet,
or database program) that lets you save text-only files. Check the instructions for your appli-
cation to learn how to save such files; put commas between data items if necessary.

For practice, create an alternative set of questions for the TRIVIA2 program. You can then
edit TRIVIAZ2 to open you new data file, or you can modify the program to ask you what file
to use for input:

INPUT PROMPT "What file contains the questions?": filename$
OPEN #1: name filename$

True BASIC programs can also create text files and put data into them, as described in the
next section.

86 BRONZE Edition Guide

Printing String Data To Text Files

Just as you can open a channel to a printer and then PRINT to the printer instead of the
screen (see Chapter 10), you can open a channel to a file and PRINT to that file. You can
easily adapt any program you've written so far to send output to a file rather than to the
screen or printer:

OPEN #1: NAME "outfile.tru", CREATE NEWOLD
! Opens channel #1 to a file

ERASE #1 ! Make sure file is empty
FOR i = 1 to 10
PRINT #1: i ' Print to file #1
NEXT i
CLOSE #1 ' Close the file
END

Simply opening the file and replacing your PRINT statements with PRINT #1 statements
works fine if you merely want to save your output — perhaps for later listing on a printer.
However, if you are storing data for future use by a program, you must plan ahead.

The CREATE NEWOLD phrase that is part of the OPEN statement will create the output
file if necessary.

M If you want to print data to a file for later use by a program, you must put
the data into the file in a format appropriate for input.

Consider the following variation on TRIVIAZ2.

' Trivia quiz -- reads data from a file.

1

INPUT PROMPT "File containing the questions? ": filein$
OPEN #1: name filein$

INPUT PROMPT "File to store missed questions? ": fileout$
OPEN #2: name fileout$, create newold
RESET #2: end

DO
INPUT #1: question$, answer$! Get data from channel #1
LET total = total + 1 ' Count the questions
PRINT question$;
LINE INPUT reply$! Get user's guess

12. Using and Storing Data 87

IF reply$ = answer$ THEN ' If correct...
LET right = right + 1 ' Count correct replies
PRINT “Correct." ' And say bravo

ELSE

PRINT "No, the correct answer is
PRINT #2: question$; ","; answer$
END IF

; answer$;

LOOP until end #1

PRINT "AlLl done. You answered"; right; "out of"; total;
PRINT "questions correctly."”

CLOSE #1
CLOSE #2

END

This program opens a second file and prints to it each missed question along with the cor-
rect response. Notice that the PRINT #2 statement also prints the comma that must sepa-
rate these two items if you later wish to use the file for input.

The CREATE NEWOLD keywords on the second OPEN statement tell True BASIC to cre-
ate a new file if it can't find one with the specified name.

The RESET #2: END statement tells True BASIC to move to the end of the second file. True
BASIC is always "looking" at the beginning of a newly opened file, which is fine if you are
using the file for input or if the file is empty. But True BASIC can print only to the end of
existing text files, so you must either erase the file or move to the end before you can PRINT.
(If the file is empty, the RESET statement has no effect.)

@ If you want to PRINT to a text file that is not empty, you must first
ERASE the file or RESET to the END of the file.

Make these changes to the TRIVIA2 program and try it out.

88 BRONZE Edition Guide

Reusing Stored Data For Input

Each time you run the above program, it adds any missed questions to the end of the #2 file
— your "output file". If you send output to the same file for several runs of the program, it
may eventually contain a long list of questions.

You could later use those saved questions to quiz yourself again because the questions and
answers were printed to the file in a proper format for input. For example, assume you ran
the program with TRIVDATA as the source of the questions and a file call REQUIZ for the
missed questions. You could then run the program again, naming REQUIZ as the source
of questions and a new file name to received the missed questions.

Note: do not open the same file for both Channel #1 and #2! This is rarely, if ever, desirable,
and with the TRIVIA program as written above, you'll get an error message if you attempt
to do so. This is because True BASIC normally opens a file with "permission" to read from
it and write to it, and one file can give only one "write permission" at a time.

Reusing Stored Data For Input

Look at the following questions, which you might want to add to a data file read by the
TRIVIAZ2 program:

Who wrote 20,000 Leagues Under the Sea, Jules Verne

As written above, this line would produce the error message "Too many input items." True
BASIC would interpret the comma in 20,000 as marking the end of the first input item. You
can place such an input string in double quotes to indicate that the comma is part of the
string:

"Who wrote 20,000 Leagues Under the Sea", Jules Verne

But what if you want to place the title "20,000 Leagues Under the Sea" in quotes? You would
have to use single quotes for the title, or you could repeat the double quotes where you want
True BASIC to see them as quotes and not as markers for the end of the string:

"Who wrote '20,000 Leagues Under the Sea'", Jules Verne

or
"Who wrote ""20,000 Leagues Under the Sea""", Jules Verne

Although you can add quotes as necessary if you create the data file yourself, you could
easily make mistakes. And it becomes even more complex if you want your program to
PRINT such strings to a file for later use as input!

12. Using and Storing Data 89

The LINE INPUT statement provides a much "cleaner" way to use strings for input to text
files. To "fix" the TRIVIA2 program, first place the questions and answers on different lines
in your data file. For example:

Who wrote ""20,000 Leagues Under the Sea"

Jules Verne

What name is given to burnt sugar used as flavoring
caramel

You can then easily change the TRIVIA2 program to read a complete input line for each
variable, regardless of punctuation:

LINE INPUT #1: question$, answer$

And, you can very easily PRINT strings to a file that could later be used for input:

PRINT #2: question$
PRINT #2: answer$

These two PRINT statements put each string on a separate line in file #2.

Printing Numeric Data to Text Files

The demo program BALANCE shows how you can send both numeric and string data to a
file and then reuse the data in that file when the program is run again:

' Check balance program; keeps current data in a text file
1

! Open the data file and get existing values, if any

OPEN #1: name "CHKDATA", create newold

1

' If file contains data, get it & report current amounts
IF more #1 then
LINE INPUT #1: bal_date$
INPUT #1: curbal, lastcheck_amt, lastdep_amt
PRINT "As of "; bal_date$; ", your balance was $"; curbal
PRINT "Your last check was $"; lastcheck_amt
PRINT "Your last deposit was $"; lastdep_amt
PRINT
PRINT "Input all checks and deposits since "; bal_date$
ELSE
PRINT "Input all checks and deposits."”
END IF
1

90 BRONZE Edition Guide

' Get new transactions
1
PRINT "Enter one per line: use - for checks, + for deposits”
PRINT "Enter 0 (zero) when done"
|
DO
' Get new transactions

INPUT amount

LET curbal = curbal + amount ! Update balance

IF amount < 0 then

LET lastcheck_amt = amount*(-1)
ELSE IF amount > 0 then
LET lastdep_amt = amount

END IF
LOOP until amount = 0
1
LINE INPUT PROMPT "Date of last transaction: ": bal_date$
PRINT "Your current balance is $"; curbal
1
' Clear data file and enter new amounts
ERASE #1
! Remove any existing data
PRINT #1: bal_date$
PRINT #1: curbal; ","; lastcheck_amt; ","; lastdep_amt
CLOSE #1

END

This program uses a single data file CHKDATA. The program first reads the current val-
ues (if any) from the file to variables used by the program. After it calculates all new trans-
actions, the program erases the data file and prints the new information to it. Thus, you
could use CHKDATA again and again, and you will always be working with the most recent
information about your bank balance.

If you run this program and then open the CHKDATA file, you'll see the data as follows:

July 4, 1998
460.93 , 436.5 , 1000

Notice that the program prints commas between the three numeric data items to match the
INPUT statement. It prints the string bal_date$ to a line by itself and uses a LINE INPUT
statement to read that line. This avoids the problem that a comma within the date would
cause with an INPUT statement.

12. Using and Storing Data 91

More About File Input and Output

When a True BASIC program opens a text file, the program is normally "looking" at the
beginning of the file. The first input statement reads the first line of data, the second input
statement reads the second line, and so on. You can re-use the data in a text file by using a
RESET statement:

RESET #1: begin

A True BASIC program can print only to the end of a text file. You must move to the end of

the file by first reading all the data, by erasing the file, or by using a RESET statement:
RESET #1: end

Record files let you move around within a file more easily, and the True BASIC language

provides additional statements, listed below, for use with these and other kinds of files. Go
to the online HELP facility and select these statements for information and examples.

Additional File Related Statements:

ASK #n: ACCESS MAT INPUT #n:

ASK #n: DATUM MAT LINE INPUT #n:
ASK #n: ERASABLE MAT PRINT #n:

ASK #n: FILESIZE

ASK #n: FILETYPE READ #n:

ASK #n: MARGIN

ASK #n: NAME SET #n: MARGIN
ASK #n: ORGANIZATION SET #n: POINTER
ASK #n: POINTER SET #n: RECORD
ASK #n: RECORD SET #n: RECSIZE
ASK #n: RECSIZE SET #n: ZONEWIDTH
ASK #n: RECTYPE

ASK #n: SETTER UNSAVE

ASK #n: ZONEWIDTH WRITE #n:

Also, in Appendix I you can read more about the various file structures, text, stream, ran-
dom, record, and byte, that are part of the True BASIC Language System and how each is
typically used.

92

BRONZE Edition Guide

93

CHAPTER

Arrays and Matrices 1 3

Problems often arise that would require an unreasonable number of variables to solve. Open
the demo program INVNTORY, which keeps the inventory of a hardware store:

' Inventory for 5 items.
|

READ item1$, number1
READ item2$, number?
READ item3$, number3
READ item4$, numberéd
READ item5%, number5

PRINT "You have these items:"
PRINT item1%$, item2%$, item3$, item4t$, itemd5$
PRINT number1, number2, number3, number4, number5

DATA hammers, &, umbrellas, 2, wood stoves, 1
DATA bags of salt, 4, pliers, 2
END

Imagine how much trouble it would be to change this program to handle thirteen items!
Now consider that a large store might have thousands of different items in stock. Clearly,
you need a better way of handling many similar values.

One-Dimensional Arrays

This problem calls for array variables. An array is a variable that can hold several differ-
ent values at once. You could think of a one-dimensional array as a list of items. You iden-
tify each item with the name of the list and the item’s position in the list.

94 BRONZE Edition Guide

Rewrite the INVNTORY program to use two arrays, item$ and number as shown below:

' Inventory with arrays
1

DIM item$(5), number(5)

FOR i =1 to 5
READ item$(i), number(i)
NEXT i

PRINT "You have these items:"
FOR i =1 to 5

PRINT item$(i), number(i)
NEXT i

DATA hammers, &4, umbrellas, 2, wood stoves, 1
DATA bags of salt, 4, pliers, 2
END

When you run this program, you get the following output:

You have these items:
hammers
umbrellas
wood stoves
bags of salt
pliers

[AS RN NN S

Figure 13.1 illustrates the two arrays item$ and number. The DIM statement declares that
the variables are arrays and sets their size; each array can hold five different values. (DIM
is short for “dimension,” as it fixes an array’s dimensions.)

@ You must name every array in a DIM statement before you can use it in
the program.

The five individual values within each of item$ and number are the elements of the arrays.
The elements of item$ are strings, and the elements of number are numbers. The name of
a string array must end in a dollar sign, just like the name of a regular string variable. You
cannot mix numbers and strings in a single array.

13. Arrays and Matrices 95

item$
hammers umbrellas wood stoves bags of salt pliers
item$(1) item$(2) item$(3) item$(4) item$(5)
number
4 2 1 4 2
number(1) number(2) number(3) number(4) number(5)
Figure 13.1 — Items in Arrays
Array Subscripts

The numbers used to identify a particular element of an array are subscripts. Subscripts
must be enclosed in parentheses () after the array name. The elements of item$ and num-
ber automatically use subscripts from 1 to 5 because the DIM statement set the size of the
arrays to 5.

Each time through the FOR-NEXT loops, True BASIC reads and prints different elements
of item$ and number. The first time through the loop, i equals 1, so the program reads and
prints item$(1) and number(1). The second time through, i equals 2, so the program reads
and prints item$(2) and number(2), and so on. (You describe elements in an array as “item-
dollar-sub-one” or “number-sub-two.)

You can use the elements in an array in any order. For example, you could change the sec-
ond FOR statement to print the elements in reverse order.

' Inventory with arrays
|

I.)IM item$(5), number(5)

FOR i =1 to 5
READ item$(i), number(i)
NEXT i

PRINT "You have these items:"
FOR i =5 to 1 step -1

PRINT item$(i), number(i)
NEXT i

DATA hammers, &, umbrellas, 2, wood stoves, 1
DATA bags of salt, 4, pliers, 2
END

96 BRONZE Edition Guide

The program will print the items in reverse order:

You have these items:
pliers 2
bags of salt 4
wood stoves 1
umbrellas 2
hammers 4

Array Bounds

In the INVNTORY program, item$ and number both have five elements, numbered from 1
to 5. In True BASIC, however, you can use any numbers as the lower bound and upper
bound for the array. That is, instead of having a lower bound of 1, the array could have a
lower bound of 1991. Instead of having an upper bound of 5, you might use 1995. You still
have an array with five elements, but with different bounds.

You may want to adjust array bounds to make a particular problem easier to solve. The fol-
lowing program shows how you could read and compare census figures for a couple of towns:

' View census figures
1

blM springfield(1985 to 1990), woodsville(1985 to 1990)

FOR y = 1985 to 1990
READ springfield(y), woodsville(y)
NEXT y

INPUT PROMPT "What year are you interested in? ": year
IF springfield(year) > woodsville(year) then
LET town$ = "Springfield"
ELSE
LET town$ = "Woodsville"
END IF
PRINT "In"; year; town$; " had the largest population."
DATA 17635, 16413, 17986, 16920, 18022, 17489
DATA 18130, 17983, 18212, 18433, 18371, 18778
END

A sample run produces output such as:

What year are you interested in? 1987
In 1987 Springfield had the largest population.

13. Arrays and Matrices 97

The DIM statement declares bounds from 1985 to 1990 for the arrays springfield and
woodsville, so each array has six elements.

You may use any numbers you wish for an array’s upper and lower bounds. For example,
to keep track of Centigrade temperatures in the northern United States or Canada, you
might want to dimension an array such as temp(-40 to 40). This array has 81 elements.

Naturally, as your arrays get bigger, they take more computer memory to store. True BASIC
places no limits on the size of your arrays except for what will fit in your computer’s avail-
able memory.

Arrays of Two or More Dimensions

So far, you've seen only “one-dimensional” arrays. These arrays require only one number
as subscript. But True BASIC lets you have arrays with 2, 3, 4, or almost any number of
dimensions. (The maximum number of dimensions is 255.)

Typically, you would use a two-dimensional array when you have two different sets of
strongly related values. Open the Demo Program STATES, which plays a trivia quiz with
state capitals, and run it.

! State capital quiz.

1

RANDOMIZE

DIM state$(50,2) ' 50 states, 2 items per state
FOR i = 1 to 50
READ state$(i,1) ! Read state name
READ state$(i,2) ' And capital
NEXT i
FOR i =1 70 10 ' Ask 10 questions
LET n = Int(50*Rnd) + 1 ' Pick a number between 1 and 50
PRINT "The capital of "; state$(n,1); " is";
LINE INPUT capital$! Get the reply

IF Lcase$(capital$) = Lcase$(state$(n,2)) THEN
PRINT "RIGHT!'"
ELSE
PRINT "Nope, it's "; state$(n,2); "."
END IF
NEXT i

98

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

BRONZE Edition Guide

Alabama,Montgomery, Alaska,Juneau, Arizona,Phoenix
Arkansas,Little Rock, California,Sacramento
Colorado,Denver, Connecticut,Hartford, Delaware,Dover
Florida,Tallahassee, Georgia,Atlanta, Hawaii,Honolulu
Idaho,Boise, Illinois,Springfield, Indiana,Indianapolis
Iowa,Des Moines, Kansas,Topeka, Kentucky,Frankfort
Louisiana,Baton Rouge, Maine,Augusta, Maryland,Annapolis
Massachusetts,Boston, Michigan,Lansing

Minnesota,St. Paul, Mississippi,Jackson
Missouri,Jefferson City, Montana,Helena
Nebraska,Lincoln, Nevada,Carson City

New Hampshire,Concord, New Jersey,Trenton

New Mexico,Santa Fe, New York,Albany

North Carolina,Raleigh, North Dakota,Bismarck
Ohio,Columbus, Oklahoma,Oklahoma City, Oregon,Salem
Pennsylvania,Harrisburg, Rhode Island,Providence

South Carolina,Columbia, South Dakota,Pierre
Tennessee,Nashville, Texas,Austin, Utah,Salt Lake City
Vermont ,Montpelier, Virginia,Richmond,

Washington,Olympia

DATA
DATA
END

West Virginia,Charleston, Wisconsin,Madison
Wyoming,Cheyenne

(Note: This program uses the LCASE$ built-in function to convert all answers to lowercase
for comparison since upper and lowercase letters are not equal. The next chapter explains
the use of functions.)

state$

state$(1,1) Alabama Montgomery state$(1,2)
state$(2,1) Alaska Juneau state$(2,2)
state$(3,1) Arizona Phoenix state$(3,2)
state$(4,1) Arkansas Little Rock state$(4,2)
state$(5,1) California Sacramento state$(5,2)

Figure 13.2 — A Two-dimensional Array

A good way to visualize a two-dimensional array is as a table with rows and columns. In
the STATES program state$(50,2) has 50 rows corresponding to the 50 states, and 2 columns
corresponding to the two items for each state. The state name is in the first column and the
state capital is in the second column. Figure 13.2 shows the first five rows.

13. Arrays and Matrices 99

The MAT Statements

The sample programs you've seen so far have used FOR-NEXT loops to READ each value
into an array or to PRINT each value of an array. True BASIC has several MAT statements
that let you do something for a whole array in one statement. The keyword MAT is short
for matrix which is another word for a two-dimensional array. However, you may use MAT
statements with arrays of any dimension.

The MAT READ statement lets you read an entire array in one statement. For example,
you could remove the FOR loop from the revised INVNTORY program and substitute a MAT
READ statement. Notice that you must also edit the DATA statements!

' Inventory with arrays
|

I.)IM item$(5), number(5)
MAT READ item$, number

PRINT "“You have these items:"
FOR i =5 to 1 step -1

PRINT item$(i), number(i)
NEXT i

DATA hammers, umbrellas, wood stoves, bags of salt, pliers
DATA 4, 2, 1, 4, 2
END

The MAT keyword tells True BASIC to read the entire array, so you don’t put anything in
parentheses after the array name.

M MAT READ fills the first array named before reading to any other arrays
named in the statement.

You must therefore edit the DATA statements to put all the values for item$ first, followed

by all the values for number. If you don’t, you'll get the error message “Data item isn’t a
number” when the program tries to read a string item into an element of number.
(Remember that True BASIC lets you read a number as a string, but cannot accept any-
thing but numeric constants for numeric items.)

The MAT PRINT statement lets you print out the contents of an array with a single state-
ment. You could replace the remaining FOR loop from the INVNTORY program:

100 BRONZE Edition Guide

' Inventory with arrays
1

I.)IM item$(5), number(5)
MAT READ item$, number

PRINT "You have these items:"
MAT PRINT item$, number

DATA hammers, umbrellas, wood stoves, bags of salt, pliers
DATA &4, 2, 1, 4, 2
END

The output will be different from the previous version, because MAT PRINT prints all the
elements of item$ and leaves a blank line before it prints the elements of number. Commas
and semicolons in MAT PRINT statements have the same effect as in regular PRINT state-
ments.

You have these items:
hammers umbrellas wood stoves bags of salt pliers
b4 2 1 A 2

True BASIC prints arrays of two or more dimensions in similar fashion, except that it moves
to a new line for each new dimension printed. For example, a MAT PRINT state$ statement
in the STATES quiz would begin a new line after each row of two items:

Alabama Montgomery

Alaska Juneau

Arizona Phoenix
(etc.)

MAT INPUT and MAT LINE INPUT let you input a whole array in one statement. For
example:
DIM expense(1980 to 1989)

PRINT "Please enter the 10 expense items"
MAT INPUT expense

You must respond with ten numeric constants separated by commas, entered in the form of
a single input-reply.

13. Arrays and Matrices 101

Advanced Work with Arrays and Matrices

As your programming skills increase, you may wish to explore further about how you can
use arrays in True BASIC. This section gives you a quick introduction to some of these fea-
tures.

You can redimension arrays as a program is running. You can’t actually change the num-
ber of dimensions, but you can change the bounds or sizes of the dimensions of an array.
This lets you write flexible programs that can adjust array sizes to different sets of data.
Both the MAT INPUT and MAT READ statements have versions that let you change the
size of an array to fit the number of items available. You can also change the size of an array
with the MAT REDIM statement. True BASIC also has built-in functions to let the pro-
gram figure out the current size or upper and lower bounds of any array. (The next chap-
ter introduces built-in functions; the Help Utility and Appendix C lists most of True BASIC’s
built-in functions.)

You can make matrix assignments with the simple MAT statement. You can assign the
same value to every element in an array:

MAT initial = 10

You can also assign one array to another as long as they have the same number of dimen-
sions. The array being assigned to adjusts its size to match the other array. In the follow-
ing statements, the question mark (?) with the MAT INPUT statement adjusts the size of
the array scores to equal the number of items entered. The following MAT statement assigns
the same values to the array initial and adjusts the size of initial so that it matches scores.

DIM initial(100), scores(100)
MAT INPUT scores(?) ' input any number of items
MAT initial = scores ! arrays are equal & same size

True BASIC’s matrix arithmetic lets you add, subtract, and multiply arrays. For addi-
tion or subtraction, two arrays must have the same size and shape. To multiply two arrays,
the number of columns in the first array must equal the number of rows in the second. You
can also multiply an array by a single number.

102 BRONZE Edition Guide

103

CHAPTER

Functions and Subroutines 1 4

As your programs get bigger and bigger, you’ll find them easier to read and “debug” if you
have them segmented into smaller parts. True BASIC’s subroutines and functions offer
you ways to break down your programs into logical units.

Subroutines

Call up the demo program CRAPS, which introduced the SELECT CASE structure from
Chapter 9. Notice that the four lines that simulate the dice roll (three LETSs and one
PRINT) appear twice in the program. The first time is right after the FOR statement,
and the second is right after the DO statement.

' Craps game.
1

RANDOMIZE

FOR game = 1 to 10 ' Play 10 games
LET diel = Int(6*Rnd + 1) ' Roll 1 die
LET die2 = Int(6*Rnd + 1) ' And the other
LET dice = diel + die?2 ' Sum of two dice
PRINT dice; ' Print this roll
SELECT CASE dice ' Branch on roll

CASE 2, 3, 12! dice =2, 3, or 12
PRINT "You lose."

CASE 7, 11! dice = 7 or 11
PRINT "You win."

104 BRONZE Edition Guide

CASE ELSE ' Anything else
LET POINT = dice ' Remember that roll
DO
LET diel = Int(6*Rnd + 1) ! Roll again
LET die2 = Int(6*Rnd + 1) ! Both dice
LET dice = diel + die2
PRINT dice; ' Print this roll

LOOP until dice = 7 or dice = point

IF dice=point then PRINT "You win" else PRINT "You lose"
END SELECT

NEXT game

END

You can rewrite this program to use a subroutine. Move one set of the dice-rolling lines
(the three LETs and one PRINT) to the beginning of the program following RANDOMIZE,
and remove the other set. Add SUB and END SUB statements to define the group of state-
ments as a subroutine. Insert CALL statements where you want to use the subroutine:

' Craps game with subroutine for rolling the dice.
1

RANDOMIZE

SUB Rolldice
LET diel = Int(6*Rnd + 1) ' Roll 1 die
LET die2 = Int(6*Rnd + 1) ' And the other
LET dice = diel + die?2 ' Sum of two dice
PRINT dice; ' Print this roll
END SUB
FOR game = 1 to 10 ' Play 10 games
CALL Rolldice ' Subroutine rolls dice
SELECT CASE dice ' Branch on roll
CASE 2, 3, 12 ' dice =2, 3, or 12

PRINT "“You lose."

CASE 7, 11 ! dice 7 or 11

PRINT "You win."

14. Functions and Subroutines 105

CASE ELSE ' Anything else
LET POINT = dice ' Remember that roll
DO
CALL Rolldice ' Roll again

LOOP until dice = 7 or dice = point

IF dice=point then PRINT "You win" else PRINT "You lose"
END SELECT

NEXT game

END

True BASIC skips around the subroutine when you run the program. The statements in
the subroutine are used only when a CALL statement in the main part of the program (the
main program) “calls” that subroutine name. At the END SUB statement, True BASIC
returns to the line following the CALL statement.

When True BASIC returns to the CALL statement in the main program in the above exam-
ple, the variable dice has the new value assigned by the subroutine. Thusthe SELECT CASE
or LOOP UNTIL statements share the variable dice with the subroutine in this program.

Run this edited version of CRAPS and you should find that it works just as before.

Subroutines with Parameters

Subroutines let you write general purpose “tools” that you can use anywhere in your pro-
grams. You can use the subroutine from CRAPS any time you want to simulate the
rolling of two dice. However, in this version of the subroutine, you have to refer to the
result by the same variable name that the subroutine uses (in this case, dice).

To make subroutines more general and more helpful to you, you can use parameters in
your SUB statements and arguments in your corresponding CALL statements. To illus-
trate, rewrite the subroutine Rolldice so that it can simulate the rolling of any given num-
ber of dice:

SUB Rolldice (sum_dice, num_dice)

LET sum_dice = 0 ' Initialize
FOR i = 1 to num_dice
LET roll = Int(6*Rnd + 1) ' Roll a die
LET sum_dice = sum_dice + roll ' Add to sum
NEXT i
PRINT sum_dice; ' Print this roll

END SUB

106 BRONZE Edition Guide

You're now using two parameters in the SUB statement above. Sum_dice represents the
sum of the rolls, and num_dice gives the number of dice rolled. The subroutine doesn’t
change num_dice but it does change sum_dice.

To use this new subroutine, you must also use two arguments in the CALL statement. For
example:
CALL Rolldice (dice, 2)

The first argument, dice, is the main program’s name for the sum of dice rolls, and 2 is the
number of dice to be thrown.

M Arguments share values with their corresponding parameters when the
subroutine runs.

Dice and sum_dice temporarily become equivalent so that when True BASIC returns to the
main program dice has the value of sum_dice. Similarly, num_dice has the value of 2 dur-
ing this call to the subroutine.

This subroutine illustrates two kinds of parameters:

* Num_dice is an input parameter that is only for sending information into a subroutine.
Since an input parameter returns nothing, you may use constants for the corresponding
argument on CALL statements as in the example above.

¢ Output parameters are variables whose values are changed by the subroutine. They
send information out from the subroutine to the corresponding argument in the main part
of the program. Sum_dice is an output parameter.

® True BASIC does not distinguish between input and output parameters; it's only in the
way you use them.

Built-in Functions

You've already seen several of True BASIC’s built-in functions: RND, INT, SQR, and
LCASES$, for example. Appendix C lists most of True BASIC’s built-in functions.

To use a built-in function, all you do is refer to the function by name (perhaps giving it some
information such as the number whose square root you want). True BASIC then “returns”
a value to the program (such as the square root of the number you used with the function.)

14. Functions and Subroutines 107

In the following short example, answer acquires the value 3.1622777, which is returned by
the function SQR.

LET answer = Sqr(10)
PRINT answer
END

You can think of a function as a machine that takes some numbers or strings as input, and
produces one number or string as output. Functions differ from subroutines in that

¢ functions can return only one value and
¢ functions cannot change the values of any parameters sent to them.

Now you’ll see how to define your own functions and use them to break your programs into
logical units.

One-line Functions

One-line functions are the simplest kind of function. You can simulate the rolling of one die
as a one-line function. Here’s the CRAPS program again, rewritten to use a function Rolldie.

' Craps game with one-Lline function for rolling one die.
1

RANDOMIZE
DEF Rolldie = Int(6*Rnd + 1) ' Roll 1 die
FOR game = 1 to 10 ' Play 10 games

LET dice = Rolldie + Rolldie ! Rolldie function twice

SELECT CASE dice ' Branch on roll

CASE 2, 3, 12 ' dice = 2, 3, or 12
PRINT “You lose."

CASE 7, 11 ' dice =7 or 11
PRINT "You win."

CASE ELSE ' Anything else
LET POINT = dice ! Remember that roll
DO

LET dice = Rolldie + Rolldie ' Roll again

LOOP until dice = 7 or dice = point
IF dice=point then PRINT "You win" else PRINT "You lose"
END SELECT

NEXT game
END

108 BRONZE Edition Guide

Once you have defined a function in a DEF statement, you use that function simply by
using its name where you would a variable. True BASIC carries out the instructions in the
DEF statement and the resulting value is “returned” to the function name.

@ You must define a function before you use it in your program.

If you don’t define it first, True BASIC won’t know that you are referring to a function and
not a variable or array when you use the function name.

Multi-line Functions

You can also write multi-line functions to solve problems that require several lines of True
BASIC statements. DEF and END DEF statements define a multi-line function. As with
one-line functions, you must define your multi-line functions before you use them.

The SGN function is a multi-line function already built into True BASIC. SGN returns the
sign of a number. That is, you give it a single number as an argument, and it returns:

-1 if the number is negative
0 if the number equals 0
+1 if the number is positive

You could easily define a SGN function yourself and test it as follows:

' Define the Sgn function
1

DEF Sgn(x)
SELECT CASE x
CASE is < 0 ' If negative
LET Sgn = -1 ! .return -1
CASE O ' If zero
LET Sgn =0 ! .return a 0
CASE else ' Otherwise must be positive
LET Sgn = +1 ! .return +1
END SELECT
END DEF
INPUT n !' Input a number
PRINT Sgn(n) ' Print its sign
PRINT Sgn(3-5%2) ' And the sign of this formula

END

14. Functions and Subroutines 109

If you run this program and give 35 as input, you will see the following results:

? 35
1
-1

Inside the definition of Sgn, the program selects one of three cases depending upon the sign
of the parameter and assigns a value to Sgn. At the END DEF line, the function actually
produces its output value, which is whatever value was assigned during the execution of the
function. (If no value is assigned, then 0 is returned.)

Global Variables

You've seen how you can pass variables as parameters to subroutines and functions, but
what about other variables used within a subroutine or function definition? They, too, are
shared with the rest of the program. Such variables shared by two parts of a program are
global variables.

Global variables are sometimes useful, but often they are a source of hard-to-spot program
bugs. Consider the example in the TBDEMOS folder/directory — BUG:

' An insidious bug
1
DEF XXX$(n)
LET s$ = ""
FOR i =1 to n
LET s$ = s$ & "x"
NEXT i
LET XXX$ = s$
END DEF

Return a string of n X's
Start with an empty string
Loop.

adding an X each time

FOR i = 1 to & ' Ask four times
PRINT "How many X's";
INPUT n
PRINT XXX$(n)

NEXT i

END

When you run this program and give an input of 10, you would only see the following:

How many X's? 10
XXXXXXXXXX

110 BRONZE Edition Guide

What happened? This program should ask for input four times and draw four sets of X’s.
The problem is that two different parts of the program are using the variable i, and one part
is causing trouble for the other. Follow the program step by step:

¢ First, the function definition is created but not used.

* The FOR-NEXT loop that asks for input four times begins and i takes the value 1. The
program asks “How many X’s?” and you reply “10”. The program calls the function XXX$
with 10 as its argument; in other words, XXX$ should return a string of ten x’s. So far, so
good.

¢ Within the XXX$ definition, s$ starts as an empty string. Then a FOR-NEXT loop adds
an “x” to the value of s$ 10 times. After 10 times through the loop, i equals 11 so the loop
stops. The program assigns the value of s$ to XXX$ and returns to the main program where
it prints that returned value (“xxxxxxxxxx”). That looks OK.

® The program moves on to the NEXT i statement where it increases the value of i by one.
Here is the problem! At the end of the function, i is 11 and that value is shared with the
main program. After the NEXT i statement in the main program, i equals 12! The FOR-
NEXT loop in the main program never runs again and the program ends.

The function uses two variables that are not parameters: s$ and i. This is a dangerous sit-
uation, since some other part of the program might use either variable as happens in this
example.

Bugs of this sort are very typical when you use global variable within a function or sub-
routine. You may be more likely to avoid this kind of error if you keep all the statements
that use a certain variable within a few lines of each other. In True BASIC, you may also
escape these pitfalls by using external subroutines and external functions or by declar-
ing variables in a LOCAL statement.

Try using debug mode and breakpoints with this program (see Chapter 18.) You will see
that there is only one variable i in your program; you may deduce from that that you are
attempting to use it for two purposes.

14. Functions and Subroutines 111

External Subroutines and Functions

External subroutines and functions are like internal ones, but with two important differ-
ences.

® They are all defined after the END statement. They are outside the main program.

¢ All their variables are local to the function or subroutine definition. Except for parame-
ters, no variables share values with the main program, even if they have the same names.

To see how this works, you can rewrite the “buggy” example from the previous section.

' Using an external function
DECLARE DEF XXX$

FOR i = 1 to & ' Ask four times
PRINT "How many X's";
INPUT n
PRINT XXX$(n)

NEXT 1

END

' XXX$ -- returns n x's

DEF XXX$(n)
LET s$ = ""
FOR i =1 to n
LET s$ = s$ & "x"

Return a string of n X's
Start with an empty string
Loop.

adding an X each time

NEXT i
LET XXX$ = s$
END DEF

When you run this version of the program, you'll find that it now correctly asks for x’s four
times:

How many X's? 10
XXXXXXXXXX

How many X's? &
XXXX

How many X's? 7
XXXXXXX

How many X's? 2
XX

112 BRONZE Edition Guide

You must add one new statement when you use an external function. The DECLARE DEF
statement tells True BASIC that XXX$ is a function and not a variable or an array.

@ The DECLARE DEF statement must appear before an external function is
used.

You need only give the function’s name in a DECLARE DEF statement; you do not have to
list parameters or even say how many there are.

External subroutines go after the END statement, just like external functions. However,
because you use subroutine names only in a CALL statement, you do not have to declare
them with a DECLARE SUB statement. True BASIC knows that anything in a CALL state-
ment is a subroutine.

The LOCAL Statement

If you name variables in a LOCAL statement within a subroutine or function, those vari-
ables will not share values with the main program. Here is the XXX$ function from the
BUG program written with a local statement:

DEF XXX$(n) ! Return a string of n X's
LOCAL i, s$
LET s$ = "" ' Start with an empty string
FOR i =1 to n ' Loop.

LET s$ = s$ & "x" ' ... adding an X each time

NEXT i
LET XXX$ = s$

END DEF

Now, XXX$ can be an internal function and you could safely use the variable names i and
s$ in the main program. Those variables are no longer global and will not share values.

You can also use the LOCAL statement in main programs along with the OPTION TYPO
statement to help catch misspelled variable names. Chapter 18 describes this programming
technique.

113

CHAPTER

Libraries 1 5

Subroutines and functions — sometimes called procedures — let you segment your True
BASIC programs. They may be either internal or external. Internal procedures are part
of the program that uses them. External procedures are outside the “calling” program. In
the examples you've seen they appear after the END statement of the main program.

External functions and subroutines are even more useful when you put them into
libraries.

Libraries

A library is a file that has no main program. It is only a collection of external functions
and subroutines. Any program can use these procedures. All you have to do is include a
LIBRARY statement in the program to identify the library file. Thus, a library file acts
as a “tool kit” of useful functions and subroutines.

M Each library file must begin with an EXTERNAL statement, which indi-
cates that the file has no main program in it.

The GAMESLIB file in the TBDEMOS folder/directory is a library file. It’s a small
library, with a subroutine that simulates rolling any number of dice, and a function that
simulates flipping a coin:

EXTERNAL
SUB Rolldice (sum_dice, num_dice)

LET sum_dice = 0
FOR i = 1 to num_dice

114 BRONZE Edition Guide

LET roll = Int(6*Rnd + 1)
LET sum_dice = sum_dice + roll
NEXT i

END SUB
DEF Coin$
IF Rnd < .5 then
LET Coin$ = "heads"
ELSE

LET Coin$ = "tails"
END IF

END DEF
You can revise the CRAPS program to use this library:

' Craps game using Library file.
|

LIBRARY '"gameslib.tru"

RANDOMIZE
FOR game = 1 to 10 ' Play 10 games
CALL Rolldice(dice,2) ' Subroutine rolls 2 dice
SELECT CASE dice ' Branch on roll
CASE 2, 3, 12 ' dice = 2, 3, or 12
PRINT "You lose."
CASE 7, 11 ' dice =7 or 11
PRINT "You win."
CASE ELSE ' Anything else
LET POINT = dice ! Remember that roll
DO
CALL Rolldice(dice,2) ' Roll again

LOOP until dice = 7 or dice = point
IF dice=point then PRINT "You win" else PRINT "“You lose"
END SELECT

NEXT game
END

The above program uses the subroutine RollDice but doesn’t use the function to flip a
coin; you don’t have to use everything in the library. But, you can expand CRAPS so that
it flips a coin to decide which of two players goes first. Notice that you must use a

15. Libraries 115

DECLARE DEF statement before you use the function, just as you must with an external
function in the same file.

' Craps game.
1

LIBRARY "gameslib.tru"
DECLARE DEF Coin$

RANDOMIZE

INPUT PROMPT "Heads or tails? ": choice$

LET toss$ = Coin$ ' Flip the coin
IF Lcase$(choice$) = toss$ then ' Tell who won

PRINT choice$; ", you go first"
LET player$ = "You "
ELSE
PRINT toss$,; ", I go first"
LET player$ = "I "

END IF
FOR game = 1 to 10 ' Play 10 games
CALL Rolldice(dice,2) ' Subroutine rolls 2 dice
SELECT CASE dice ' Branch on roll
CASE 2, 3, 12 ' dice = 2, 3, or 12
PRINT player$; "lose."
CASE 7, 11 ' dice = 7 or 11
PRINT player$; "win."
CASE ELSE ' Anything else
LET POINT = dice ! Remember that roll
DO
CALL Rolldice(dice,2) ! Roll again
LOOP until dice = 7 or dice = point
PRINT players$;
IF dice=point then PRINT "win" else PRINT "lose"
END SELECT
IF player$ = "You " then ' Switch players
LET player$ = "I "
ELSE
LET player$ = "You "
END IF
NEXT game

END

116 BRONZE Edition Guide

Notice that this program has several new or revised statements. New statements include
the group near the beginning that tells who won the coin toss, and the group at the end of
the FOR loop that switches players after each game. Several PRINT statements now use
the variable player$ to indicate whose game it is.

The built-in function LCASE$ lets you enter answers in upper or lowercase when you run
the program; LCASE$ translates all answers to lowercase. You do not declare LCASE$
because True BASIC already knows about all built-in functions.

Appendix C in this manual lists most of True BASIC’s built-in functions. All of them are
included in the HELP files. Type help on the command line, or select the menu “Help for
True BASIC”. See Appendix F for more details.

Aliases

When you use a LIBRARY statement, True BASIC makes an effort to look for your library
file. It looks first in your current directory or folder. Then it looks in the directory named
“TBLibs”. Thus, when you use any of the True BASIC libraries that are included with the
Bronze Edition, True BASIC will find them in the “TBLibs” directory, regardless of your
current directory.

You can see the entire list of aliases by typing the command “alias” on the command line.
Besides the aliases for libraries, there are aliases for “Do” programs and for “Help” files.

You probably will have no need to change these aliases, but you can do so by selecting “Set
Alias” in the “Settings menu”. But be careful! If you accidentally mess them up, just quit or
exit True BASIC and start again.

Compiling

Most of the LIBRARY files used with the Bronze Edition are text files — which are also
known as “source code” files. They can also be compiled files. It doesn’t make any difference.
(Source files usually have the extension

They can also be compiled files. It doesn’t make any difference. Source files usually have the
extension ”.tru” in their name, while compiled files have the extension “.trc”. You may notice
that your program’s startup time is slightly less when the library files have been compiled,
but it makes a real difference only with very large programs.

You can easily make a source file into a compiled file by selecting “Compile” in the “Run”
menu. But first, be sure that your source file has been properly saved.

117

CHAPTER

Graphics 1 6

Using True BASIC, you can write programs to draw points, lines, curves, and filled regions.
You can produce animation and color, you can easily mix text with your graphics, and you
can supply graphical input while your program is running. True BASIC’s Pictures let you
create re-usable graphics procedures. This chapter introduces several aspects of True
BASIC graphics.

Drawing Points

The easiest kind of graphics is marking points or drawing lines on a coordinate grid. The
PLOT statement lets you do this on the output window that is currently active.

For each point you plot, you must give two coordinates: the X-axis or horizontal coordi-
nate, and the Y-axis or vertical coordinate. Unless you specify otherwise (you'll see how to
do that in a bit), True BASIC assumes your output screen uses a horizontal (X) axis from 0
to 1 and a vertical (Y) axis from 0 to 1. The point with the coordinates (.2, .4) is shown below.

1
<4 Y-axis
(.2, .4)
. /
X-axis
0 1
0

Figure 16.1 - PLOT .2, 4

118 BRONZE Edition Guide

A simple True BASIC program to draw this point on your screen has just two lines:

PLOT .2,.4
END

To plot additional points, you just add more PLOT statements. The following program puts
four points on the screen. Create this program and run it.

PLOT .2,.4
PLOT .4,.4
PLOT .4,.6
PLOT .2,.6
END

ya

Drawing Lines

To draw lines, you use semicolons with your PLOT statements. Imagine that you are draw-
ing with a light pen. A simple PLOT statement uses the pen’s beam to draw a point and
then turns the beam off. A semicolon at the end of a PLOT statement (or between two points
in the PLOT statement) leaves the beam on. When True BASIC moves to the next point, it
draws a line with the light pen. The beam stays on until a PLOT statement ends without
a semicolon.

Add semicolons to the above program so that it connects points to draw two horizontal lines
(Figure 16.2):

PLOT .2,.4; ' Draw a line to next point
PLOT .4,.4 ! Turn the "pen" off

PLOT .4,.6; ! Draw a Lline to the next point
PLOT .2,.6

END

When drawing lines, you can combine several points on one PLOT statement. The follow-
ing program connects all the points to draw a box (Figure 16.3). Notice that you must add
another PLOT statement to close the box, that is, to draw a line from the last point to the
first point:

PLOT .2,.4; .4,.4; .4,.6; .2,.6; ' Connect all points

PLOT .2,.4 ! Close box; turn off "pen"
END

16. Graphics 119

Figure 16.2 - Horizontal Lines Figure 16.3 - A Box

Changing the Coordinates

As you saw above, True BASIC assumes the output coordinates go from 0 to 1 in both the
horizontal and vertical directions. However, you can use a SET WINDOW statement to set
any boundaries you want.

For example, if you want the coordinates to go from 0 to 10 in both directions, you could
include the following statement before you give any PLOT statements:

SET WINDOW 0, 10, 0, 10

The first two numbers give the start and end values for the horizontal axis, the second num-
bers give the start and end for the vertical axis.

Your coordinate system need not begin at zero, and the horizontal and vertical axes need
not match. For example if you were plotting a graph to show production of cars over this
century, you might set your coordinates as follows:

SET WINDOW 1900, 1990, 0, 10000000

The horizontal axis would show the range of years, and the vertical axis would let you plot
production amounts from 0 to 10,000,000.

You can change the coordinates within a program. All PLOT statements use the coordinate
system specified in the most recent SET WINDOW statement.

120 BRONZE Edition Guide

Drawing Shapes

True BASIC gives you two ways to draw empty or solid shapes. The BOX statements are
the easiest and fastest method.

The BOX LINES statement draws the outline of a square or rectangle. You give the coor-
dinates of the left, right, bottom, and top edges in the same way as in the SET WINDOW
statement. The following program outlines a square as shown in Figure 16.4.

! Draw a square
1

SET WINDOW O, 30, 0, 20 ' 15,10 is center of window
BOX LINES 10, 20, 5, 15 ' Draw box with sides = 10
END
(0,20) (30,20)
(10,15) (20,15)
Y-axis
(10,5) (20,5)
(0,0) (30,0)
X-axis

Figure 16.4 - BOX LINES 10, 20, 5, 15

Similarly, the BOX AREA statement draws a solid square or rectangle using the coordi-
nates you give in the statement:

' Draw a solid square
1

éET WINDOW -15, 15, -10, 10 ' 0,0 is center of window
BOX AREA -5, 5, -5, 5 ! 5%2 is length of each side

END

16. Graphics 121

You can draw circles and ellipses using the BOX CIRCLE or BOX ELLIPSE statement. You
give coordinates to these statements just as you do for BOX LINES and BOX AREA. True
BASIC draws a circle or ellipse inside the border of the invisible box defined by the coordi-
nates. It doesn’t matter whether you use the CIRCLE or ELLIPSE keyword. If your coor-
dinates define an invisible square, you get a circle; if the coordinates define a rectangle, you
get an ellipse.

If you wish to draw a solid circle or ellipse, first draw the figure and then fill it in with the
FLOOD statement. For the FLOOD statement, you give the coordinates for some point
inside the object you want to fill. True BASIC fills the object from that point out to its bound-
aries. For example (Figure 16.6):

SET WINDOW -10,10,-10,10
BOX CIRCLE -5, 5, -5, 5

FLOOD 0,0
END
(-15,107 (15,10)
(-5,5) (5,9
Y-axis
(-5,-5) (5,-5)
(-15,-10) (15,-10)

X-axis
Figure 16.5 - BOX AREA -5, 5, -5, 5

You can draw more complex objects using a series of PLOT statements ending in semicolons.
If you wish to fill the object you can then use a FLOOD statement. The following program
outlines a knight from a chess set and then fills the object. The result is shown in Figure
16.7 on the next page.

122 BRONZE Edition Guide

' Draw a knight
1

PLOT .2,.1;.8,.1;.8,.2; ' Draw the outline
PLOT .7,.25;.7,.3;.8,.4;.65,.7;.6,.9;.55,.9;

PLOT .5,.82;.2,.75;.2,.6;.3,.6;.4,.55;

PLOT .25,.45;.2,.37;.3,.3;.3,.25;.2,.2;.2,.1

FLOOD .5,.5 P Fill it in

END

The PLOT AREA statement connects a series of points and fills in the object. It works
much as a series of PLOT statements except that PLOT AREA always connects the last
point to the first. So you need not repeat the first point. The following statements draw
and fill a triangle (Figure 16.8). Note that the PLOT AREA statement has a colon after
the AREA keyword.
SET WINDOW -2, 2
PLOT AREA: -1,-
END

/_212
1, 1,-1; 0,1

Figure 16.6 Figure 16.7 Figure 16.8
BOX CIRCLE and FLOOD PLOT and FLOOD PLOT AREA

Using Colors

In the examples used so far, all solid objects are filled with a color that is dependant on
your monitor and default graphics mode for your computer. You can also use different
colors, or shades of gray if you have a black and white monitor.

The SET COLOR statement lets you set a color or shade for succeeding PLOT state-
ments. You can set colors by number or name:

SET COLOR "red"
SET COLOR 3

16. Graphics 123

The table shows the equivalent color names, numbers, and meanings for colors supported
for most graphics modes with color monitors. In addition, there are two default colors: -1
(black) for the foreground, and -2 (white) for the background. When opened the first time,
all windows have these default colors.

Name Number Meaning
black 0 black
blue 1 blue
green 2 green
cyan 3 cyan
red 4 red
magenta 5 magenta
brown 6 brown (yellow on some monitors)
white 7 white
8 gray
9 bright blue
10 bright green
11 bright cyan
12 bright red
13 bright magenta
yellow 14 yellow (brown on some monitors)
15 bright white

The following program (SQUARES in the TBDEMOS directory) draws a series of solid
squares in different colors or shades of gray:

' Draw six squares
1

SET WINDOW -10, 10, -10, 10

BOX AREA -6, 6, -6, 6 ' Draw outer square in black
FOR i =5 to 1 step -1 ' From large to small

SET COLOR i! Change color

BOX AREA -i, i, -i, i ' Draw next square
NEXT i

END

124 BRONZE Edition Guide

Figure 16.9 — Six squares.

If you have a color monitor, you can use the nine True BASIC color names (listed in the table
above). If your computer can produce more colors, you can use color numbers and the SET
COLOR MIX statement for greater variety. The color numbers you can use depend on the
graphics mode of your computer. SET COLOR MIX lets you control the red, green, and blue
elements producing a given color number.

Animation

True BASIC’s BOX KEEP, BOX CLEAR, and BOX SHOW statements let you simulate
movement on the screen. The idea is to draw an image within a rectangular area on the
screen, save that image as a string variable, and then redraw the image a slight distance
away.

BOX KEEP saves the contents of a rectangular area on the screen in a string variable. You
then erase the rectangular area on the screen with BOX CLEAR, and redraw the object
somewhere else with BOX SHOW.

The ARROW program in the TBDEMOS directory uses these statements to shoot an arrow
across the screen. Open it and run it.

' Shoot an arrow across the screen!
SET WINDOW 0, 10, 0, 10

pLOT 0,5; 1,5 ' Draw arrow
PLOT .6,4.5; 1,5; .6,5.5
BOX KEEP 0, 1, 4, 6 in arrow$! Memorize arrow

PAUSE 1 ! Pause before shooting

16. Graphics 125

LET x = 0
FOR move = 1 to 50 ' Move in small steps
BOX CLEAR x, x+1, 4, 6 ! Erase old arrow
LET x = x + .2 ' Advance x position
|

BOX SHOW arrow$ at x,4 Draw at new position
NEXT move
END

Notice that the BOX KEEP and BOX CLEAR statements take coordinates to define a rect-
angular area just as the other BOX statements. For BOX SHOW you specify just the lower
left corner where you want to draw the new image.

The PAUSE statement makes True BASIC wait before it erases and begins to move the
arrow. The number tells how many seconds to pause. To slow the progress of the arrow
across the window, you can add a PAUSE statement inside the FOR loop, just before the
NEXT statement.

BOX CLEAR clears just the specified area so that other images can remain. If you wish to
clear the entire screen, use the CLEAR statement.

For a more sophisticated program using animation, look at the Demo Program KNIGHT.

Pictures

Pictures are like subroutines for graphics. You can think of them as stencils. Define a pic-
ture and you can use it repeatedly to redraw an object at different locations.

As you will see, pictures are more flexible than stencils. You can draw the same picture
repeatedly, but change its size or shape, or rotate it on the screen.

A picture is much like a subroutine. You name it and put the sta%}ﬁmlﬁlot it inside
PICTURE and END PICTURE statements. When you want to use the picture, you “call” it
with a DRAW statement. The following program uses a picture to draw a knight from a
chess game. You'll notice that the picture contains the same statements used to draw a
knight in the previous section on “Drawing Shapes”. The following version is saved as PIC-
TURE in the TBDEMOS folder/directory.

! Draw a knight using a picture

1

PICTURE Knight
PLOT .2,.1;.8,.1;.8,.2; ' Draw the outline
pLot .7,.25;.7,.3;.8,.4;.65,.7;.6,.9;.55,.9;
pPLOT .5,.82;.2,.75;.2,. .6;.4,.55;

o\ N
Ng »
W
N

126 BRONZE Edition Guide

PLOT .25,.45;.2,.37;.3,.3;.3,.25;.2,.2;.2,.1
FLOOD .5,.5 I Fill 9t in
END PICTURE

DRAW Knight

END

Like subroutines and functions, pictures may be internal or external. External pictures
may be stored in Library files.

Transformations

So far there doesn’t seem to be any great benefit to defining a picture. The true power of
pictures comes when you use them with transformations and parameters.
Transformations let you move pictures or rotate, re-scale, or tilt them when you draw
them. For example, you could replace the DRAW statement above with the following lines
to draw lots of knights all over the screen.

SET WINDOW 0, 10, 0, 10
FOR x = 0 to 9
FOR y = 0 to 9
DRAW Knight with shift(x,y)
NEXT vy
NEXT x

The SHIFT transformation moves horizontal and vertical coordinates by the amounts you
specify. The above statements use a larger coordinate system (SET WINDOW 0, 10, 0, 10)
and then draw the knight 100 times within that window. Try it!

Similarly, you can double the size of the knight:
DRAW Knight with scale (2,2)

or make it twice as tall as wide:
DRAW Knight with scale (2,4)

SCALE multiplies the horizontal and vertical coordinates of your picture by the amounts
you specify. Be aware that your scaled picture may become bigger than the window coor-
dinates! Use a SET WINDOW statement to give enlarged coordinates if necessary.

Other transformations let you “shear” (or tilt) the picture or rotate the picture. You must
give the amount of tilt or rotation in radians unless you include an OPTION ANGLE
DEGREES statement first. You may then use degrees.

16. Graphics 127

The SHEAR transformation leans vertical lines forward (clockwise) by the angle you spec-
ify. For example,

OPTION ANGLE DEGREES ! Use degrees
DRAW Knight with shear (45)

makes the knight lean to the right by 45 degrees. Use a negative angle to lean a picture to
the left. As with SCALE, you may have to use a SET WINDOW statement so that the pic-
ture doesn’t lean out of the window.

ROTATE moves pictures counterclockwise (clockwise if you use a negative angle) around
the (0,0) point in the window. Note that this is not the same as rotating a picture in place!
You can easily rotate a picture out of coordinate window, unless you adjust coordinates with
SET WINDOW or also shift the picture.

For example, if you rotate the knight 90 degrees, it would “fall on its face to the left” and be
out of the standard coordinate system (0, 1, 0, 1). The upper right box of Figure 16.10 shows
the knight drawn in the standard coordinate system with no transformations. The gray
knight was rotated with the statements:

OPTION ANGLE DEGREES ! Use degrees
DRAW Knight with rotate (90)

True BASIC rotates the knight about the point (0,0) and out of the standard coordinate win-
dow.

DRAW Knight
with Rotate (90)

AN

(0.0

Figure 16.10 — RotateTransformation

128 BRONZE Edition Guide

You can combine transformations on one DRAW statement by placing an asterisk (*)
between transformations. For example, you could rotate the knight and then move it back
into the (0, 1, 0, 1) window:

OPTION ANGLE DEGREES ! Use degrees
DRAW Knight with rotate (90) * shift (1,0)

When you use more than one transformation, True BASIC performs them in order from left
to right. Because of this, the order of transformations can make a difference. You're most
likely to get the results you expect if you use SHIFT as the last transformation.

Creating Complex Pictures

With pictures and transformations you can create complex graphics. You can transform pic-
tures and use them within other picture definitions. The HOUSES program in the TBDE-
MOS folder/directory combines simple pictures and transformations to provide a “neigh-
borhood” of houses. Look at the program and run it. Try some variations of your own!

The GraphLib Library
The GRAPHLIB library provides the following routines:

Frame frames the graphics window

Axes draws X and Y axes

Ticks draws X and Y axes with tick marks
Polygon draws a polygon with any number of sides
Bars draws a bar graph of data

Fplot plots a function

These are all subroutines; use them with a CALL statement. You must give arguments for
several of the subroutines. Open the GRAPHLIB file to see what each subroutine expects.

Remember that your program must include a LIBRARY statement to identify the
GRAPHLIB file. Your program must either be in the same directory as GRAPHLIB, or you
must give more information in the LIBRARY statement. For example, if you save your pro-
gram in the same location as (but not inside) the TBLIBS folder/directory, you could use the
following LIBRARY statement. This program draws coordinate axes with tick marks at
every unit.

16. Graphics 129

LIBRARY "GraphLib.tru"
SET WINDOW 0, 10, 0, 10
CALL Ticks(1,1)

END

Other Graphics Features

As you become more proficient, you might want to use some of True BASIC’s other graph-
ics statements. Several of these are described briefly below.

Text in Graphics Output.

You can use the PRINT command in a graphics window, but it is hard to control the loca-
tion and appearance of the text. The PLOT TEXT command lets you specify a coordinate
location for the string you wish to print:

PLOT TEXT, at -1, 5 : "Test Results"

The coordinates designate the lower left corner of the text unless you control the location
with a command such as SET TEXT JUSTIFY “center”, “bottom”.

Graphics Input

The GET POINT and GET MOUSE commands let you give coordinates to your program by
“pointing to” a spot in the output window while the program is running. Using these com-
mands, you could draw a figure by pointing to various places on the screen and having your
program connect the points.

MAT PLOT Statements

If you are plotting many points, you could compute the coordinates and store then in a two-
dimensional array with one row for each point (with X coordinates in the first column, and
Y coordinates in the second). You can then use MAT PLOT POINTS, MAT PLOT LINES,
and MAT PLOT AREA to plot the coordinates in the array.

Open the MATPLOT program in the TBDEMOS folder/directory to see the following exam-
ple of a MAT PLOT AREA statement. (This uses the SIN, COS, and PI built-in functions;
Appendix C lists most of True BASIC’s built-in functions.)

130 BRONZE Edition Guide

' MAT PLOT AREA example
1

DIM points (201,2)

SET WINDOW -1, 1, -1, 1

FOR t = 0 to 2 step .01 ! Compute points
LET ¢ = c¢+1 ' Count points
LET points(C,1) sin(3*t*pi) ! x-coordinate
LET points(c,2) cos(5*t*pi) I y-coordinate

NEXT t
MAT PLOT AREA: points ' Draw and fill in
END

Printing Graphical Displays

You can print the contents of any physical window by selecting Print in the window's menu.
If you have a color printer, the results will be printed in color. If you do not have a color
printer, the colors will be shown as different shades of gray.

16. Graphics 131

Programming for Windows

In other parts of this manual you have been shown how to write Zop-down’programs
and routines. In other words the programs start at the beginning and finish at the
end, and how the user proceeds through this sequence of events is controlled entirely
by the person who wrote the program.

Programming for Windows requires a completely different approach because a window
can contain many objects; such as menus, push buttons, edit fields, lists etc., and the
user has complete freedom to activate any of these objects at any time. You, as the
programmer must accept that you no longer control the process. Your job is to write a
program that takes account of whatever the user wants to do in whatever order they
elect to do it.

This is a profound difference in the way you think about and approach writing
programs so make sure you understand this fundamental concept before you try to
work with windows.

In TrueBASIC this is not as difficult as it sounds. Firstly because a special library
module called BronzeTC has been constructed that makes it very easy to create
windows and objects. In general, just one single line of code will produce a whole
window or an object such as a list or push button.

At the start of all your windows programs you need to access this library with:
LIBRARY “BronzeTC.trc”

You also need to initialise this library with:
CALL TC init

It is also good practice to restore everything to normal when you exit your program
with:

CALL TC _cleanup
END

Secondly, this library contains a sub-routine called TC_event that solves the problem
of finding out what actions the user has made with the mouse or the keyboard.
Indeed, you will find that calling this sub-routine from inside a DO....LOOP structure
in your programs makes programs much easier and quicker to write, because you can
use the same skeleton’program every time. The folder TBdemos contains such a
‘skeleton’program called TBstandard. TRU.

The skeleton program has been set out to allow for a menu, a push button, an edit
field, a list button and both window scroll bars. You will see that the program consists
of a simple event loop in which the type of event is analysed and each type calls an

132 BRONZE Edition Guide

appropriate sub-routine to deal with the event. As an illustration the ID of a push
button is call mybutton, but you can use any meaningful name. For example if the
button quits the program then it would have a label “QUIT” so it would be convenient
to use the ID name quit. Similarly the edit field ID has been called myedit, but if your
edit field asks for a surname then it would be more sensible to call the edit ID
surname. This rule applies to all object ID names.

Every event must have an appropriate response from the program, even if the
response is to ignore the event. Usually the way to deal with an event is to call a sub-
routine. This keeps everything nice and tidy because each routine only does one simple
task — it deals with just one event. Collectively your program may be quite complex,
but individual routines will be extremely simple. Think of the main program as being
an index of events. You look up the index for an event and it points to a sub-routine
where you will find the detail. This strategy will make trouble shooting and de-bugging
so much easier. Even the task of creating objects to fill your window is best done inside
a sub-routine.

In top-down programming you always control what the user does next, but in
programming for windows you have to accept that the user may do absolutely
anything, however bizarre or stupid, so you need to prepare for this. For example,
suppose you have a program that essentially collects data for an address/phone book.
In the window you will probably have several edit fields for name, address, phone
number etc and a SUBMIT button, and maybe a CANCEL button. You are expecting
the user to complete all the edit fields and then press the SUBMIT button, so your
response to the SUBMIT button would be to file the data entered by the user.

In practice, the user may well press the submit button without completing all the edit
fields, so you need to check whether this has been done before you write some
incomplete data to your file. Similarly, you should also check whether the data that
the user has entered is reasonable. If you want the user to enter a phone number then
you need to check that what they have typed conforms to the pattern of numbers you
normally expect for phone numbers. The library module Bronze_TD provides you with
a range of dialog boxes that you can display to inform the user that they have done
something wrong.

In many ways working with windows is a lot easier that writing ordinary programs
simply because the code that generates objects and controls how they work has already
been done for you. In normal programming a lot of your time is spent writing code that
gets input information and even more code to display information on the screen.
Windows objects do most of this for you, so you can spend more time and effort on what
your program really does.

The next concept that you need to understand before you go any further is the
difference between physical and logical windows. Physical windows are those that
usually have a border, a title bar and buttons for closing and re-sizing the window.
Logical windows are zones or areas within a physical window. Logical windows have
no borders or title bars nor any control buttons. Every time you create a physical
window, a logical window is also created to fill that window. Why have two windows?
The reason is very simple; physical windows are where you put windows objects such

16. Graphics 133

as push buttons, edit fields and list buttons, and logical windows are where you use all
the other TrueBASIC features such as PRINT, PLOT and image handing statements
such as BOX SHOW.

It will help you to visualize how things will appear on the monitor screen if you think
of the physical window as being on top. For example, if you color an area of the logical
window with a BOX AREA statement, then you place a push button in the physical
window, the button will appear on top of the colored area. If you change the colored
area with another BOX AREA statement, then the button will still be on top.

The size and location of all windows are defined by four co-ordinates in this order;
left, right, bottom, top

The co-ordinates for windows are always relative to the whole screen.
The co-ordinates for objects inside windows are always relative to the window.

The final concept that you need to get your head around is that all windows and all
objects inside windows each have a unique identity number. The reason why we need
identities is again very simple. Suppose you have several push buttons labelled QUIT,
CANCEL and SUBMIT, then you will want to know which of them the user has clicked
on. The TC_event routine will tell you that a button has been pressed and it also gives
the ID number of the button. If you have created multiple windows, then TC_event
will also tell you the ID of the window the user is currently working with. The most
difficult concept to grasp is that you don’t need to know the value of the ID number,
because you can use a variable name instead. You are free to use any variable name
you like. Suppose you have a button that is labelled QUIT, then you might use the
variable name quit as the ID for this button.

Remember, that there is nothing magical or mystical about windows and the objects
inside them. They are just graphical images painted on the screen. However, behind
the scenes, there is a great deal of code that makes the object appear to react in a
particular way when you click the mouse inside the perimeter of the object. Take for
example a simple push button, which you create with just one very simple line of code:

CALL TC_PushBtn_create(id, ”LABEL”,x1,xr,yb,yt)

You don’t need to worry about all the code that paints a rectangular area of the screen
gray, and works out where the center is so that the word LABEL is printed in the
middle in black. Nor do you have to concern yourself with working out how to color the
edges of the rectangle to give the button a 3D effect of standing proud of the
background using shadows on the bottom and right hand edges. When you click the
button these shadows are reversed momentarily to give the impression the button has
been pressed. All this code has been done for you in the library module BronzeTC.

Until now the output from your programs has been displayed on the screen in the
default font, over which you had no control. BronzeTC now gives you control over the
font, not just in the default window, but all windows, e.g.

134 BRONZE Edition Guide

CALL TC win_SetFont(wid,”Times”,12,”Bold italic”)
Where wid is the ID of the window you wish the font to apply to.

You may change the font details any number of times, so it is possible to fill the screen
with a variety of fonts in different sizes and styles, and in different colors, e.g.

CALL TC win_SetFont(wid,”Times”,12,”Bold italic”)
Set Color 9 ! blue

PLOT TEXT, AT 20,50:”This is an example”

CALL TC win_SetFont(wid,”Arial”,16,”Bold”)

Set Color 12 ! red

PLOT TEXT, AT 20,100:”of different fonts”

CALL TC win_SetFont(wid, "Helvetica”,10,”Plain”)
Set Color 13 ! magenta

PLOT TEXT, AT 20,150:”1in various colors”

Much of your programming effort will have been spent devising ways of getting user
INPUT, and then even more time working out how to display the output data. The
tools available in BronzeTC will make these tasks much easier and will give greater
impact to your output.

Remember that all the code you use with BronzeTC will run without any changes if
you later upgrade to the TrueCtrl and TrueDial library modules. This is because
BronzeTC is a cut down version of the TrueCtrl library. Similarly BronzeTD is a
reduced set of dialog boxes from the TrueDial library.

Demonstration programs featuring the objects in BronzeTC can be found in the
Tbdemos folder.

To use these features correctly you will need to refer to the BronzeTC manual which is
located in the documents folder. This manual also contains details of BronzeTD dialog
boxes.

135

CHAPTER

Sound and Music 1 7

You've already seen the Demo Program SMOKY that plays the first few lines of “On Top of
Old Smoky”. True BASIC’s PLAY and SOUND statements let you produce melodies and
general sound effects on your computer.

The PLAY Statement

The PLAY statement lets you play simple melodies on your computer. When you use a PLAY
statement, you give it a string consisting of codes for notes, tempo, and how the notes should
be played.

Open the SMOKY program, run it again, and then take a look at the music codes in the
DATA statements.

' Plays the beginning of
' "0On Top of OlLd Smoky".

DO while more data

READ music$! Get the string representations
PLAY music$! And play the notes
LOOP

DATA 04 L4 C C E G 05 L2 C. 04 A.

DATA L4 A FGALTG
DATA L4 C CE G L2 G. D
DATA L4 E F E D L2 C.

END

136 BRONZE Edition Guide

Look at the first DATA statement, which represents the first six notes of “On Top of Old
Smoky.” The letters A through G represent the notes A through G. The other codes give
True BASIC information about how to play the sequence of notes.

The letter O followed by a digit sets the current octave. The octaves start at C and go
up to B, as on a piano keyboard. (Middle C is the first note in octave 5.) This song begins
in the fourth octave, so the first string item is “O4”.

Next, the letter L followed by a digit tells True BASIC the length of the note or notes
toplay. Thelarger the number with the code L, the shorter the length of the note. Therefore,
“L4” means a quarter note, “L2” a half note, and “L.1” a whole note. True BASIC plays all
notes following an L code at that length until another L appears in the string expression.

After the first DATA statement sets the octave and the length of notes, “C C E G” tells True
BASIC to play two C’s, an E, and a G as quarter notes. The next note, however, is in the
next octave, so you need another O code to set the octave to O5.

After O5, the next note is a 3/4 note C. This is done by changing the length to L2 (half note)
and adding a dot after the letter C. The dot multiplies the length of the note by 3/2,
just as it does in written music. The line ends by going back down to octave 4 and playing
another 3/4 note, A.

The remaining string data use these codes to play the next three lines of the song. You may
type the letters in the codes in upper or lowercase. Also, the spaces between the codes don’t
matter to True BASIC, but they do make the program easier to read!

True BASIC has other music codes that give you more control over the notes and the way
they’re played. The letter T sets the tempo, or speed, for the rest of the melody. The num-
ber given with T represents the number of quarter notes played in one minute. If you don’t
specify the tempo, True BASIC plays 120 quarter notes per minute. Add the code T180 to
the first DATA statement, and run Smoky again.

The ML code plays music legato, and MS plays staccato. (Legato means play the music
smoothly with a connection between successive notes. Staccato means play the music
briskly with no connection between notes.) Add some of these codes to Smoky, and run it
again. You can use the MN code to set the music style back to normal.

You can include sharps and flats in your music by adding a “+” or “#” after the note to indi-
cate a sharp, or “-” after the note to indicate a flat. You can also write lengths of single notes
by putting the appropriate digit after the letter for that note. For example, the first two
lines of “America” in the key of F would look like this:

17. Sound and Music 137
F4 F4 G4 E4. F8 G4
A4 A4 B-4 AL. G8 F&

The letter R stands for rest. The number given with R has the same meaning as the num-
bers associated with the code L. That is, R4 means rest for the length of a quarter note, R2
means rest for the length of a half note, etc.

The following table summarizes the PLAY codes.

Code Meaning
A to G Play a note in current octave, at current tempo, etc.
Ln Set the length of subsequent notes.
ML Play music legato, or smoothly.
MN Play music normally (not legato or staccato).
MS Play music staccato, or briskly.
0 n Set current octave. Middle C is the first note in octave 5.
R nor Pn Rest (pause) for length n.
Tn Set the tempo.
or + Sharp.
- Flat.
Play dotted note.

The SOUND Statement

The SOUND statement makes your computer emit sounds that are not necessarily musical
notes. You specify the frequency of the sound in Hertz (cycles per second) and the duration
of the sound in seconds. For example, the statement:

SOUND 440, 10
plays concert A, which has a frequency of 440 Hertz, for 10 seconds.

138 BRONZE Edition Guide

139

CHAPTER

Correcting Errors and Debugging 1 8

There are three kinds of mistakes you might make when writing a program: (1) improperly
used True BASIC statements, (2) errors that occur when a program runs, and (3) “bugs” that
prevent your program from working as you intended. True BASIC can help you find many
of these errors, and you can learn some tricks to help you find others.

lllegal Statements

One of the easiest things that True BASIC can find for you is a statement or structure you
have used incorrectly. When you attempt to run a program with an illegal statement, True
BASIC opens an error window and displays an error message that gives the line and char-
acter numbers at which the error was detected. If you double-click on one of the error mes-
sages, True BASIC will place the cursor at the offending spot in your program. You can then
correct that error and run the program again. Repeat if there are more than one error in
the error window.

Consider the following program "WRONG":

PIRNT "“You are about to toss a coin"
IF rnd<.5 PRINT "Heads; win" else PRINT "Tails; lose"

When you run this program, True BASIC opens an "Errors" window with contents like this:

El—————————— Frrors
Untitled 1:1:1:1llegal statement. [
Untitled 1:2:11:Expected "then".
Untitled 1:3:11:Missing end statement.

<l

140 BRONZE Edition Guide

The first error shows that an "illegal statement" was encountered at line 1, character 1. A
missing "then" keyword was detected in line 2, character 11. Finally, it was seen that there
is no "end" statement.

If you now double-click on the first line, True BASIC places the editing window cursor at
line 1, character 1, or just in front of the word PIRNT. You can now correct this word by dou-
ble-clicking on it and then retyping it correctly, PRINT.

Repeat with the second and third lines in the "Errors" window.

PRINT "You are about to toss a coin"
IF rnd<.5 then PRINT "Heads; win" else PRINT "Tails; lose"
END

Appendix D lists and briefly explains the error messages you are likely to see as you write
programs using the statements introduced in this book. If you are not sure of the correc-
tions you need to make, reread the appropriate sections of this Guide.

If you use Do Format to indent your programs, you can often catch problems in multi-line
structures such as IF-THEN-ELSE decisions or FOR-NEXT loops.

Errors During Program Runs — Exceptions
A program can sometimes cause errors when it is run (executed). For example, the statement

LET answer = a/b

is a “legal” statement. But if b equals 0 when this statement is carried out, the program would
stop and you would get a “Division by zero” error. Errors that happen during program runs
are called exceptions. The list of error messages in Appendix D includes exceptions.

True BASIC has a structure and four built-in functions that you can include in your pro-
grams to intercept this type of error and provide a remedy that can enable the program to
keep running. The WHEN structure is mentioned in Appendix B, and the EXLINE,
EXLINE$, EXTEXT$, and EXTYPE functions are explained in Appendix C.

Correcting Bugs in Your Programs

True BASIC cannot detect the third type of programming error. Your program may be
“legal” and contain no “exceptions”, but it still gives the “wrong” answers. Somehow, you’ve
not written the program correctly to accomplish what you wanted to do.

18. Correcting Errors and Debugging 141

True BASIC can’t tell what you want your program to do, so it can’t tell you where you’ve
gone wrong, but there are some tools you can use to debug your programs.

* One of the first things to do is use DO FORMAT to make the program more readable
(see Chapter 10).

* Next, get a printed listing of your program and read it carefully (see Chapter 10).

¢ Asyouread, check your variable names. Have you spelled them correctly and consis-
tently throughout the program? The OPTION TYPO and LOCAL statements
described below can help you catch spelling errors in variable names.

OPTION TYPO and LOCAL. You can put an OPTION TYPO statement at the beginning
of your program to request True BASIC to check all variables in that program. For this to
work, all variable names must be declared in a LOCAL statement or appear as parameters
in a SUB, DEF, FUNCTION, or PICTURE statement. (All arrays must be declared in DIM
or LOCAL statements.) True BASIC gives an “Unknown variable” error for any undeclared
variable that it sees. You have to do some extra typing to list all variables in a LOCAL state-
ment, but it can save debugging time by finding misspelled variables. Chapter 14 introduces
the LOCAL statement.

¢ If you are not sure where your errors are, but suspect parts of the program, insert
some extra PRINT statements to see what values your variables have at various
points in your program.

* Go into debug mode and insert breakpoints into your program.

Breakpoints. You can insert breakpoints into your program. When you run the program,
True BASIC halts at each breakpoint and displays a list of variable names and their current
values. Most of the time you can actually change the value of one or more of these variables.
Type the CONTINUE command or select the menu item Continue to resume the program
run. (For a review on using the command window, see Chapter 10.)

The first step is to turn debugging on by selecting the third item in the Settings menu.

To insert a breakpoint, move the cursor to the desired line and select Break in the Run
menu, or type Break on the command line. You can insert as many breakpoints as you like.
To remove a breakpoint, select the line and again type Break on the command line.

Now run your program. When True BASIC reaches a breakpoint, it opens a Variable window
that displays all the variables in your program and their current values. You can actually
change the values of some of them, but this must be done carefully! To continue running the
program, select Continue in the Variable window menu, or type Continue on the command
line. If you want to stop your program, select Stop from the Variable window menu.

142 BRONZE Edition Guide

If you accidentally close the Variable window, you can reopen it by selecting it from the
Windows menu of Editing window.

Debugging - A Case Study

Let’s take a very simple problem, adding up the numbers from 1 to some positive whole num-
ber which we will call n. A program to do this might be:

' Sum of numbers from 1 to n
INPUT n
FOR i =1 to n
LET sum = sum + i
NEXT i
PRINT sum
END

When you run this program and enter 5, it will print 15 (the correct answer.) When you run
the program again and enter 3, it will print 6 (again, the correct answer.)

Untitled 1

I Bum of nombers from 1 to n
INFUT o
FOE i =1 to n
== True BASIC Bronze -- Finished. Click mouse or press any =2
FY? 5
Ef 15

]

Since you want to use this program more than once, you might have the brilliant idea of
including it in a loop, so you can enter several numbers without having to Run the program
from scratch each time. Here is one possible solution (notice that you have added an IF

statement to allow the program to stop!)

18. Correcting Errors and Debugging

Sum of numbers from 1 to n
DO

INPUT n

IF n =0 then EXIT DO

FOR i = 1 to n

LET sum =

NEXT i

PRINT sum
LOOP
END

sum + i

When you run this program and enter 5, it prints 15 as it should. But when you now enter
3, it prints not 6, but 21, which is a wrong answer.

Hun ggH E_‘E Dehug Eﬂ%
Breakpoint ! Sum of numbers from 1 to n 1]
Compile #T oo -
- o
Bind =B IF n = 0 then EXIT DO
Trace FORi=1ton
| LET sum = sum + i
WEXT i
Do... FETHT sum
Do Format 2D LOOF
Do Upper U EXD
Do Lower 3L
appTOtrc.TRC |]
FORMAT.TRU Line: 6 Char: 1]
NUM.TRU (= BE

You might be able to see the problem, and the solution, immediately. But let’s see how we
can use Debugging Mode, Breakpoints, and the Variable Window to help us.

Set Font...
+Backup on Save
v Debug Mode
+ Confirm Quit

Save Configuration...

Make sure Debug Mode is checked in the Settings menu. Now place
the cursor in front of the line ‘LET sum = sum + 1’, which is the
workhorse line in the program. Now choose Run from the Run menu.
The program will stop almost immediately at the breakpoint. The
Variable Window will look like this:

S[I=———— llariable Window EE
<Main program> n 5)
<Main program> i 1
<Main program> sum o

i
& B

Everything looks okay. Continue the program by selecting Continue from the Run of the
Variable Window, or by typing ‘continue’ in the command line, until it prints the result 15,
in the Output Window.

144 BRONZE Edition Guide

Now, enter 3 when the ‘? appears. Notice the current status of the Variable Window.

SI=——— Variable Window =————"[915
<Main program: n 3 |1
<Main program?> i 1
<Main program> sum 15

]
g B

Once you see this, you may figure out the solution; In this case add this line to your pro-
gram:

LET sum = 0

just after the IF statement and just in front of the FOR statement. The program will now
run correctly.

True BASIC always initialized numeric variables to 0. But if you reuse a variable in your
program, you’ll have to set it to 0 yourself!

OeBug?
I Sum of numbers from 1 to n
jil]
INFUT
IF n = 0 then EXIT DO
LET sum = 0 =[I=— True BASIC Bronze —P0|
FOR i =1 ton 75
LET sum = =um + i 15
HEXT i 73
FEINT =um &
LOOF 712
EXD e
7
(]

145

APPENDIX

ASCII Character Set A

This table lists the ASCII character set. The order of characters determines how string
conditions are evaluated. The decimal and hexadecimal equivalents given for each
character are useful for advanced programmers.

Decimal Name Hex Decimal Name Hex Decimal Name Hex
000 nul 00 029 gs 1D 058 : 3A
001 soh 01 030 rs 1E 059 ; 3B
002 stx 02 031 us 1F 060 < 3C
003 etx 03 032 space 20 061 = 3D
004 eot 04 033 ! 21 062 > 3E
005 enq 05 034 “ 22 063 ? 3F
006 ack 06 035 # 23 064 @ 40
007 bel 07 036 $ 24 065 A 41
008 bs 08 037 % 25 066 B 42
009 ht 09 038 & 26 067 C 43
010 If 0A 039 ’ 27 068 D 44
011 vt 0B 040 (28 069 E 45
012 ff oC 041) 29 070 F 46
013 cr oD 042 * 2A 071 G 47
014 S0 OE 043 + 2B 072 H 48
015 si OF 044 , 2C 073 I 49
016 dle 10 045 - 2D 074 J 4A
017 del 11 046 . 2E 075 K 4B
018 dc2 12 047 / 2F 076 L 4C
019 de3 13 048 0 30 077 M 4D
020 dc4 14 049 1 31 078 N 4E
021 nak 15 050 2 32 079 (0] 4F
022 syn 16 051 3 33 080 P 50
023 etb 17 052 4 34 081 Q 51
024 can 18 053 5 35 082 R 52
025 em 19 054 6 36 083 S 53
026 sub 1A 055 7 37 084 T 54
027 esc 1B 056 8 38 085 U 55
028 fs 1C 057 9 39 086 A% 56

146

Decimal Name Hex

087 A 57 101
088 X 58 102
089 Y 59 103
090 Z 5A 104
091 [5B 105
092 \ 5C 106
093] 5D 107
094 A 5E 108
095 _ 5F 109
096 : 60 110
097 a 61 111
098 b 62 112
099 c 63 113
100 d 64 114

Decimal Name Hex

ROoT o BB — Y D0 o

BRONZE Edition Guide

Decimal Name Hex

65 115 S 73
66 116 t 74
67 117 u 75
68 118 v 76
69 119 w 77
6A 120 X 78
6B 121 y 79
6C 122 z 7A
6D 123 { 7B
6E 124 | 7C
6F 125 } 7D
70 126 ~ 7E
71 127 del 7F
72

Below are three short True BASIC programs that can help you determine or verify charac-

ter numbers from your keyboard.

Program A displays the printable character when you enter a chr $ value.

Program B shows the character number when you press a keyboard key.

Program C asks you to enter the character abbreviation to verify the character number.

Program A:

PRINT "Shows the printable
character"

PRINT "for a given character
number"
DO
INPUT n
PRINT chr$(n)
LOOP
END

Program B:

PRINT "Shows the character
number for a given key"

PRINT "Press a key"
DO
IF key input then
GET KEY k
PRINT k
END IF
LOOP
END

Program C:

PRINT "Shows the character
number for a"

PRINT "given character or

character abbreviation"
PRINT "Enter an abbreviation"

DO
INPUT abb$
WHEN error 1in
LET n = ord(abb$)
PRINT n
USE
PRINT "Invalid
abbreviation”
END WHEN
LOOP
END

147

APPENDIX

True BASIC Statements B

This appendix lists all of the statements in True BASIC, and then lists an example or
two of those statements that are discussed in this Guide. Information may also be found
in the Help facility; type HELPor select the menu item HELP that appears at the top of the
screen. Choose STATEMENTS from the list of topics displayed. (See Appendix F)

Ordinary Statements and Structures
These statements are fundamental to almost all programs.

PROGRAM FOR Loop Structure

END EXIT FOR

LET NEXT

DO Loop Structure
EXIT DO SELECT CASE Structure
LOOP CASE

IF CASE ELSE

IF Structure END SELECT
ELSEIF
ELSE
END IF

These statements are of a miscellaneous type; some are discussed in this manual.

ASK FREE MEMORY RANDOMIZE

DIM REM

PAUSE STOP

These statements deal with line-number programs; they are not discussed in this Guide.,

but can be found in the online HELP facility.

GOSUB
GOTO
ON GOSUB

ON GOTO
RETURN

148 BRONZE Edition Guide

These statements allow setting various options; only OPTION ANGLE AND OPTION
TYPO are discussed in this manual.

OPTION ANGLE OPTION NOLET
OPTION ARITHMETIC OPTION TYPO
OPTION BASE OPTION USING
OPTION COLLATE

Input and Output Statements

These are the main statements dealing with input and output that are discussed in this
manual.

DATA MAT PRINT
INPUT MAT READ
LINE INPUT PRINT
MAT INPUT READ

MAT LINE INPUT RESTORE

These input-output statements are not discussed in this book but appear in the HELP
facility.

ASK MARGIN SET MARGIN

ASK ZONEWIDTH SET ZONEWIDTH

File Statements
The following file statements are discussed in this manual

CLOSE #n OPEN #n:
ERASE #n RESET #n:
INPUT #n: PRINT #n:
LINE INPUT #n:

Functions and Subroutines
These statements are the heart and soul of organizing complicated programs.

CALL EXTERNAL

DECLARE DEF (FUNCTION) LIBRARY

DEF LOCAL

DEF Structure SUB Structure
EXIT DEF EXIT SUB

END DEF END SUB

B. True BASIC Statements

The following statements are not discussed in this book but appear in the HELP facility.

FUNCTION

FUNCTION Structure
EXIT FUNCTION
END FUNCTION

Graphics and Sound Statements

DECLARE NUMERIC
DECLARE STRING
DECLARE SUB
CHAIN

These graphics and sounds statements are discussed in this manual.

BOX AREA
BOX CIRCLE
BOX CLEAR
BOX DISK
BOX ELLIPSE
BOX KEEP
BOX LINES
BOX SHOW
CLEAR
DRAW
FLOOD

PICTURE Structure
EXIT PICTURE
END PICTURE

PLAY

PLOT

PLOT AREA

PLOT LINES

PLOT POINTS

PLOT TEXT

SOUND

SET WINDOW

SET TEXT JUSTIFY

These graphics statements are not discussed in this manual but appear in the HELP

facility.
ASK BACK
ASK COLOR
ASK COLOR MIX
ASK CURSOR
ASK DIRECTORY
ASK MAX COLOR
ASK MAX CURSOR
ASK MODE
ASK NAME
ASK PIXELS
ASK SCREEN
ASK TEXT JUSTIFY

ASK WINDOW
BOX DISK
GET KEY

GET MOUSE

GET POINT

MAT PLOT

MAT PLOT AREA
MAT PLOT LINES

MAT PLOT POINTS
OPEN SCREEN
SET BACK

SET COLOR

SET COLOR MIX
SET CURSOR
SET DIRECTORY
SET MODE

SET NAME
WINDOW

150 BRONZE Edition Guide

MAT Statements

Several of these MAT statements are discussed in this book.

MAT PRINT

MAT Assignment

MAT INPUT MAT READ

MAT LINE INPUT
Some of the MAT statements are not discussed in this book, but are found in the HELP
facility.

MAT REDIM MAT PLOT AREA

MAT WRITE MAT PLOT LINES

MAT PLOT POINTS

Files Statements

Several file statements are discussed in this manual. Additional statements, listed below,
are described in the HELP facility.

ASK #n: ACCESS MAT INPUT #n:

ASK #n: DATUM MAT LINE INPUT #n:
ASK #n: ERASABLE MAT PRINT #n:

ASK #n: FILESIZE

ASK #n: FILETYPE READ #n:

ASK #n: MARGIN

ASK #n: NAME SET #n: MARGIN
ASK #n: ORGANIZATION SET #n: POINTER
ASK #n: POINTER SET #n: RECORD
ASK #n: RECORD SET #n: RECSIZE
ASK #n: RECSIZE SET #n: ZONEWIDTH
ASK #n: RECTYPE

ASK #n: SETTER UNSAVE

ASK #n: ZONEWIDTH WRITE #n:

Module Structures

These statements, which deal with modules, are not discussed in this book but are
described in the HELP facility.

MODULE Structure
PRIVATE DECLARE PUBLIC
PUBLIC END MODULE
SHARE

B. True BASIC Statements 151

Exception Handling

Exception handling is not discussed in this book, but these statments are described in the
HELRP facility:

CAUSE ERROR or CAUSE EXCEPTION
CONTINUE
HANDLER
END HANDLER
EXIT HANDLER
RETRY
WHEN Structure
USE
END WHEN

Debugging Statements

Certain debugging statements required by ANSI are not discussed in this book. Instead,
it is recommended that you use the Breakpoint feature discussed in Chapter 18.

BREAK
DEBUG
TRACE

Builtin Subroutines

While not, strictly speaking, statements, True BASIC includes several builtin subroutines.
They are not discussed in this Manual but are contained in the HELP facility.

Clipboard
ComlLib
ComOpen
Divide
Object
Packb
Read_Image
System
Sys_Event
TBD
Unpackb (a function, not a subroutine)
Write_Image

152 BRONZE Edition Guide

Alphabetical Listing of Statements

This section gives examples and brief descriptions of the statements and structures dis-
cussed in this Guide. A wealth of additional information about True BASIC statements can
be found in the HELP facility which is part of your True BASIC Bronze Edition. Select HELP
from the main menu at the top of your screen.

BOX AREA Statement
BOX AREA left, right, lower, upper
Draws the rectangle specified and fills it with the current foreground color.

BOX CIRCLE Statement
BOX CIRCLE left, right, lower, upper
Draws an ellipse (or circle) inscribed in the rectangle specified in the current foreground color.

BOX CLEAR Statement
BOX CLEAR left, right, lower, upper

Clears the rectangular region specified; that is, it fills that region with the current back-
ground color.

BOX ELLIPSE Statement
BOX ELLIPSE left, right, lower, upper
BOX ELLIPSE is the same as BOX CIRCLE.

BOX KEEP Statement
BOX KEERP left, right, lower, upper IN stringvar$
Stores the entire rectangular region specified into stringvar$.

BOX LINES Statement
BOX LINES left, right, lower, upper
Draws the outline of a rectangle specified in the current foreground color.

BOX SHOW Statement
BOX SHOW stringvar$ AT left, lower

BOX SHOW restores the image previously stored in stringvar$ to the rectangular posi-
tion whose lower left corner is specified.

B. True BASIC Statements 153

CALL Statement
CALL subroutine-name (argl, arg2, ..., argn)

The CALL statement invokes the subroutine given by the SUB statement with the same
name. The arguments in the CALL statement must match with the parameters in the SUB
statement (in number, positions, type, and number of dimensions.)

Parameter passing is by reference; that is, changes to them within the subroutine will
cause simultaneous changes the arguments in the CALLstatement.

CLEAR Statement
CLEAR
Clears the screen or output window and resets the text cursor to the row 1, column 1.

DATA Statement
DATA element, ..., element
The data elements can be quoted or unquoted strings.

At program startup, all the data in the collection of DATA statements in a program-unit are
collected into a data list, in the order in which they are encountered.

(See also READ and RESTORE).

DECLARE DEF Statement
DECLARE DEF funcname, ..., funcname

DECLARE DEF statements must name all external functions used in the given program-
unit before their first use. DECLARE DEF statements must name all internal functions
used in the given program-unit whose definitions occur later in the program-unit than their
first use.

DEF Statement
DEF identifier = numeric-expression
DEF identifier (parml, ..., parm n) = numeric-expression
DEF identifier$ = string-expression
DEF identifier$ (parm1, ..., parm n) = string-expression
The DEF statement allows the programmer to define single-line functions.

The function is invoked by including its name, with suitable arguments, in an expression.
The arguments must match the parameters in the DEF statement in number, position, type,
and number of dimensions.

154 BRONZE Edition Guide

DEF Structure
DEF identifier (parml, ..., parm n)

EXIT DEF [optional]

END DEF

The DEF structure input order allows the programmer to define new multi-line functions.
The DEF structure may contain one or more EXIT DEF statements.
The function is invoked by including its name, with suitable arguments, in an expression.
The arguments must match the parameters in the DEF structure in number, position, type,
and number of dimensions. Parameter passing is by value; that is any changes to the
parameters will not cause changes to the corresponding arguments.

The defined function can also contain DECLARE DEF and LOCAL statements.

DIM Statement
DIM array (bounds), ..., array (bounds)
Except for function or subroutine parameters, each array in a program-unit must be dimen-

sioned in a DIM or LOCAL statement that occurs lexically before the first reference to that
array.

DO Loop
DO { | WHILE condition | UNTIL condition | }

EXIT DO [optional]

LOOP { WHILE condition | UNTIL condition | }

The DO statement can contain either a WHILE or UNTIL part, or nothing, and the same
for the LOOP statement. There can be any number of EXIT DO statements.

DRAW Statement
DRAW picture name (arg 1, ..., arg n)
DRAW picture name (arg 1, ..., arg n) WITH ¢rans *... * trans
trans:: SCALE (size)
SCALE (xsize, ysize)
ROTATE (angle)
SHIFT (xshift, yshift)
SHEAR (angle)

The (argument-list) is optional. The DRAW statement causes the picture named to be drawn

B. True BASIC Statements 155

on the screen, just as if the DRAW statement were replaced by the code of the picture defi-
nition. The angles in ROTATE and SHEAR are measured in radians unless OPTION
ANGLE DEGREES is in effect.

If the WITH clause is present, then the transformation applies applies to PLOT, FLOOD,
and MAT PLOT statements (but not BOX statements) in the picture before drawing it. If a
picture also contains DRAW statements with WITH clauses, then the final transformation
is the “product” of the transformations along the way. The transformation consists of shifts,
rotations, shears, or changes of scale, or any sequence thereof.

SCALE with one argument is the same as SCALE with two arguments with the same scale
factor applied to both the x- and y-directions. That is, SCALE(a)= SCALE(a,a).

ROTATE causes the picture to be rotated counter-clockwise through the given angle.

SHIFT causes the picture to be shifted in the x-direction by an amount given by the first
argument, and in the y-direction by an amount given by the second argument.

SHEAR causes the picture to be tilted clockwise through the specified angle. That is, it
leaves horizontal lines horizontal, but tilts vertical lines through the given angle.

END Statement

The END statement must be the last statement of a program and is required. Only one END
statement is allowed. The file that contains the program can also contain external proce-
dures and modules following the END statement. Executing the END statement stops the
program.

END DEF Statement
The END DEF statement must appear as the last statement of a DEF structure.

END IF Statement
The END IF statement must appear as the last statement of an IF structure.

END PICTURE Statement
The END PICTURE statement must appear as the last statement of a PICTURE structure.

END SELECT Statement
The END SELECT statement must appear as the last statement of a SELECT structure.

END SUB Statement
The END SUB statement must appear as the last statement of a SUB structure.

156 BRONZE Edition Guide

EXIT DEF Statement
EXIT DEF

The EXIT DEF statement jumps to just beyond the END DEF statement of the innermost
function that contains it, and is optional.

EXIT DO Statement
EXIT DO

The EXIT DO statements jumps to just beyond the LOOP statement of the inner-most DO
loop containing the EXIT DO, and is optional.

EXIT FOR Statement
EXIT FOR

The EXIT FOR statement jumps to just beyond the NEXT statement of the inner-most
FOR loop containing the EXIT FOR, and is optional.

EXIT PICTURE Statement
EXIT PICTURE

The EXIT PICTURE statement jumps to just beyond the END PICTURE statement of the
innermost picture that contains it, and is optional.

EXIT SUB Statement
EXIT SUB

The EXIT SUB statement jumps to just beyond the END SUB statement of the innermost
subroutine that contains it, and is optional.

EXTERNAL Statement
EXTERNAL

The EXTERNAL statement must appear at the start of a LIBRARY file of external proce-
dures.

FLOOD Statement
FLOOD xcoord, ycoord

FLOOD will fill, with the current foreground color, the closed graphical region containing
the point whose x-coordinate is xcoord and whose y-coordinate is ycoord.

B. True BASIC Statements 157

FOR Loop
FOR forvar = numeric-expression TO numeric-expression STEP numeric-expression

EXIT FOR [optional]

NEXT forvar

The simple numeric variable (not a numeric array element) in the NEXT statement must
be the same as the numeric variable appearing in the FOR statement. The STEP part is
optional. If missing, the increment is 1.

IF Statement
IF condition THEN simple-statement ELSE simple-statement

If the condition is “true,” then the simple-statement following the keyword THEN will be
executed, following which control will pass to the next line.

If the condition is “false,” and the ELSE clause is present, its simple-statement will be
executed, following which control will pass to the next line. If the ELSE clause is not pre-
sent, then control will pass directly to the next line.

IF Structure
IF conditionl THEN

ELSEIF condition2 THEN
ELSEIF condition3 THEN
ELSE

END IF
The IF structure can have 0 or more ELSEIF parts and 0 or 1 ELSE. If ELSE is present, it
must follow any ELSEIF part. The keyword ELSEIF can be spelled ELSE IF.
If condition 1 is “true,” the statements immediately following are executed, up to the first
ELSEIF, ELSE, or END IF, following which control jumps to the statement following the
END IF.
If condition 1 is “false,” control passes to the first ELSEIF part following the IF line. If con-
dition 2 is “true,” the statements immediately following it are executed, up to the next
ELSEIF, ELSE, or END IF, following which control passes to the statement following the
END IF line. If condition 2 is “false,” this process is repeated.

If there are no more ELSEIF parts, then control is passed to the ELSE part, and the state-

158 BRONZE Edition Guide

ments following the ELSE line are executed, up to the END IF line. If there is no ELSE part,
control is passed to the statement following the END IF line.

INPUT Statement
INPUT variable, ..., variable
INPUT PROMPT string-constant: variable, ..., variable

When the INPUT statement is executed, the program awaits an input-response from the
user. The input-response consists of quoted-strings and unquoted-strings, separated by
commas.

The items in the input-response are assigned to the variables in the INPUT statement.
String variables can receive any input-item, but numeric variables can receive only input-
items whose characters form a numeric-constant. The rules are similar to those for READ
and DATA statements.

LET Statement
LET variable = formula

The LET statement computes the formula on the right of the equal sign and then assigns
the value to the variable on the left of the equal sign.

LIBRARY Statement
LIBRARY quoted-string ..., quoted-string

The LIBRARY statement names the file or files containing external routines needed by the
entire program.

LINE INPUT Statement
LINE INPUT stringvar$, ..., stringvar$
LINE INPUT PROMPT string-constant: stringvar$, ..., stringvar$

A LINE INPUT statement requests one or more lines of input from the user. The first line
is supplied to the the first stringvar$, the second to the second, and so on. All characters in
the response-line are supplied, including leading and trailing spaces, embedded commas,
and quote marks.

LOCAL Statement
LOCAL variable, ..., variable

A LOCAL statement specifies that the variables named in it are local to the routine con-
taining the statement. If an array is named in a LOCAL statement, it must also include its
subscript bounds. The LOCAL statement is normally irrelevant in external routines, since

B. True BASIC Statements 159

all variables except parameters are automatically local, but it can be important in internal
routines. The LOCAL statement can be used in conjunction with the OPTION TYPO state-
ment to avoid typographical errors in variable names.

LOOP Statement

The LOOP statement may occur only as the last statement of a DO loop, and is required.
(See the DO Loop.)

MAT INPUT Statement
MAT INPUT array, ..., array

MAT INPUT assigns values from the input-response to the elements of the arrays, in order.
There must be a separate input-response for each array named. For each array, the ele-
ments are assigned values in “odometer” order. (That is, if A is a 2-by-2 array, odometer
orderis A(1,1), A(1,2), A(2,1), A(2,2).) The input-response must contain a sufficient number
of values of the appropriate type (numeric or string), separated by commas, in a single input-
response or in a collection of input-responses with all but the last ending with a comma. (See
the INPUT statement for details of input-responses.)

MAT LINE INPUT Statement
MAT LINE INPUT strarray$..., strarray$

MAT LINE INPUT assigns response-lines to the elements of the arrays named, in order
from left to right, and within each array in odometer order. The entire line of input is
assigned to an array element, including leading and trailing spaces and embedded commas.

MAT PRINT Statement
MAT PRINT array, ..., array

The MAT PRINT statement prints the elements of each array named to the screen. The val-
ues of each array are printed separately, with a blank line following the printed values for
each array. For two-dimensional arrays, the values for each row start on a new line. This
rule also applies to arrays of three or more dimensions.

Any command may be replaced by a semicolon, in which case the elements of that array are
printed side by side.

MAT READ Statement
MAT READ array, ..., array

MAT READ assigns values from the DATA list to the elements of each of the arrays, in order.
For each array named, the values are assigned in “odometer” order — that is, the last sub-
script changes most rapidly, then the next to last, and so on.

160 BRONZE Edition Guide

A string variable can receive any valid datum. A numeric variable can receive only a datum
that happens to be an unquoted string and a valid numeric-constant.

NEXT Statement
The NEXT statement can be used only as part of a FOR loop and is required.

OPTION ANGLE Statement

OPTION ANGLE DEGREES
OPTION ANGLE RADIANS

The OPTION ANGLE statement allows you to specify the type of angle measure to be used
with trigonometric functions and graphics transforms. In the absence of an OPTION
ANGLE statement, the default angle measure is RADIANS.

OPTION TYPO Statement
OPTION TYPO

The OPTION TYPO statement requires that all non-array variables that appear lexically
after it be declared explicitly. They must be declared in a LOCAL statement, or by appear-
ing as parameters in a SUB, DEF, or PICTURE statement.

An OPTION TYPO statement applies to the rest of the procedure containing it and to all
subsequent procedures in the program or library file.

PAUSE Statement
PAUSE seconds
The PAUSE statement stops the program for a time (in seconds) and then continue.

PICTURE Structure
PICTURE picture-name (parameter-list)

EXIT PICTURE [optional]

END PICTURE
A PICTURE structure may contain one or more EXIT PICTURE statements.

A PICTURE is drawn with a DRAW statement. Other than that, a PICTURE acts exactly
like a subroutine. The parameter passing mechanism is that of subroutines.

If the PICTURE contains PLOT statements (PLOT, MAT PLOT, or FLOOD), or contains
CALL or DRAW statements to other pictures or subroutines, then the final picture will
reflect all the transforms applied through all the DRAW statements.

B. True BASIC Statements 161

PLAY Statement
PLAY string-expression
See Plays the notes in the string. (See Chapter 17 for details.)

PLOT Statements

For convenience, the term point means two coordinates (x and y) separated by a comma,
as in “xcoord, ycoord”.

All PLOT statements in pictures are subject to the effects of the current transform.

All PLOT statements, except for PLOT TEXT, are clipped at the edges of the current win-
dow. That is, the portion of the drawing that is inside the window is shown, while the por-
tion outside the window is not.

PLOT POINTS Statement
PLOT POINTS: point; ...; point
PLOT point
PLOT POINTS plots the points as dots. PLOT x,y is an abbreviation for PLOT POINTS: x,y.

PLOT LINES Statement
PLOT LINES: point; ...; point
PLOT point; ...; point
PLOT LINES: point; ...; point;
PLOT point; ...; point;
PLOT LINES plots the line-segments that connect the points. A line is drawn from the
previous point to the first point if and only if the beam was left on.
The following two statements are equivalent:
PLOT x1, y1; x2, y2; x3, y3
PLOT LINES: x1,yl;x2, y2;x3, y3

If the PLOT LINES and PLOT statements end with a semicolon, the beam stays on so
that subsequent PLOT LINES or PLOT statements will continue plotting the line without
a break; otherwise, the beam is turned off.

PLOT AREA Statement

PLOT AREA: point; ...; point
PLOT AREA plots the polygon defined by connecting the points and fills it with the cur-
rent foreground color. The last point need not repeat the first point, as the line segment
needed to close the polygon is automatically supplied.

162 BRONZE Edition Guide

PLOT TEXT Statement
PLOT TEXT, AT point: textstring$
PLOT TEXT plots the text string in the current color at the point specified in the AT clause.

Vacuous PLOT Statement
PLOT
PLOT LINES
PLOT LINES:

These statements turn off the beam in case a previous PLOT or PLOT LINES statement
ended with a semicolon. They have no effect if the beam is already off.

PRINT Statement

PRINT

PRINT print-list

PRINT USING string: using-list (see Appendix H for more information)

print-list:: printitem ... separator printitem

printitem ... separator printitem separator
using-list:: usingitem ..., usingitem
usingitem ..., usingitem ;

separator:: , O ;
Items in a print-list can be separated by commas or semicolons, and be followed by a final
comma or semicolon. Items in a using-list can be separated only by commas, and be fol-
lowed only by a semicolon.
The printitems are printed on the screen. Numeric values are printed with a trailing space
and, for positive numbers, a leading space. String values are printed as is, with no addi-
tional leading or trailing spaces. If the separator between two items is a semicolon, then the
items are printed juxtaposed. If the separator is a comma, then the next item is printed in
the next print zone.
If a USING clause is present, the values are then printed according to the format specified,
without regard to print zones. The string following the word USING determines the format.
If the PRINT statement ends with a semicolon, subsequent printing will occur immediately
following on the same line. If the PRINT statement ends with a comma, then subsequent
printing will occur on the same line but in the next print zone. Otherwise, subsequent print-
ing will start on the next line.

B. True BASIC Statements 163

PROGRAM Statement
PROGRAM program-name

The PROGRAM statement, if used, must be the first statement of the main program,
other than comment lines. For ordinary programs it serves no purpose other than to pro-
vide a place for the program name.

RANDOMIZE Statement
RANDOMIZE

The RANDOMIZE statement produces a new seed for the random number generator. It
should not be used more than once in the running of a program.

READ Statement
READ variable, ..., variable
The READ statement assigns to its variables the next datum from the DATA list.

A string variable can receive any valid datum. A numeric variable can receive only a
datum that is unquoted and is a valid numeric-constant.

REM Statement
REM character ... character

The REM statement allows you to add comments to your program. You can use any char-
acters you want in the REM statement. REM statements are ignored.

A REM statement is equivalent to a comment line that begins with an exclamation mark
(1. In addition, a (!) can be used to place comments on the same lines as other True
BASIC statements.

RESTORE Statement
RESTORE

The RESTORE statement resets the data pointer to the start of the data-list, and thus
lets you reuse the data-list.

164 BRONZE Edition Guide

SELECT CASE Structure

SELECT CASE select-expression
CASE case-specifier

CASE case-specifier

CASE ELSE

END SELECT
case-specifier:: case-part, ...,case-part
case-part:: constant

constant TO constant

IS relational-operator constant
The SELECT CASE structure may have zero or more CASE parts, and zero or one CASE
ELSE parts, but must have at least one of either a CASE or CASE ELSE part. The constants
in a case-specifier must be of the same type (numeric or string) as the select-expression in
the SELECT CASE statement.
The select-expression in the SELECT CASE statement is first evaluated. The case-specifier
in the first CASE part is then examined. If it satisfies any of the case-parts, then the state-
ments following that CASE statement are executed and control passes to the first statement
following END SELECT.
If no case-part in the first CASE statement is satisfied, then the second CASE statement is
examined in a like manner, and so on.
If no CASE statement is satisfied, then the statements following the CASE ELSE statement
are executed. If no CASE statement is satisfied and there is no CASE ELSE part, then an
exception occurs.

SET BACK Statement
SET BACK colornumber
SET BACK colorname$

SET BACK is an abbreviation for SET BACKGROUND COLOR. SET BACK with color-
number sets the background to the color that has that number. SET BACK with colorname$
sets the background to the color named; see the SET COLOR statement for a list of allowed
color names.

B. True BASIC Statements 165

SET COLOR Statement
SET COLOR colornumber
SET COLOR colorname$

SET COLOR with colornumber sets the foreground color to the color that has that number.
Numbers outside this range will have effects that are dependent on the particular machine.
If your machine does not support color, True BASIC may supply a suitable pattern.

SET COLOR with colorname$ sets the foreground color to the color named, which must
be one of the following:

MAGENTA CYAN WHITE
RED BLUE GREEN
YELLOW BROWN BLACK
BACKGROUND

SET MODE Statement
SET MODE mode$

Changes the current screen mode to that specified. Ifit is a legal but unavailable mode, True
BASIC will set the nearest available mode. Ifit is not a legal mode, that is, it is not the name
of any mode, True BASIC will set the default mode for that machine.

SET WINDOW Statement
SET WINDOW left, right, lower, upper
Sets the window coordinates for graphics in the current window.

SOUND Statement
SOUND frequency, seconds
The SOUND statement sounds a note with the specified frequency and duration.

STOP Statement
STOP

Stops execution of the program.

166 BRONZE Edition Guide

SUB Structure
SUB identifier (parm 1, ... , param n)

EXIT SUB [optional]

END SUB

The subroutine may contain one or more EXITSUB statements. A CALLstatement
invokes the subroutine; that is, starts it running. The arguments in the CALL must
match the parameter in the SUB statement in number, position, type, and number of
dimensions. Parameter passing is by reference; that is, changes to the parameter within
the subroutine will cause simultaneous changes to the arguments in the CALL statement.

WHEN Structure
WHEN EXCEPTION IN
! Protected part
USE
! Executed if an exception is in a protected part
END WHEN

This subroutine may be used to “trap” run-time errors called exceptions. Examples might
be division by 0 or attempting to open a file that doesn’t exist.

If an exception of any type occurs in the protected portion, the recovery statements between
the USE statement and the END WHEN statement are executed. If no exception occurs in
the protected part, the recovery statements are ignored.

The functions EXLINE, EXLINE$, EXTEXT$, and EXTYPE can be used to determine the
exact nature of an exception.

167

APPENDIX

Built-in Functions c

This appendix lists most of True BASIC’s functions. Complete explanations may also be
found in the Help facility; type HELPor select the menu item HELP that appears at the top
of the screen. Choose FUNCTIONS from the list of topics displayed. (See Appendix F)

Mathematical Functions

Function Result

ABS(x) Absolute value

ACOS(x) Arccosine

ANGLE(x,y) Angle between x-axis and (x,y)
ASIN(x) Arcsine

ATN(x) Arctangent

CEIL(x) Ceiling (-INT(-x))

COS(x) Cosine

COSH(x) Hyperbolic cosine

COT(x) Cotangent

CSC(x) Cosecant

DEG(x) Translates radians to degrees
EPS Smallest nonzero positive number
EXP(x) Exponential function

FP(x) Fractional part of x

INT(x) Integer part

IP(x) Greatest integer <= x

LOG(x) Natural logarithm

LOG10(x) Common logarithm (base 10)
LOG2(x) Logarithm to the base 2
MAX(x,y) Larger of two numbers

MAXNUM Largest positive number

168 BRONZE Edition Guide

Mathematical Functions (continued)

Function Result

MIN(x,y) Smaller of two numbers
MOD(x,y) Remainder when x is divided by y
PI Value of pi

RAD(x) Translates degrees to radians
REMAINDER(x,y) Remainder of x divided by y

RND Random number between 0 and 1
ROUND(x,n) Rounds x to n decimal places
SEC(x) Secant

SGN(x) Sign of x

SIN(x) Sine

SINH(x) Hyperbolic sine

SQR(x) Square root

TAN(x) Tangent

TANH(x) Hyperbolic tangent
TRUNCATE(x,n) Truncates x to n decimal places

Date and Time Functions

Function Result

DATE Year and day of year as a number

DATE$ Year, month, and day of month as a string
TIME Seconds since midnight

TIME$ 24-hour clock time as a string

String to Number Functions

Function Result

CHR$(x) Character represented by ASCII number x
ORD(x$) Ordinal position of x$ in ASCII character set
NUM(x$) Numeric value of IEEE 8-byte string
NUM$(x) IEEE 8-byte equivalent of numeric value
STR$(x) Changes number to a string

VAL(x$) Changes string containing digits to a number

C. Built-in Functions

String Transforming Functions

169

Function Result

LCASE$(x$) Change letters to lowercase
UCASE$(x$) Change letters to uppercase
LTRIM$(x$) Remove leading blanks
RTRIMS$(x$) Remove trailing blanks
TRIM$(x$) Remove leading & trailing blanks
REPEAT$(x$,n) x$ repeated n times

String Search Functions

Function Result

LEN(x$) Number of characters in x$

POS(x$,y$,n) First occurrence of y$ in x$ after character n
POSR(x$,y$) Ditto POS but starting from the end
CPOS(x$,y$) First occurrence in x$ of any character in y$
CPOSR(x$,y$) Ditto CPOS but starting from the end
NCPOS(x$,y$) First occurrence in x$ of any character not in y$
NCPOSR(x$,y$) Ditto NCPOS but starting from the end

Array Functions

Function Result

DET(a) Determinant of the square matrix a
DOT(a,b) Dot product of vectors a and b

LBOUND(a,n) Lower bound of dimension n for array a
UBOUND(a,n) Upper bound of dimension n for array a
SIZE(a,n) Number of element in dimension n of array a

MAT Functions that can appear only in MAT assignment statements

Function Result

CON Array of ones

IDN Identity matrix
INV(a) Inverse of array a
NUL$ Array of empty strings
TRN(a) Transpose of array a
ZER Array of zeroes

170 BRONZE Edition Guide

The descriptions in the alphabetical list use the following terms:

(numeric-expression) numeric expression

(rnumeric-expression) rounded numeric expression

(string-expression) string expression

(redim) array redimensioning expression

(arrayarg) array argument (array name with optional parentheses)
ABS Function

ABS(numeric-expression)

Returns the absolute value of the argument.

ACOS Function
ACOS(numeric-expression)

Returns the value of the arccosine function. The resultis given in radians or degrees depend-
ing on whether the current OPTION ANGLE is RADIANS (default) or DEGREES.

ANGLE Function
ANGLE(numeric-expression, numeric-expression)

ANGLE(x,y) returns the counterclockwise angle between the positive x-axis and the point
(x,y). Note that x and y cannot both be zero. The angle will be given in radians or degrees
depending on whether the current OPTION ANGLE is RADIANS (default) or DEGREES.
The angle will always be in the range -180 < ANGLE(x,y) <= 180 (assuming that the cur-
rent OPTION ANGLE is DEGREES).

ASIN Function
ASIN(numeric-expression)

Returns the value of the arcsine function. The result is given in radians or degrees depend-
ing on whether the current OPTION ANGLE is RADIANS (default) or DEGREES.

ATN Function
ATN(numeric-expression)

ATN(x) returns the arctangent of x, which is the angle whose tangent is x. The angle will
be given in radians or degrees according to whether the current OPTION ANGLE is RADI-

C. Built-in Functions 171

ANS (default) or DEGREES. The angle will always be in the range -90 < ATN(x) < 90
(assuming that the current OPTION ANGLE is DEGREES).

CEIL Function
CEIL(numeric-expression)

Returns the least integer that is greater than or equal to numeric-expression. For exam-
ple, CEIL(1.9) = 2, CEIL(13) = 13, and CEIL(-2.1) = -2.

CHRS$ Function
CHR$(rnumeric-expression)

Returns the character whose ASCII decimal number is rnumeric-expression (see Appendix
A). If rnumeric-expression is not in the range 0 to 255, inclusive, exception 4002 occurs.

CON Array Constant

CON redim
CON

CON is an array constant that yields a numeric array consisting entirely of ones. CON can
appear only in a MAT assignment statement.

COS Function
COS(numeric-expression)

Returns the value of the cosine function. The argument is assumed to be in radians or
degrees depending on whether the current OPTION ANGLE is RADIANS (default) or
DEGREES.

COSH Function
COSH(numeric-expression)
Returns the value of the hyperbolic cosine function.

COT Function
COT(numeric-expression)

Returns the value of the cotangent function. The argument is assumed to be in radians or
degrees depending on whether the current OPTION ANGLE is RADIANS (default) or
DEGREES.

172 BRONZE Edition Guide

CPOS Function
CPOS(string-expression, string-expression)
CPOS(string-expression, string-expression, rnumeric-expression)

Returns the position of the first occurrence in the first argument of any character in the sec-
ond argument. If no character in the second argument appears in the first argument, or
either string is empty, then CPOS returns 0.

If a third argument is present, then the search for the first occurrence starts at the charac-
ter position in the first string given by that number and proceeds to the right. The first form
of CPOS is equivalent to the second form with the third argument equal to one.

CPOSR Function
CPOSR(string-expression, string-expression)
CPOSR(string-expression, string-expression, rnumeric-expression)

Returns the position of the last occurrence in the first argument of any character in the sec-
ond argument. If no character in the second argument appears in the first argument, or
either string is empty, then CPOSR returns 0.

If a third argument is present, then the search for the last occurrence starts at the charac-
ter position in the first string given by that number and proceeds to the left (that is, back-
wards). The first form of CPOSR is equivalent to the second form with the third argument
equal to the length of the first argument.

CSC Function
CSC(numeric-expression)

Returns the value of the cosecant function. The argument is assumed to be in radians or
degrees depending on whether the current OPTION ANGLE is RADIANS (default) or
DEGREES.

DATE Function
DATE

DATE, a no-argument function, returns the current date in the decimal numeric form
YYDDD, where YY is the last two digits of the year and DDD is the day number in the year.
If your computer cannot tell the date, DATE returns -1.

DATES$ Function
DATE$
DATES$, a no-argument string-valued function, returns the current date in the character

C. Built-in Functions 173

string form “YYYYMMDD”. Here YYYY is the year, MM is the month number, and DD is
the day number. If your computer cannot tell the date, then DATE$ returns “00000000”.

DEG Function
DEG(numeric-expression)

Returns the number of degrees in numeric-expression radians. This function is not affected
by the current OPTION ANGLE.

DET Function
DET (numarr)
DET
Returns the value of the determinant for the square numeric matrix named as its argument.

DOT Function
DOT(arrayarg, arrayarg)

DOT computes and returns the dot product of two arrays, which must be one-dimensional,
numeric, and have the same number of elements. (The subscript ranges need not be the
same, however.) If both arrays have no elements, then DOT returns 0.

EPS Function
EPS(numeric-expression)

EPS(x) returns the smallest positive number that can “make a difference” when added to or
subtracted from x.

EXLINE Function
EXLINE

EXLINE returns the line number in your program where the most recent error occurred. If
your program does not have line numbers, EXLINE returns the ordinal number of the line
in the file.

EXLINES$ Function
EXLINE$

EXLINES$ returns a string that gives the location in your program where the most recent
error occurred. It gives the number of the line and the routine in which the error occurred.
If the error occurred deeply in nested subroutine calls, EXLINE$ returns the geneology of
the error; i.e., it includes the names of the intervening subroutines and the line numbers of
the CALL statements.

174 BRONZE Edition Guide

EXP Function
EXP(numeric-expression)

Returns the natural exponential of the argument. That is, EXP(x) calculates e”x, where e
= 2.718281828..., the base of the natural logarithms.

EXTEXT$ Function
EXTEXTS$

EXTEXTS$ returns the error message associated with the most recent error, if any, pro-
vided that the error was ¢trapped in an error handler (see Chapter 18.) If an error is not
trapped, True BASIC prints the error message and stops the program.

EXTYPE Function
EXTYPE

EXTYPE returns the error number of the most recent error, provided that the error was
trapped by an error handler (see Chapter 18.) Some of the error numbers are given in
Appendix D, along with the associated error messages.

FP Function
FP(numeric-expression)
Returns the fractional part of the argument.

IDN Array Constant
IDN redim
IDN

IDN is an array constant that yields an identity matrix, which is a square numeric matrix
consisting of ones on the main diagonal and zeroes elsewhere. IDN can appear only in a
MAT assignment statement.

INT Function
INT(numeric-expression)
Returns the greatest integer that is less than or equal to numeric-expression.

INV Array Function

INV(numarr)
Returns the inverse of its argument, which must be a square two-dimensional numeric
matrix. INV can appear only in a MAT assignment statement.

C. Built-in Functions 175

IP Function
IP(numeric-expression)

Returns the greatest integer that is less than or equal to numeric-expression without regard
to sign, that is, towards zero.

LBOUND Function

LBOUND(arrayarg, rnumeric-expression)
LBOUND(arrayarg)

If there are two arguments, LBOUND returns the lowest value (lower bound) allowed for
the subscript in the array and in the dimension specified by rnumeric-expression. If there
is no second argument, arrayarg must be one-dimensional array, and LBOUND returns the
lowest value (lower bound) for its subscript.

LCASES$ Function
LCASE$(string-expression)

Returns the value of string-expression with all ASCII uppercase letters converted into low-
ercase. Characters outside the range of the ASCII uppercase letters are unchanged.

LEN Function
LEN(string-expression)

Returns the length (that is, the number of characters) of the argument string-expression.
All characters count, including control characters and other nonprinting characters.

LOG Function
LOG(numeric-expression)

Returns the natural logarithm of numeric-expression, which must be greater than 0. The
natural logarithm of x may be defined as that value v for which e?v = x, where e =
2.718281828....

LOG10 Function
LOG10(numeric-expression)

Returns the common logarithm of numeric-expression, which must be greater than 0. The
common logarithm of x is defined as that value v for which 10*v = x.

176 BRONZE Edition Guide

LOG2 Function
LOG2(numeric-expression)

Returns the logarithm to the base 2 of numeric-expression, which must be greater than 0.
The logarithm to the base 2 of x is defined as that value v for which 2v = x.

LTRIMS$ Function
LTRIM$(string-expression)

Returns the value of string-expression but with leading blank spaces removed. Trailing
spaces, if any, are retained.

MAX Function
MAX (numeric-expression, numeric-expression)
Returns the larger of the values of the two arguments.

MAXLEN Function
MAXLEN (strvar)

Returns the maximum length (maximum number of characters) for the string variable or,
if strvar refers to an array, the maximum length for each string in the array. If there is no
determinable maximum length, MAXLEN returns MAXNUM.

MAXNUM Function
MAXNUM

A no-argument function, MAXNUM returns the largest number that can be represented in
your computer.

MAXSIZE Function
MAXSIZE (arrayarg)
MAXSIZE always returns 2/31.

MIN Function
MIN (numeric-expression, numeric-expression)
Returns the smaller of the values of the two arguments. (Note: -2 is smaller than -1.)

C. Built-in Functions 177

MOD Function
MOD(numeric-expression, numeric-expression)

Returns x modulo y, provided y is not equal to zero.

NCPOS Function

NCPOS(string-expression, string-expression)

NCPOS(string-expression, string-expression, rnumeric-expression)
Returns the position of the first occurrence in the first argument of any character that is
not in the second argument. If all characters in the first argument appear in the second
argument, or the first argument is empty, then NCPOS returns 0. If the second argument
is empty but not the first, then NCPOS returns 1.
If a third argument is present, then the search for the first non-occurrence starts at the char-
acter position in the first string given by that number and proceeds to the right. If the sec-
ond argument is empty but not the first, then NCPOS returns the starting position.

The first form of NCPOS is equivalent to the second form with the third argument equal to
one.

NCPOSR Function

NCPOSR(string-expression, string-expression)

NCPOSR(string-expression, string-expression, rnumeric-expression)
Returns the position of the last occurrence in the first argument of any character that is not
in the second argument. If all characters in the first argument appear in the second argu-
ment, or if the first argument is empty, then NCPOSR returns 0. If the second argument is
empty but not the first, then NCPOSR returns the length of the first string.
If a third argument is present, then the search for the last non-occurrence starts at the char-
acter position in the first string given by that number and proceeds to the left (that is, back-
wards). Ifthe second argument is empty but not the first, then NCPOSR returns the start-
ing value.
The first form of NCPOSR is equivalent to the second form with the third argument equal
to the length of the first argument.

NULS$ Array Constant
NULS$ redim
NULS$

NULS$ is an array constant that yields a string array consisting entirely of empty strings.
NULS$ can appear only in a MAT assignment statement.

178 BRONZE Edition Guide

NUM Function

NUM (strex)
NUM returns the numerical value that is stored as a string, which must contain exactly
eight characters, using the IEEE eight-byte format. Normally, the string will have been
previously constructed with the NUM$ function.

NUMS$ Function

NUMS$ (numex)
NUMS$ returns a string of length eight that contains the numberical value using the IEEE
eight-byte format. Normally, the NUM function must be used to convert the string back to
a number.

ORD Function
ORD(string-expression)

Returns the ordinal position in the ASCII character set of the character given by string-
expression, which must be either a single character or an allowable two- or three-character
name of certain ASCII characters as described in Appendix A, except that ORD("") = -1
(" denotes the null string.) ORD is the opposite of the CHR$ function in that
ORD(CHR$(n)) = n for all n in the range 0 to 255. However, CHR$(ORD(a$)) = a$ only if
the value of a$ is a single ASCII character.

PI Function
PI

A no-argument function, PI returns the value of pi, the ratio of a circle’s circumference to
its diameter (approximately equal to 3.14159265).

POS Function

POS(string-expression, string-expression)

POS(string-expression, string-expression, rnumeric-expression)
Returns the position of the first character of the first occurrence of the entire second
string in the first string. If the second string does not appear in the first string, or if the
first string is empty while the second is not, then POS returns 0. If the second string is
empty, then POS returns 1.

If a third argument is present, then the search for the second string starts at that charac-
ter position in the first string given by that number and proceeds to the right. If the sec-
ond string is empty, POS returns the starting position. The first form of POS is equiva-
lent to the second form with the third argument equal to one.

C. Built-in Functions 179

POSR Function

POSR(string-expression, string-expression)

POSR(string-expression, string-expression, rnumeric-expression)
Returns the position of the first character of the last occurrence of the entire second string
in the first string. Ifthe second string does not appear in the first string, or if the first string
is empty but the second is not, POSR returns 0. If the second string is empty, then POSR
returns the length of the first string plus one.

If a third argument is present, then the search for the last occurrence starts at the charac-
ter position in the first string given by that number and proceeds to the left (that is, back-
wards). If the second string is empty, POSR returns the starting position.

The first form of POSR is equivalent to the second form with the third argument equal to
the length of the first argument plus one.

RAD Function
RAD(numeric-expression)

RAD(x) returns the number of radians in x degrees. This function is not affected by the cur-
rent OPTION ANGLE.

REMAINDER Function
REMAINDER(numeric-expression, numeric-expression)

REMAINDER(x,y) returns the remainder obtained by dividing x by y; y must not be equal
to 0.

REPEATS$ Function
REPEATS$(string-expression, rnumeric-expression)
Returns the string consisting of rnumeric-expression copies of string-expression.

RND Function
RND

A no-argument function, RND returns the next “pseudo-random” number in the sequence.
These numbers, which have no obvious pattern, fall in the range 0 <= RND < 1. Ifthe pro-
gram containing RND is rerun, True BASIC produces the same sequence of RND values. If
you want your program to produce unpredictable results, include a RANDOMIZE statement
early in the program.

180 BRONZE Edition Guide

ROUND Function
ROUND(numeric-expression, rnumeric-expression)
ROUND(numeric-expression)

ROUND(x,n) returns the value of x rounded to n decimal places. Positive values of n round
to the right of the decimal point; negative values round to the left. ROUND(x) is the same
as ROUND(x,0).

RTRIMS$ Function
RTRIM$(string-expression)

Returns the value of string-expression but with the trailing blank spaces removed. Leading
spaces, if any, are retained.

RUNTIME Function
RUNTIME

A no-argument function, RUNTIME returns the number of seconds of processor time used
since the start of execution. It may not return a meaningful value on some computers.

SEC Function
SEC(numeric-expression)

Returns the value of the secant function. The argument is assumed to be in radians or
degrees depending on whether the current OPTION ANGLE is RADIANS (default) or
DEGREES.

SGN Function
SGN(numeric-expression)
SGN(x) returns the “sign” of x, which will be -1, 0, or +1.

SIN Function
SIN(numeric-expression)

Returns the sine of the angle numeric-expression. The angle is measured in radians unless
OPTION ANGLE DEGREES is in effect, in which case the angle is measured in degrees.

SINH Function
SINH(numeric-expression)
Returns the value of the hyperbolic sine function.

C. Built-in Functions 181

SIZE Function
SIZE(arrayarg, rnumeric-expression)
SIZE(arrayarg)

Ifthere are two arguments, SIZE returns the number of elements in the array named in the
first argument and in the dimension specified by rnumeric-expression. If there is no sec-
ond argument, then SIZE returns the total number of elements in the entire array.

SQR Function
SQR(numeric-expression)
SQR(x) returns the positive square root of x, where x must be greater than or equal to zero.

STR$ Function
STR$(numeric-expression)
Returns the number converted to a string or might be produced by the PRINT statement.

STRWIDTH Function
STRWIDTHS$(rnumeric-expression, string-expression)

Returns the length of the string, in pixels, with reference to the current font, font-style, and
font-size in the current physical window. If the value of the first argument is not the ID
number of a physical window, an error occurs.

TAB Function

TAB(rnumeric-expression)

TAB(rnumeric-expression, rnumeric-expression)
TAB can appear only in PRINT statements. Strictly speaking, TAB is not a function, as it
does not return a value.
TAB(c) causes the printing cursor to “tab” over to the start of the print position (column) c.
TAB(r,c) causes the printing cursor to be positioned on the screen at row r and column ¢ of
the current window.

TAN Function
TAN(numeric-expression)

TAN(x) returns the tangent of x. Here, x is assumed to be in degrees if OPTION ANGLE
DEGREES is in effect, and in radians otherwise.

182 BRONZE Edition Guide

TANH Function
TANH (numeric-expression)
Returns the value of the hyperbolic tangent function.

TIME Function
TIME

A no-argument function, TIME returns the number of seconds since midnight. At midnight,
TIME returns 0. If your computer does not have a clock, then TIME returns -1.

TIMES$ Function
TIME$

A no-argument function, TIMES$ returns a string that contains the time as measured by the
24-hour clock and is displayed in the form “HH:MM:SS”.

TRIMS$ Function
TRIM$(string-expression)
The value of the argument returned with leading and trailing blank spaces removed.

TRN Array Function
TRN(numarr)

Returns the transpose of its argument, which must be a two-dimensional numeric array.
TRN can appear only in a MAT assignment statement.

TRUNCATE Function
TRUNCATE(numeric-expression, rnumeric-expression)

TRUNCATE(x,n) returns the value of x truncated to n decimal places. Positive values of n
truncate to the right of the decimal point; negative values truncate to the left. TRUN-
CATE(x,0) is the same as IP(x).

UBOUND Function
UBOUND(arrayarg, rnumeric-expression)
UBOUND(arrayarg)

The two-argument form returns the largest value (upper bound) allowed for the subscript
in the dimension specified by rnumeric-expression in the array named. The one-argu-
ment form returns the largest value (upper bound) for the subscript in a one-dimensional
array.

C. Built-in Functions 183

UCASES$ Function
UCASE$(string-expression)

Returns the value of string-expression with all lowercase letters in the ASCII code (see
Appendix A) converted into their uppercase equivalents. Characters outside the range of
the ASCII lowercase letters are unchanged.

USINGS$ Function
USING$(string-expression, expr ..., expr)
expr:: numeric-expression
string-expression
USINGS returns the string of characters that would be produced by a PRINT USING

statement with string-expression as the format string and with the exprs as the numeric
or string expressions to be printed.

VAL Function
VAL(string-expression)
Returns the numerical value given by string-expression, provided it represents a numeri-

cal constant in a form suitable for use with the INPUT or READ statement. The string
can contain leading and trailing spaces, but not embedded ones.

ZER Array Constant
ZER redim
ZER

ZER is an array constant that yields a numeric array consisting entirely of zeros. ZER
can appear only in a MAT assignment statement.

184 BRONZE Edition Guide

185

APPENDIX

Explanations of Error Messages D

This appendix contains a partial list of True BASIC error messages, in alphabetic order.
Error messages referring to statements or features not introduced in this book are omitted.

The number following some messages is the error number for errors (exceptions) that occur
when the program runs. These numbers can be used with the WHEN structure and
EXTYPE function .

Argument for SIN, COS, or TAN too large. (-3050)

The argument for the sine, cosine, or tangent function is so large that range reduction results
is almost complete loss of precision.

Argument types don’t match.

You're calling a routine with some arguments, but earlier in your program you defined or called
the same routine with different arguments. Either you’re giving a different number of argu-
ments in the calls, or their types are different — that is, you're passing strings instead of num-
bers, or vice versa. Check this call against preceding calls, and against the routine’s definition.

Array too large (5001)

You've tried to redimension an array to a size larger than the original DIM statement.
Change the DIM statement, or use MAT REDIM.

ASIN or ACOS argument must be between 1 and -1. (3007)

The arcsine and arccosine functions are not defined for arguments larger than one in abso-
lute value.

186 BRONZE Edition Guide

Badly formed using string. (8201)
The using string in PRINT USING statement is incorrectly formed.

Badly formed input line (nonfatal). (8102)

Your reply to an INPUT statement is badly formed. Most likely you have not properly
matched up opening and closing quote marks. You will be requested to reenter the entire
input line.

Badly formed input line from file. (8105)

The reply to an INPUT statement from a file is badly formed. Most likely you have not prop-
erly matched up opening and closing quote marks.

Can’t invert singular matrix. (3009)

You are using the matrix INV function, but the matrix you want to invert is singular.
Singular matrices simply have no inverses.

Can’t open PRINTER (9101)

You have tried to open the printer but True BASIC has been informed that the attempt has
failed, either because the printer isn’t attached or has not been turned on. (This condition
cannot be detected on all machines.)

Can’t output to INPUT file. (7302)

You may not write data to a file which was opened with ACCESS INPUT. If you must out-
put to this file, change the OPEN statement to use ACCESS OUTIN.

Can’t SET WINDOW in picture. (11004)

Pictures may not reset window or screen coordinates. Move the OPEN SCREEN or SET
WINDOW statement to outside the picture.

Can’t use ANGLE(0,0). (3008)
ANGLE(0,0) is not defined. Make sure that at least one of its arguments is nonzero.

Can't use #0 here. (nonfatal) (7002)
You've tried to use #0 as a channel number for a file or window other than the default out-
put window.

Can't use READ or WRITE for TEXT file. (-8503)
The file is a text file; the allowed commands are PRINT, INPUT, and LINE INPUT.

D. Explanations of Error Messages 187

Can’t use this statement here.

You've used part of a True BASIC structure, but in the wrong place. For instance, you might
have placed a CASE part outside of any SELECT CASE statement, or ELSE IF statement
outside of any IF-THEN statement. True BASIC also prints this message if you add an extra-
neous statement between the SELECT CASE line and its first CASE part. Refer to the
proper chapters of this guide to see how the structured statements are formed.

Channel is already open. (7003)
You've tried to open a file or window using a channel number currently in use.

Channel isn't a window. (-11005)
You've used a window instruction with a channel number that refers to a file.

Channel isn't open. (7004)
You've tried to use a channel number (for a file or window) without using the OPEN state-
ment.

Channel number must be 1 to 1000. (7001)
All channel numbers must be in the range 1 to 1000, except for #0, which refers to the out-
put window.

Constant too large: constant in routine.

The numeric constant displayed is too large for your computer to handle. Type PRINT
MAXNUM to see the largest possible number on your computer, and then change your pro-
gram to use a smaller number.

Data item isn't a number. (8101)

You've used a numeric variable in a READ statement but the matching DATA item is not
a number.

DET needs a square matrix. (6002)

The DET function can only be used on a square matrix, since the determinant is mathe-
matically defined only for such matrices.

Disk full. (9006)
You are writing output to a file, and the disk has become full.

Diskette removed, or wrong diskette. (9005)

You had opened a file, but, while True BASIC was using it, you removed the diskette and
inserted another one. Don’t switch diskettes while they’re in use!

188 BRONZE Edition Guide

Division by zero. (3001)

One of your expressions tried to divide some quantity by zero. If you want to substitute the
largest possible number and continue (without an error), enclose the expression in a WHEN
statement:
WHEN ERROR IN
LET x = (1+2+3)/0
USE
LET x = Maxnum
END WHEN
Maxnum is a True BASIC function which gives the largest positive number available on
your computer.

Do you want to save this file?

True BASIC gives you this reminder when you try to close an Editing window or Quit your
True BASIC session without saving your current file. Choose “Save” if you do want to save
the file (replacing the current saved copy), “Discard” if you want to discard your changes, or
“cancel” if you want to do something else (for example, save the file with a different name).

Doesn’t belong here.

The cursor points to some word in your program which doesn’t make sense. Look to see what
kind of statement you are using, and then look up the proper form of that statement in this
book. Then correct your program and continue.

Ending doesn’t match beginning.

You are using a structured statement, such as FOR-NEXT or IF-THEN-ELSE, and the end-
ing statement doesn’t properly match the beginning of the structure. Most likely you have
forgotten the ending statement for some structure within this one. Or you may have begun
a FOR loop using one index variable, but used another variable on the NEXT statement.
Read the statements inside the structure carefully to see what you've left out.

Error in PLAY string. (-4501)
The string given in your PLAY statement doesn’t follow True BASIC’s rules.

Expected “thing”.

The cursor points to a spot where True BASIC expected some word or punctuation, but found
something else. This message may jog your memory enough so that you can repair the state-
ment. Otherwise, look up the statement in this manual, and then fix your program.

D. Explanations of Error Messages 189

Expected a relational operator.

The cursor points to a spot where you must put a relational operator, such as = or <. Finish
writing out the comparison which must be there. (Note that True BASIC does not allow test-
ing statements like IF A THEN ..., as some other BASICs do. Change such statements to IF
A<>0 THEN)

IDN must make a square matrix. (6004)

Identity matrices must be square. Therefore, when you use the IDN(x,y) function, you must
make sure that x = y.

Illegal array bounds. (6005)

You've redimensioned an array in a MAT REDIM statement or with a redim-expression in
a MAT statement where the upper bound is less than the lower bound minus one (e.g., MAT
A = Zer(-5) or MAT REDIM X(10 to 5). True BASIC allows the lower bound to exceed the
upper bound by one — thus defining an array with no elements.

Illegal array bounds for name in routine.

You've defined an array in a DIM, LOCAL, SHARE, or PUBLIC statement with an upper
bound less than the lower bound minus one. (True BASIC allows the lower bound to exceed
the upper bound by one, thus defining an array with no elements.)

Illegal data.

Your DATA statement is not properly written. Put commas between data items, but don’t
put a comma at the end of the list of items. Make sure that all quoted items are properly
enclosed in quote marks: items such as “abc”def are not allowed.

Illegal expression.

The cursor points to something in an expression that doesn’t follow True BASIC’s rules.
Check to make sure that you haven’t given two operators in a row (such as “1++2”), that you
haven’t written down a number improperly (such as “1,000”), and that all your variable
names follow True BASIC’s rules.

Illegal keyword.

The cursor points to a word that doesn’t make sense in that location. For instance, you may
have forgotten to add LINES, AREA, or CLEAR in a BOX statement. Look up the state-
ment in this book, and correct your program.

Illegal line number.

You might have a non-numbered line in a line-numbered program, or vice versa, or a GOTO
or GOSUB to a nonexistent line number, or one in a control structure. You might have a

190 BRONZE Edition Guide

badly formed line number (e.g., more than six digits). Or you might have a line with a num-
ber less than or equal to the previous line.

Illegal number.

The cursor points to some spot where a number is required, but you’ve given something else.
If you've written a number there, make sure that you've followed True BASIC’s rules on
numeric constants. Sometimes True BASIC is very finicky about what it will accept as a
number: for instance, only integer constants are allowed as array bounds in DIM state-
ments, and as line numbers.

Illegal option.

The only options supported by True BASIC are OPTION ANGLE, OPTION BASE, OPTION
NOLET, and OPTION TYPO. Make sure you've spelled ANGLE, BASE, DEGREES, RADI-
ANS, NOLET, or TYPO properly. (True BASIC also supports OPTION ARITHMETIC,
OPTION COLLATE, and OPTION USING,; the first two are ignored.)

Illegal parameter.

You've written a SUB or DEF or PICTURE line, defining a routine. Something is wrong
with one of the parameters in the parameter list. You may have listed one parameter
twice, or used something more complicated than a simple variable name.

Illegal statement.

Each statement must begin with some True BASIC keyword, such as LET or SELECT.
Check to make sure that you've spelled the keyword properly.

Illegal statement: need LET for assignment, or try the NOLET command.

This is a wordier version of the “Illegal statement” error message if it looks like an assign-
ment. Unless you use OPTION NOLET, True BASIC requires that you use the word LET
when assigning to a variable.

Improper NUM string. (-4020)

The string you’ve given to the NUM function doesn’t represent an IEEE 64-bit floating
point number. Check to make sure that you've correctly created, or read in, the string.

Improper ORD string. (4003)

The ORD function requires either a one-character string, or a string giving the official
name of an ASCII character. No leading or trailing spaces are allowed. See Appendix A
for a list of all the legal names for ASCII characters.

D. Explanations of Error Messages 191

INV needs a square matrix. (6003)

Matrix inversion is defined only for square matrices. You are trying to use the INV func-
tion on a non-square matrix. Make sure that your matrix is two-dimensional, with the
same size in each dimension.

LBOUND index out of range. (4008)

You are using a call such as Lbound(A,3) and the array A doesn’t have three dimensions.
Check to make sure that the dimension given lies between 1 and the number of dimen-
sions in the array.

LOG of number <= 0. (3004)
Logarithms are only defined for positive numbers.

Mismatched array sizes. (6001)

You're using a MAT statement that requires arrays of the same size, but the arrays are dif-
ferent sizes. For example, matrix addition requires the two arrays added together to have
the same sizes. Matrix multiplication requires that the second dimension of the first matrix
must equal the first dimension of the second matrix.

Mismatched string array sizes. (6101)

You're using a MAT statement with concatenation of string arrays, and the arrays are not
the same size.

Missing end statement.

Your program doesn’t end with an END statement. All True BASIC programs must contain
END statements. Add an END statement and try again.

MOD and REMAINDER can’t have 0 as 2nd argument. (3006)

The MOD and REMAINDER functions do not allow zero as their second argument, since
this is equivalent to dividing by zero. Check to make sure you're giving the arguments in
the right order.

Must be a function name.

You've written a DEF or FUNCTION line, but no proper function name follows the DEF
or FUNCTION.

192 BRONZE Edition Guide

Must be a number.

True BASIC allows numeric expressions almost anywhere that simple numbers are allowed,
but there are a few exceptions. For instance, CASE tests may not use numeric expressions.
Only numeric constants are allowed. If you must use an expression, rewrite the SELECT
CASE structure as an IF-THEN-ELSE structure.

Must be a picture name.

Your DRAW statement names something other than a picture. Change the DRAW state-
ment so it refers to a picture, and try again.

Must be a string constant.

True BASIC allows string expressions almost anywhere that string constants are legal, but
there are a few exceptions. For instance, CASE tests may not use string expressions. If you
must use a string expression, rewrite the SELECT CASE structure as an IF-THEN-ELSEIF
structure.

Must be a subroutine name.

The CALL statement can only be used to call subroutines. Change the statement so it uses
a subroutine name.

Must be a variable.

You’ve used an expression, or a routine name, where only a variable will do. For example,
you must use variables in LET and INPUT statements. Look up the statement in this book
to make sure you are using it properly. Also make sure that the variable you're using isn’t
already used as a subroutine, picture, function, or array.

Must be an array.

There are many places in True BASIC where you must give an array’s name, instead of an
ordinary variable. For instance, the MAT statements work only on arrays. Various func-
tions, such as Lbound and Size, also work only on arrays. Make sure that you're spelling
the array’s name correctly and that you've named the array in a DIM statement.

Name can’t be redefined.

You can’t use the same name for two different things. Thus, if you have a variable named
X, you cannot also have a subroutine or array named X. Rename one of the things, so every-
thing has its own unique name. True BASIC also prints this message when you try to use
a “reserved word” as a variable. (True BASIC “reserves” very few names. In addition to all
no-argument function names, True BASIC reserves only ELSE, NOT, PRINT and REM.)

D. Explanations of Error Messages 193

Negative number to non-integral power. (3002)

You're trying to compute n”x, but n is negative and x is not an integer. The results are math-
ematically meaningless.

No CASE selected, but no CASE ELSE. (10004)

You have executed a SELECT CASE statement, but no CASE test has succeeded. Since you
didn’t have a CASE ELSE part to catch this problem, True BASIC prints this error mes-
sage. Check to make sure that the expression you've selected is reasonable. Add a CASE
ELSE part to handle all cases other than ones caught by the tests. If you want to ignore
anything besides those things tested for, add a CASE ELSE part with no statements in it.

No main program.

Your current file contains functions, pictures, and/or subroutines, but doesn’t contain a main
program. Go back and write a main program!

No such color. (-11008)

You're using the SET COLOR statement with some color name that True BASIC doesn’t
recognize. You may give color names in upper- or lowercase, but may not use extra spaces
in the names.

No such file. (9003)

You're trying to use a file which doesn’t exist. You can get this error message from various
commands (such as OLD), or from within a program. Check to make sure you spelled the
program’s name properly, and to make sure you have inserted the correct disk in your com-
puter. Use the FILES command to see if that file exists on a disk.

No such file. Do you want to create it?

You have tried to REPLACE a file which doesn’t yet exist. This gives you the chance to cre-
ate a file with the name you specified. Answer “yes” to create the file, or “no” or “cancel” to
cancel this command. If you’re typing the reply, you can abbreviate it to one letter.

No such function or subroutine.

You’ve named a function, subprogram, or picture in some command, but this routine doesn’t
exist. Check to make sure you spelled the name properly.

No such line numbers.
You've given a range of line numbers in a command, but no lines have those numbers.

194 BRONZE Edition Guide

Out of memory. (5000)

Your problem requires more memory than is attached to your computer. On some platforms,
you may be able to increase the memory allocated to True BASIC or you might be able to
turn on “virtual memory.” If these simple measures fail, you may need to purchase addi-
tional memory (RAM).

If this is not an option, here are a few suggestions for memory conservation:

Use smaller arrays. Arrays can take up a surprising amount of space, especially if they have
more than one dimension. If you have big arrays, see if you can solve your problem by using
smaller arrays.

Compile your program, and use the compiled version.

Check for “run-away” calls. You may have accidentally written a procedure that calls itself.
This is perfectly legal, and often useful. But each call requires some amount of space, and
such an accident can cause this error.

Overflow. (1002)

You've computed a number bigger than the one your computer can handle. PRINT
MAXNUM to see the largest number that your computer can use. If you wish to have over-
flows silently turned into the largest possible number, enclose your computation in a WHEN
structure:

WHEN ERROR IN

LET x = 104C10%10)
USE

LET x = Maxnum
END WHEN

Overflow in DET or DOT. (1009)
You have generated an overflow in the course of evaluating the DET or DOT function.

Overflow in INPUT (nonfatal). (1007)

You have entered as input a number that is too large. You will be required to reenter the
entire input line.

Overflow in MAT operation. (1005)
You have generated an overflow in the course of evaluating a MAT operation.

Overflow in numeric constant. (1001)
You have used a numeric constant that is just too large, as in LET x = 1e1000.

D. Explanations of Error Messages 195

Overflow in numeric function. (1003)
You have generated an overflow in the course of evaluating a function, such as EXP or TAN.

Overflow in READ. (1006)
An overflow was generated in the course of reading a number from a data statement.

Overflow in VAL. (1004)
You have generated an overflow in the course of evaluating the VAL function.

Please try “CHANGE old, new”.

When changing a phrase in the command window, you must give both the old phrase and
its replacement. If either phrase contains a comma or quote mark, enclose that entire
phrase in quote marks.

Please try “DO filename”.

You must give a filename when using the DO command in the command window. Give the
command again, specifying the name of the file to execute.

Please try “ECHO” or “ECHO TO filename” or “ECHO OFF”.
You probably gave the ECHO command without the keyword TO.

Please try “INCLUDE filename”.

You must give a filename when using the INCLUDE command. Retype the command, giv-
ing the name of the file to include.

Please try “OLD filename”.

You must give a file name when using the OLD command in the command window. Retype
the command, giving the name of the file to call up.

Please try “RENAME new” or “RENAME old, new”.

You gave the RENAME command in the command window without specifying a filename.
Give one name to change the current program name. Or give two names (old and new) to
change a saved file’s name.

Please try “SAVE filename” or “REPLACE filename”.

You must give a filename when saving a file in the command window. Retype the command,
giving a filename.

196 BRONZE Edition Guide

Please try “UNSAVE filename”.

You must give a filename when trying to unsave a file in the command window. Retype the
command, giving the name of the file to unsave.

Please type line numbers as 100 or 100-150.

You've given a command such as DELETE, with a line number or block of line numbers, but
True BASIC can’t understand what you said. Type a command such as DELETE 100 to
delete line 100, or DELETE 100-120 to delete lines 100 through 120.

Program stopped.
You have selected Stop from one of the menus. The program has stopped.

Reading past end of data. (8001)

You've executed a READ statement, but have run out of DATA items to read. Did you
remember to include a DATA statement? Check to make sure that you have as many data
items as you expect. You may find the MORE DATA test handy for dealing with variable
amounts of data.

REPEATS count < 0. (4010)

You're using the REPEAT$(s$,n) function, but n is less than zero. Check to make sure that
you've typed the right variable name.

Screen bounds must be 0 to 1. (-11003)

The bounds given on an OPEN SCREEN statement must lie in the range 0 to 1 (inclusive).
No matter how big your screen is, the left and bottom edges are defined to be 0; the right
and top edges are defined to be 1.

SIZE index out of range. (4004)

You're trying to take Size(A,3), for instance, when the array A has fewer than three dimen-
sions. Check the relevant DIM statement to see how many dimensions the array has. The
second argument must lie between 1 and this number.

SQR of negative number. (3005)
You are trying to take the square root of a negative number. This is not possible.

Statement outside of program.

The cursor points to a statement outside of your main program, and not included within any
external routine. Check to make sure you haven’t accidentally moved the END statement
so that it is no longer at the end of your program.

D. Explanations of Error Messages 197

String given instead a number (nonfatal). (8103)

You've executed an INPUT statement which is trying to input a number. However, the reply
given isn’t a number — it only makes sense as a string. If you’re inputting from the keyboard,
and want to avoid this message, you should convert your input statement so it reads a string,
and then use the Val function to convert the result to a number. (You can enclose the call to
Val within an error handler to suppress the error message.) If this exception occurs, you will
be requested to reenter the entire input line.

Subscript out of bounds. (2001)

You've given an array subscript which lies outside the array’s bounds. Try printing the sub-
script and then using Lbound and Ubound to find the array’s bounds.

System error.

An error has occurred in the True BASIC system itself. Record the system error and con-
tact customer support by FAX or e-mail. Thank you.

The BYE command is just “BYE”.

When you want to leave True BASIC in the command window, just type “BYE”. Don’t add
anything else.

The CONTINUE command is just “CONTINUE”.

When you want to continue running a breakpointed program, just type “CONTINUE”. Don’t
add anything else.

The FORGET command is just “FORGET”.

When you want to “forget” the history or recent commands, delete loaded routines, and
recover as much memory as you can, just type “FORGET”. Don’t add anything else.

The NOLET command is just “NOLET”.

When you want to allow the keyword LET to be omitted from LET statements, just type
“NOLET”. Don’t add anything else.

The RUN command is just “RUN”.

When you want to run your program from the command window, just type “RUN”. Don’t
add anything else.

This must first appear in a DIM or DECLARE DEF.

The cursor points to something that is evidently an array or a function. But True BASIC
can’t tell which it is. Be sure to add a DIM or DECLARE DEF line before this line, so True
BASIC will know what it is.

198 BRONZE Edition Guide

Too few input items (nonfatal). (8002)

You've executed an INPUT statement, and the input reply doesn’t contain as many items
as the INPUT statement requested. You will be requested to reenter the entire input line.
If you want to spread out input items over several lines, be sure to end all lines but the last
with a comma.

Too many input items (nonfatal). (8003)

You've executed an INPUT statement, and the input reply line contains more items than
the INPUT statement requested. You will be requested to reenter the entire input line.

Trouble using disk or printer. (9002)

True BASIC is having trouble using one of your disks or your printer. This message is given
for various reasons on different computers. Check to make sure that the power is turned
on, that a diskette is inserted in your disk drive, that your printer has sufficient paper and
that it’s not jammed, that the connecting cables are securely attached, and so forth.

Try “LOAD lib, lib, ...”.
You have probably used incorrect punctuation in a LOAD command.

Type is wrong for name in routine.

You've tried calling a routine named name within another routine named routine. However,
you got the arguments wrong in this call. They don’t match the parameter list. You must
give the same number of arguments as parameters, and they must be given in the same
order. Check for passing numbers to strings, or vice versa. Also make sure that you're not
trying to use a function as a subroutine, or vice versa.

UBOUND index out of range. (4009)

You've tried calling something like Ubound(A,3), where A is an array with less than 3 dimen-
sions. Check the DIM statement for A to see how many dimensions it has, or if you might
have used UBOUND without specifying a dim.

Undefined routine name in routine.

The routine named name has tried to use a function, subprogram, or picture named name.
Unfortunately, this function, subprogram, or picture is nowhere defined. Check to see that
you spelled the name correctly, and that you included a LIBRARY statement for the file
which contains this routine.

True BASIC says “in MAIN program” if the error occurred in your main program.

D. Explanations of Error Messages 199

Unknown variable.

You are using OPTION TYPO to check for spelling mistakes, and it has found a variable
name that you haven’t declared anywhere. If True BASIC has found a typing mistake, just
correct the spelling. Otherwise, add a LOCAL statement that lists this variable, or include
the variable in its correct DECLARE PUBLIC or SHARE statement.

VAL string isn’t a proper number. (4001)
You've called the Val function, but the string you gave doesn’t properly represent a number.

What? (Please type HELP or select the menu item: HELP for True BASIC)

You've typed a command that True BASIC doesn’t understand. If you want further help
from the computer, just type HELP in the command window or use the Help menu for more
instructions. When the HELP window appears, choose COMMANDS from the topics list.
(Also, see Appendix F for more about the HELP facility.)

Window minimum = maximum. (-11001)

You've executed a SET WINDOW statement that sets the vertical or horizontal window
maximum equal to the minimum. True BASIC doesn’t allow this, as it wouldn’t let you see
anything in that window. Remember that the order of edges for the SET WINDOW com-
mand is left, right, bottom, top.

Wrong number of arguments.
A function, subprogram, or picture was called with the wrong number of arguments.

Wrong number of dimensions.

You're trying to use an array, but have given the wrong number of dimensions. Check this
use against the array’s DIM statement, and make sure that both have the same number of
subscripts. If you’re passing an array to a routine, check the routine’s parameters.
Remember that a two-dimensional array must be indicated as A(,) in the parameter list, a
three-dimensional array by A(,,) and so forth.

Wrong type.

You're trying to use a string where a number is needed, or a number where a string is needed.
Check to make sure you're not trying to assign a number to a string variable, or vice versa.
Remember, too, that string concatenation is written using an ampersand (&) in True BASIC,
and not a plus sign (+).

200 BRONZE Edition Guide

You have two routines called name in routine.

In the routine named routine, you've defined two different routines named name. Since
different things must have different names, you must change the name of one of them. Be
sure to go through all calls to that routine, and change those names too.

True BASIC says “in MAIN program” if the error occurred in your main program (before the
END statement).

Zero to negative power. (3003)
You are trying to compute 0”n, where n < 0. This is mathematically undefined, and so True
BASIC gives an error.

211

APPENDIX

Making Your Own DO Programs E

You may have noticed the directory “I'BDo”, which contains several so-called “DO pro-
grams.” Actually, they are not regular programs, but are subroutines. They are
designed to operate on the text file in the current editing window, but can be made to do
just about anything.

You can make your own DO programs. Follow these simple steps:
1. Create a library file, carefully choosing its name.
2. On the first lines of the library file, enter

EXTERNAL
SUB xxxxx (current$(), options$)

3 Now write what you want to do, which may involve modifying the lines or the
current file.

4. At the end of the file, enter
END SUB

Note: the actual name of the subroutine is irrelevant! A DO program is always identi-
fied by the name of the file containing it!

Now save this file in the directory TBDo. When True BASIC starts up, the name or your
new do program file will appear in the Run menu along with the names of all the other
do programs.

You can invoke a do program in two ways. You can select the menu item “Do ...” in the
“Run” menu, or you can type the command “do filename” on the command line. (Of
course, you'll actually type the file name you have selected.)

If you use the menu selection method, you may have to navigate the file system to find
the directory TBDo. Then you’ll also be asked for the the command line parameters.
Whatever you enter will then be assigned to the second argument in the calling

212 BRONZE Edition Guide

sequence, options$. If you use typed commands, anything you type following the do
command itself and a comma will be similarly assigned. (For the typed command, you’ll
automatically use the TBDo directory; see the discussion of aliases in Chapter 15.)

Here is a simple example: Suppose you want a do program that will change all upper
case letters into lowercase, or all lower case letters into uppercase. Write the following
subroutine:

EXTERNAL

SUB xxxxx (current$(), options$)
LET options$ = Ltrim$(lcase$(options$))L1:11]
FOR i = 1 to ubound(current$())

IF options$ = "u" then
LET current$(i) = ucase$(current$(i))
ELSE IF options$ = "L" then
LET current$(i) = Lcase$(current$(i))
ELSE
PRINT "Use either 'upper' or 'lower'"
EXIT SUB
END IF
NEXT i

END SUB
Now save it with the name “ChangeCase” in the directory TBDo.
To use your new DO program to change all uppercase letters to lowercase in your cur-
rent program, type the command

do changecase, lower

Conversely, if you want to change to all uppercase, type the command
do changecase, upper

That’s all there is to it.

If you put your very own DO program in the directory (folder) TBDo, its name will
appear in the Run menu the next time you start True BASIC. If you put it into a differ-
ent directory, you can access it by selecting “Do ...” from the Run menu, using the Finder
to locate it, and then clicking on “Open”. In any case, you will be asked if there are any
command-line parameters; whatever you enter will be supplied as the value of options$
in the call to the DO program.

213

Several DO programs are already in the directory (folder) TBDo. There are three buil-
t-in ones that exist outside the TBDo folder is empty. They are:

Do Format
Do Upper
Do Lower

Do Format formats your program by capitalizing some key words, and indenting the
insides of loops and other structures.

Do Upper and Do Lower operate only on text that has been selected, and changes all
letters in the selected region to uppercase (Do Upper) or lowercase (Do Lower.)

The remaining DO programs are found in the TBDo directory. Three of them deal with
adding line numbers to your program (DoNumber), removing them (DoUnNum), or
changing them (DoReNum.) The parameters for DoNum allow you to specify the start-
ing line number, and the line number spacing. If you leave the parameters blank, you’ll
get 1000 as the starting line number, and 10 as the spacing. If you would prefer to start
with, say, 10000 and have a spacing of 100, you could use

10000, 100

as the parameter values.
The parameters for DoReNum are the same as those for DoNum.

DoSort will sort your current file using the ASCII sorting sequence (all uppercase let-
ters come before all lowercase letters!) You would never want to do this with a real pro-
gram, but this might be useful if your current file happens to be a list of names.

DoSaveText allows you to take the text in your current Source Code window and con-
vert the line-endings for use on different operating systems. The line-ending marks for
the most popular operating systems are:

Windows, DOS, OS/2: Carriage Return + Line Feed
Macintosh: Carriage Return
Unix, Linux: Line Feed
You can select one of the following parameters to specify the platform:

DOS

Windows

0S\2

Unix

Macintosh

For Linux, use Unix.

214 BRONZE Edition Guide

DoXRef will produce a cross-reference of your current program file. All keywords will
be indentified, and located by giving the line numbers of the line in which they appear.
Try it on a program of your own, but start with a small program as the DoXRef output
is lengthy. The output will be sent to the printer unless you specify a file name as a
parameter.

Dodoin and DoMakeApp have to do with preparing TrueApps, subjects and proce-
dures that are discussed in How-To files that can be downloaded from the True BASIC
website or found on the True BASIC Annual-CD’s.

The DO programs currently in the directory TBDo happen to be compiled, although
they need not be. The sourse code for all except DoMakeApp can be found in the sub-
directory sources. (The names of the source files are slightly different; for example, the
source code for DoNum is called NUMBER.TRU.) You can change the source code as
you see fit, compile it, and re-save it in TBDo, renaming it if desired. Thus, you can cus-
tom-fit any of the DO programs to suit your own purposes.

215

APPENDIX

PRINT USING Statement F

True BASIC normally prints numbers in a form convenient for most purposes. But
on occasion you may prefer a more elaborate form. For example, you may want to
print financial quantities with two decimal places (for cents) and, possibly, with
commas inserted every three digits to the left of the decimal point. PRINT USING
provides a way to print numbers in this and almost any other form.

Here is an example of the PRINT USING statement.
PRINT USING format$: x, y, z

Format$ is a string of characters that contains the instructions to PRINT USING
for “formatting” the printing of x, y, and z. This string is called a format string. It
may be a string variable (as shown above), a quoted-string, or a more general string
expression.

PRINT USING also allows one to print strings centered or right-justified, as well as
left-justified. (The normal PRINT statement prints both strings and numbers left-
justified within each print zone.)

The function USING$ duplicates the PRINT USING statement almost exactly but
returns the result as a string rather than printing it on the screen. For example, the
following two statements yield the same output as the preceding PRINT USING
statement.

LET outstring$ = using$(format$, x, y, z)
PRINT outstring$

The USINGS$ function allows you to modify or save the string outstring$ before
printing it. You can also use this function with WRITE and PLOT TEXT state-
ments.

216 BRONZE Edition Guide

We will first examine how to format numerical output.

Formatting Numbers

The basic idea of a format string is that the symbol “#” stands for a digit position. For
example, let us compare the output resulting from two similar PRINT statements, the
first a normal PRINT statement and the second employing USING.

PRINT x
PRINT USING "HHH": x

In the following table, the symbol “|” is used to denote the left margin and does not
actually appear on the screen.

X PRINT x PRINT USING "##H#": x
1 | 1 [1
12 | 12 | 12
123 | 123 [123
1234 | 1234 | *%*

We notice several things. Without USING, the number is printed left-justified with a
leading space for a possible minus sign, and occupying only as much space as needed.
With USING, the format string “###” specifies a field length of exactly three charac-
ters. The number is printed right-justified in this field. If the field is not long enough to
print the number properly, asterisks are printed instead, the unformatted value (here,
of x) is printed on the next line and printing continues on the following line. If all you
need to do is to print integer numbers in a column but with right-justification, then the
preceding example will suffice.

Printing financial quantities so that the decimal points are aligned is important. Also,
you may want to print two decimal places (for the cents) even when they are “0”. The
following example shows how to do this. (In order to print negative numbers, the for-
mat string must start with a minus sign.)

X PRINT x PRINT USING "-##.H##": x
1 [1 | 1.00
1.2 | 1.2 | 1.20
-3.57 |-3.57 |- 3.57
1.238 | 1.238 | 1.24
123 | 123 | %
0 | O | .00
-123 |-123 | % %

H. PRINT USING Statement 217

Notice that two decimal places are always printed, even when they consist of zeroes.

Also, the result is first rounded to two decimals. If the number is negative, the minus
sign occupies the leading digit position. If the number is too long to be printed properly
(possibly because of a minus sign), asterisks are printed instead, the unformatted
value is printed on the next line, and printing continues on the following line.

Financial quantities are often printed with a leading dollar sign ($), and with commas
forming three-digit groups to the left of the decimal point. The following example
shows how to do this with PRINT USING.

X PRINT USING "S# , ### HHH# . HA": X
0 |$.00

1 |$ 1.00

1234 [$ 1,234.00
1234567.89 |$1,234,567.89

Teé |$1,000,000.00

1e7 | Kk k ko ok ok

Notice that the dollar sign is always printed and is in the same position (first) in the
field. Also, the separating commas are printed only when needed.

You might sometimes want the dollar sign ($) to float to the right, so that it appears
next to the number, avoiding all those blank spaces between the dollar sign and the
first digit in the preceding example. The following example shows how to do this.

X PRINT USING "$SSSSSS#. #H4": x
0 | $.00

1 | $1.00

1234 | $1234.00
1234567.89 [$1234567.89

Digit positions represented by “$” instead of “#” cannot surround or be next to commas.

In the previous two examples, no negative amounts can be printed since the format
string does not start with or contain a minus sign.

218

BRONZE Edition Guide

The format string can also allow leading zeroes to be printed, or to be replaced by aster-
isks (*). You might find the latter useful if you are preparing a check-writing program.

X PRINT USING "S$%,%%%, %% HH": X
0 |$0,000,000.00
1 |$0,000,001.00
1234 |$0,001,234.00
1234567.89 |$1,234,567.89
X PRINT USING "S$* %k kkk gan: y
0 [$***xkkx%% 00
1 [$***x%kx%1 00
1234 |$***%1 234,00
1234567.89 |$1,234,567.89

You can also format numbers using scientific notation. Because scientific notation has
two parts, the decimal-part and the exponent-part, the format string must also have
two parts. The decimal-part follows the rules already illustrated. The exponent-part
consists of from three to five carets (*) that must immediately follow the decimal-part.

The following example shows how.

X PRINT USING "+H.H#H###AAA": X
0 |+0.00000e+00
123.456 |[+1.23456e+02
-.001324379 |-1.32438e-03
7e30 |+7.00000e+30
.5e100 |+5.00000e+99
56100 | ook ok ok

Notice that a leading plus sign (+) in the format string guarantees that the sign of the
number will be printed, even when the number is positive. Notice also that the last
number cannot be formatted because the exponent part would have been 100, which
requires an exponent field of five carets. Notice also that if there are more carets than
needed for the exponent, leading zeroes are inserted. Finally, notice that trailing

zeroes in the decimal part are printed.

H. PRINT USING Statement 219

Floating Characters

You'll notice that one of the previous examples includes several “$”, but that only one of
them is actually printed. It is printed just to the left of the left-most non-zero digit, but
always within the positions given by the sequence of “$”. We say that the sequence of
“$” defines a floating region and that the spot where the “$” is printed floats within this
region.

Besides the “$”, the plus sign (+) and the minus sign (-) can also define floating regions.

The rules are:

1.

You can use either zero, one, or two different floating characters (“+” and “-” cannot
both appear, and neither can commas.)

You can repeat the first (or only) floating character an arbitrary number of times,
but not the second.

Zero to two different floating characters generate a sequence of zero to two charac-
ters called a header, as follows:

The Floating Header

First Second Positive Negative

$. $4" e

$ - g g

$ none "$" error

i $ 4" =

+ none "4 =

- $ "$ g

- none " -
none none error

Notice that the header contains the same number of characters as the number of
different floating characters.

. The zero to two character header will be printed as far to the right as possible

within the floating region.

The numerical value’s leading digits can overflow into the floating region, thereby
“pushing” the header to the left.

If the numerical value exceeds the total space provided, the entire space is filled
with asterisks.

220 BRONZE Edition Guide

The following example illustrates some of these rules.

PRINT x PRINT USING "SSSSS-#, #HH. HA": X
| 0 $.00
| 1 $ 1.00
[-1 $- 1.00
| 4321.5 $ 4,321.50

| 1.23456789e+7 $ 12345,678.90
|-1.23456789e7 $-12345,678.90
| 1000000000
|-1000000000

1000000,000.00

I
I
:
[-4321.5 | $-4,321.50
I
I
| $
| $-1000000,000.00

Notice that the “$” is never printed outside the floating region. A place is allocated for
the minus sign. The leading digits of the numerical value can overflow into the floating
region, which does not (and cannot) contain commas.

Formatting Strings

Strings can also be formatted through PRINT USING or the function USING$,
although there are fewer options for strings than for numbers. Strings can be printed
in the formatted field either left-justified, centered, or right-justified. As with num-
bers, if the string is too long to fit, then asterisks are printed, the actual string is
printed on the next line, and printing continues on the following line. The following
example shows several cases.

USING String to be Printed

string "0k" "Hello" "Goodbye"
"<HHEHH" | 0k |[Hello | %k ko
"HHHHH" | 0k |[Hello | %%k kk ko
"SHHHH" | 0k |Hello | % kok k%

Notice that if centering cannot be exact, the extra space is placed to the right.

Any numeric field can be used to format a string, in which case the string is centered.
This is especially valuable for printing headers for a numeric table. The following
example shows how you can format headers using the same format string we used ear-
lier for numbers.

H. PRINT USING Statement 221

s$ PRINT USING "S$#, #HH #H## . HH": s$
"Cash" | Cash
"Liabilities" | Liabilities
"Accounts Receivable" | %%k ko ok ko ok

Multiple Fields and Other Rules

A PRINT USING format string can contain several format items. For example, to print
a table of sines and cosines, we may want to use:

LET format$ = "-#.### -H#.H#HHHE -H#. HHHHHH"
PRINT USING format$: x, sin(x), cos(x)

The value of x will then be printed to three decimals, while the values of the sine and
cosine will be printed to six decimals. Notice also that spaces between the format items
will give equal spaces between the columns in the printed result.

If there are more format items than there are values (numbers or strings) to be
printed, the rest of the format string starting with the first unused format item is
ignored. If there are fewer format items than values to be printed, the format string is
reused, but starting on the next line. Thus,

PRINT USING " -#.###H#H": 1.2, 2.3, 3.4
will yield:

1.20000
2.30000
3.40000

Literals in Format Strings

We have just seen that spaces between format items in a format string are printed.
That is, if there are four spaces, the four spaces are printed. The same is true for more
general characters that may appear between format items. The rule is simple: you can
use any sequence of characters between format items except the special formatting
characters. The characters you use will then be printed.

The special formatting characters are:

% *x < > A ..+ -, 3

222 BRONZE Edition Guide

The following example illustrates this use.

PRINT USING "#.## plus #.## equals #.##": 1.2, 2.3, 1.2+2.3
will yield:

1.20 plus 2.30 equals 3.50

If there are fewer values than format items, the unused format items are ignored, but
the last intervening literal string is printed. Thus,

PRINT USING "#.## plus #.## equals #.##": 1.2, 2.3
will yield
1.20 plus 2.30 equals

If you need to have one of the special formatting characters appear in the output — for
example, if you want to have a final period, as in the last example — you can simply add
a one-character field to the format string and add the quoted-string “.” to the PRINT
statement. Thus,

LET x = 1.2

LETy = 2.3

PRINT USING "#.## plus #.## equals #.## #": x, y, x+y, "."
will yield

1.20 plus 2.30 equals 3.50 .

The PRINT USING statements found in True BASIC allow you to format your calcu-
lated results or data in many easy-to-understand formats. Investing time in learning
the many capabilities of these statements will pay rich dividends.

223

APPENDIX

TRUE BASIC File Types G

Text Files

A text file consists of lines that you can create on the keyboard and display on the screen
using the True BASIC Editor (or any other application that can create and read “text-only”
files). You can also create a text file entirely from within your program. True BASIC puts
information into text files in the same way it displays information on the screen or printer,
and it gets information from them just as it gets input from the keyboard. Thus, you use the
same PRINT and INPUT statements — along with an appropriate channel number — with
text files.

Text files are easy to understand and use. In fact, the PRINT and INPUT statements work
just as they normally do when used with the screen and the keyboard — all the same rules
apply. Because you can create and view text files with any screen editor, you can see the file
structure and understand how it interacts with your programs. Text files often provide input
data to a program or store output for later display or printing.

Text files, however, are not as efficient as the other types of files for large amounts of data.
Itis often hard to output information (such as strings or arrays) to a text file in a format that
programs can easily read. Also, you may lose some numeric precision when you store numeric
information in text files.

To understand the loss of numeric precision within text files (and the major difference
between text files and internal files), let’s take a brieflook at what happens when a program
takes input from the keyboard and displays it on the screen. At the keyboard, you type char-
acters that True BASIC interprets based on a standard character set. If you input a string
value, True BASIC stores the actual characters you type (less leading and trailing spaces)
in internal memory; each character occupies one byte of memory. When you use a PRINT
statement to display a string value, you get exactly what is stored in memory.

If you input a numeric value, however, True BASIC converts the characters you type into
the number they represent and stores that value in an internal format. In that internal for-
mat, numeric values have a precision of at least 14 significant digits, and each value occu-
pies eight bytes of memory. True BASIC performs all calculations using the full precision
of the internal numeric format.

224 BRONZE Edition Guide

When a PRINT statement displays a numeric value, however, you may not see the value
to its full precision. Unless you specify otherwise with a PRINT USING statement, the
PRINT statement displays characters representing the numeric value according to the
rules described in Chapter 3 “Output Statements.” For example, the program:

LET x = 296445886 ! Population
LET y = 1.37 ! Growth rate
PRINT x * y ! New population
END

displays the value:

4.0613086e+8
even though the internal value is calculated to be 406130863.82.

If you use a PRINT statement to store this value in a text file, the same series of charac-
ters that represent the value on the screen would be used to represent it in the file. A sub-
sequent INPUT statement would retrieve the value with its reduced precision. While this
may not be a problem for many applications, you should be aware of it.

Let’s look now at a simple example that gets information from one text file and prints some
of that information to another file. The INPUT and PRINT statements work just as they
normally do except that you specify a channel number to indicate the file to be used:

OPEN #1: NAME "WAGES", ORG TEXT, ACCESS INPUT
OPEN #2: NAME "NAMES", ORG TEXT, CREATE NEWOLD
RESET #2: END

DO WHILE MORE #1 ' While there is more to read
INPUT #1: name$, age, salary
PRINT #2: name$, '"Age:"; age

LOOP

END

Each time the INPUT statement in this example is executed, it reads a line from the first
file, treating it as if it had been typed at the keyboard. The line must have just the right num-
ber of items, of the right type (i.e., using numbers for numeric variables), separated by com-
mas. If the value to be assigned to the name $ variable contains a comma, the string must
be enclosed in double quotes. For example, the following line in the file would be legal:
"Williams, Pat", 34, 28500
while this one would cause an error:
Williams, Pat, 34, 28500

because True BASIC would interpret Wi L L i ams as the value of name $, and attempt to
assign the string value Pat to the numeric variable age.

I. True BASIC File Types 225

Likewise, if a line in the file contains too few or too many items or the types do not match, an
error occurs, since there is no way of “re-asking” the file for input.

Lines being input from a file may end with a comma to indicate that there is more input on
the next line. Along with the INPUT statement, you may use the LINE INPUT, MAT
INPUT, and MAT LINE INPUT statements with text files. However, the various forms of
the INPUT PROMPT statement are not allowed, since a file cannot be prompted.

If you attempt to use the INPUT statement with a file opened with the ACCESS OUTPUT
option, an error occurs. You'll also get an error if the file pointer is at the end of the file (i.e.,
if there is no more information to input). Remember that you can use the SET POINTER
or RESET statements to move the pointer to the beginning of the file, and you can use the
MORE or END logical clauses to test for more data in the file (see earlier section).

The PRINT statement in the example above:

PRINT #2: name$, "Age:'"; age
also follows all the conventions for a PRINT statement used to display values on the screen,
including commas and semicolons. The file has a margin and a zonewidth, whose default val-

ues are 80 and 16, respectively, as they are for logical windows on the screen. You may change
these settings with the SET MARGIN and SET ZONEWIDTH statements as follows:

SET #3: MARGIN 70

SET #3: ZONEWIDTH 10
Similarly, your program can find out the current margin and zonewidth of a file with the
ASK MARGIN and ASK ZONEWIDTH statements:

ASK #2: MARGIN m

ASK #2: ZONEWIDTH z
Since thereisno cursorin afile, the SET CURSOR statement does not make any sense when
applied to a file. Similarly the two-argument version of the TAB function is forbidden with
text files. You may, however, use the TAB function with a single argument:

PRINT #2: name$; Tab(45); '"Age:"; age
You may also use the MAT PRINT or PRINT USING statements to print to a text file.
Here’s an example of the PRINT USING statement used with a text file:

LET form$ = "HHEHHAHBHHHHHBHBHAHBHBHAARER> Age: H##"

PRINT #2, USING form$: name$, age
If you attempt to use the PRINT statement with a file that has been opened with the
ACCESS INPUT option, an error occurs. You'll also get an error if you attempt to overwrite
the existing contents of a text file. To avoid attempts to overwrite, erase the contents of a file
with the ERASE statement or reset the pointer to the end of the file with a SET POINTER
or RESET statement before printing to it.

As shown in the above example, it is easy to copy all or part of one file to another.

226 BRONZE Edition Guide

Here’s another example that changes all letters in a file to lowercase:
DIM Line$(1000)
OPEN #3: NAME "Program5.Tru"
LET i =0
DO WHILE MORE #3 ! Read lines into array
LET i = 1 + 1
LINE INPUT #3: Lline$(i)

LOOP

ERASE #3 ' Erase the file

FOR j =1 to i ! Rewrite in lowercase
PRINT #3: Lcase$(line$(j))

NEXT j

END

The program reads the file into an array, erases the file, and then writes lowercase versions
of the lines back into the file.

A word of caution about using the MAT PRINT and MAT INPUT statements with text files:
while both work with text files, the MAT PRINT statement does not write information in a
format that will work with the MAT INPUT statement. The MAT INPUT statement
expects items of a row to be separated by commas, but the MAT PRINT statement separates
the items of a row by spaces. There are two ways to solve this problem:

(1) Create the file’s contents by printing individual elements, putting a comma after each
item except the last:

FOR i = 1 to Ubound(array) - 1
PRINT #7: array(id; ", ";

NEXT i

PRINT array(Ubound(array))

(2) Use the LINE INPUT statement to input an entire line from the file and then “parse”
the line into its component items using the ExplodeN subroutine provided in the Str-
Lib library.

LIBRARY "C:\TBSilver\TBLIBS\STRLIB.TRC" ! Use appropriate
path name

LINE INPUT #4: Line$
CALL ExplodeN(line$, array()," ")

You should also be cautious when printing strings to text files for later input. Remember that
the INPUT statement requires double quotes around strings containing commas or leading

I. True BASIC File Types 227

or trailing spaces. To overcome this problem you could print such strings with enclosing
quotes or, better yet, print just one string value per line and then use the LINE INPUT state-
ment to read the entire line. The latter solution is the best if your strings contain double-
quote marks, as you would have to repeat the double quotes within the string for the INPUT
statement to read the string correctly!

Internal Files — Stream, Random, Record, & Byte

The important differences between text files and the other types of data files are the state-
ments you use to get data to and from the files and the way in which the files store numeric
values.

Within text files, both numeric and string values are stored as series of characters. Numeric
values are converted to strings of digits that represent the value (with possible loss of full
precision). Any application that can read text can print or display such files. Because the for-
mat of text files is the same as for keyboard input or displays to the screen, text files use the
normal INPUT and PRINT statements with the addition of channel numbers.

The remaining file types are all internal files — numeric and string values are stored in the
same internal format used by the computer’s memory when it runs your programs. String
values are stored internally as characters just as they are displayed, with one byte per char-
acter. Numeric values, however, are stored in the standard IEEE eight-byte format that can-
not be displayed. Because of the storage format, internal files require READ and WRITE
statements to input and output data. While internal files cannot usually be displayed
directly on the screen or printer, they do have several advantages:

¢ The numeric values retrieved from an internal file are read with exactly the same pre-
cision as the values written to the file. With a text file, numeric values may lose preci-
sion when the PRINT statement converts them from the computer’s internal format to
a sequence of characters; any greater precision is lost and cannot be retrieved when
that sequence of characters is input from the file.

¢ Reading and writing operations are faster with internal files, because there is no need
to convert numeric values between internal and display formats.

* True BASIC internal files may be used with programs on any computer type. The inter-
nal format is the same no matter where you run your programs. Also, the ability to read
a file as a byte file lets you read any file created by any application on any computer.
Text files, however, must often be translated when they are moved between operating
systems because of the variations in how operating systems view end-of-line charac-
ters within text files.

* Three types of internal files — random, record, and byte — permit the more efficient
random access of records within the files. With random access you can jump directly to
any part of the file, rather than having to work through the file from start to finish. Text

228 BRONZE Edition Guide

and stream files permit only sequential access — the items in the file must be retrieved
in exactly the same order in which they were stored.

Internal files come in four types: stream, random, record, and byte files, all of which are
explained below. Random and record files are organized by records. A record is a storage
location of fixed-length within a file. All the records within a file are numbered so that you
can move easily to any record in the file with a SET RECORD statement. The exact struc-
tures of random and record files are explained below.

As noted above, you use WRITE and READ statements with internal files. The exact usage
of these statements varies depending on the type of file, as described below.

The OPEN, CLOSE, ERASE, and UNSAVE statements work for internal files just as they
do for text files. Remember, however, that the default organization for a newly created file
is text, so you must specify the type of file when you are creating a new internal file. The SET
and ASK statements have several additional forms that are described with the different file
types below.

Stream Files

A stream file is simply a sequence of values. These values must be read back in the same
order in which they were written to the file. For example:

OPEN #1: NAME "VALUES.STR", CREATE NEW, ORG STREAM
WRITE #1: Pi, Exp(1), "This is a string.", 3.14

SET #1: POINTER BEGIN

READ #1: a, b, c$

READ #1: d

' At this point, a 1is exactly equal to PI

! b is exactly equal to EXP(1)

! c$ is the string "This is a string."
! d 1is exactly equal to 3.14

Notice that the WRITE and READ statements need not have the same number of variables
— there is no concept of a line of data as in text files or a record as in random and record files.
The one requirement is that the type (numeric or string) of a variable in the READ state-
ment must match the type of the next value in the file. If the type is wrong, an error occurs.

Although it is up to the programmer to keep track of the type and purpose of the values in a
stream file, you can “peek” at the next value’s type with an ASK DATUM statement. For
example:

ASK #1: DATUM type$
SELECT CASE type$
CASE “NUMERIC"

READ #1: n

I. True BASIC File Types 229

CASE "STRING"
READ #1: s$

CASE else
' type$ = "NONE" if at the end of the file
' type$ = "UNKNOWN" if can't tell

END SELECT

Random Files

Random files are composed of records. All the records within a single file have the same max-
imum length which is called the record size of that file.

Each record in a random file may contain any number of string and/or numeric values, pro-
vided that the cumulative length of the items (and their associated “bookkeeping” as
explained below) does not exceed the file’s record size. In fact, different records within the
same file may contain different numbers and types of items.

Any record whose actual length is less than the record size of the file will be automatically
“padded” to the proper record size before being written to the file. This padding will be
ignored when the values are subsequently retrieved from the file. Thus, you need not worry
about padding records yourself.

Although True BASIC will automatically move the file pointer to the next record each time
a record is read, allowing you to easily process a random file from beginning to end, you can
also move the file pointer to any existing record within the file arbitrarily. The record to
which the file pointer currently points may be retrieved and/or overwritten as necessary.

Before you can write records to a new or empty random file, you must first set the file’s record
size. You may do this using a RECSIZE option in the OPEN statement, as in:
OPEN #1: NAME "NEWDATA.RDM", ORG RANDOM, RECSIZE 50, CREATE
NEW

or by using a SET RECSIZE statement after the file has been opened, as in:
OPEN #1: NAME "NEWDATA.RDM", ORG RANDOM, CREATE NEW
SET #1: RECSIZE 50
Note, however, that you may set or change the record size only for a new or empty file — if

the file contains any records you must erase it (with the ERASE statement) before you can
change the record size.

If a file already exists and contains one or more records, it already has a record size which
you cannot change without first erasing the file. You may use the ASK RECSIZE statement
to find out the record size of a file as follows:

OPEN #1: NAME "DATA", ORG RANDOM, CREATE OLD

ASK #1: RECSIZE rsize

Here, the record size of the file named DATA would be assignedto rsize.

230 BRONZE Edition Guide

If you attempt to write more bytes to a random file record than its defined record size, an
error results. The record size must be large enough to hold both the data that will be stored
in each record and some additional “bookkeeping” information.

This bookkeeping information keeps track of the kinds of information in each record (remem-
ber that random files allow an arbitrary number of values of arbitrary types within each
record) and indicates the end of the record. Although you need not worry about this infor-
mation when using the file, it does require storage space, and you must account for it when
you set the record size for a new random file (or if you need to figure out how much you can
write to new records in an existing random file).

A string item stored in a random file record will occupy one byte for each character in the
string plus four bytes of bookkeeping information. On the other hand, a numeric value stored
in a random file record will always occupy exactly nine bytes — eight bytes for the internal
representation of the number and one byte for bookkeeping. In addition, you must always
allow one byte in the record size for the end-of-record marker.

As an example, consider a situation in which you plan on storing two strings and three num-
bers in each record. First, you need to know the maximum length of the strings that you will
store. Let’s assume that the first string will never be longer than 30 characters and the sec-
ond string will never exceed 14 characters. Thus, you need to reserve 30 + 4 bytes for the first
string and its bookkeeping information and 14 + 4 bytes for the second string and its book-
keeping information. Each of the three numeric values will occupy 8 + 1 bytes with its book-
keeping information. And don’t forget to reserve 1 byte for the end-of-record marker. By
adding all of these requirements together, you know the proper record size for this random
fileis34 +18+9+9+9+1=90.

If the records in the random file will contain varying numbers and types of items, calculate
the length based on the longest record you will need. If you attempt to write more bytes to a
random file record than its defined record size, an error results.

@ Note: True BASIC does not know how you arrived at a random file’s
record size; it simply checks to be sure total size of the record does not
exceed the established record size. You might exceed a record size
because you attempted to write more items than you had planned on,
or because a string in the record is longer than you planned. True
BASIC won’t know the difference; it will simply report that the record
size was exceeded. You may want to use the DECLARE STRING state-
ment to define a maximum length for string variables used in random
file records. This lets True BASIC provide more specific diagnostics
should a problem arise.

I. True BASIC File Types 231

Each READ and WRITE statement reads or writes one complete record in a random file.
Because individual records may contain different numbers and types of values, the pattern
of the READ statement must mirror the pattern of the WRITE statement that produced the
record; otherwise, an error will occur. In the following example, each record contains three
values: a string value, a numeric value, and another string value:

' A new RANDOM file

OPEN #1: NAME "STUFF", CREATE NEW, ORG RANDOM, RECSIZE 100

WRITE #1: name$, age, occupation$
Later on, perhaps in a different program, you can retrieve that information, as follows:

' File already exists
OPEN #1: NAME "STUFF'", ORG RANDOM

' True BASIC figures out the RECSIZE by looking at the file.
! CREATE option not needed, or use CREATE old.

' The READ statement must mirror the earlier WRITE
READ #1: person$, a, occ$

The READ statement typically reads all the values in the record, and the variable types
must match the value types in the record. However, if the record contains many items and
you want only the first few, you may use a SKIP REST clause in the READ statement as
follows:

READ #1: person$, a, SKIP REST

The SKIP REST clause instructs True BASIC to ignore the remaining values in the record.

Remember that the records within a random file need not have the same shape — they may
have different numbers and types of values of varying lengths (as long as they don’t exceed
the record size). For example, a random file that contains a student’s grade record might con-
tain different information in the first few records:

OPEN #5: NAME "SMYTHE", ORG RANDOM, ACCESS INPUT

READ #5: last$, first$, middle$, class ' First record
READ #5: street_address$! Second record
READ #5: city$, state$, zip$ ' Third record
PRINT "Grade Report for "; first$ & last$,; ". Class of";
class
DO WHILE MORE #5

READ #5: course$, grade, credits ! Remaining records

PRINT course$; tab(20); grade, credits; "credits"
LOOP

232 BRONZE Edition Guide

Random files are so called because they permit random access. That is, you can access any
particular record regardless of the order in which records were created. The records are auto-
matically numbered starting at 1. The file pointer normally moves to the next record after a
record has been read or written — remember that each READ or WRITE statement reads or
writes an entire record in a random file. But you may also jump around to arbitrary records
within a file using the SET POINTER and SET RECORD statements:

SET #3: POINTER SAME ! Go back to the record just read or
written
SET #3: POINTER NEXT ! Skip the current record

SET #3: RECORD r ! Go to record number r
You may also use the keyword RESET as follows:
RESET #3: SAME ' Go back to the record just read or
written
RESET #3: NEXT ! Skip the current record
RESET #3: RECORD r ! Go to record number r

Clearly, the last option is the most powerful one. You may find the current file pointer posi-
tion, or the number of the current record, with the ASK RECORD statement as follows:

ASK #3: RECORD r

As an example, consider a simple computer-based dictionary. Suppose that one random file
contains a list of words and another random file contains the corresponding definitions in
the same order. If you open these two files as #1 and #2, respectively, you could look up words
as follows:

DO
INPUT PROMPT "Word: ": w$
CALL Find (#1, w$, n) ! Word in record n
IF n =0 then
PRINT "Word not found"
ELSE
SET #2: RECORD n ' Find definition
READ #2: def$
PRINT def$
END IF
LOOP

The program-defined subroutine F i nd searches file #1 for the word and returns its record
number (or 0 if it finds no word).
SUB Find (#9, word$, rec)
RESET #9: 1 ! Start at beginning of file
ASK #9: FILESIZE last_rec ! How many records?
FOR r = 1 to last_rec

I. True BASIC File Types 233

READ #9: next$! Examine each record
IF next$ = word$ then EXIT FOR
NEXT r
IF r > last_rec then LET rec = 0 else LET rec = r
END SUM

If the word is found, the program jumps to the same record number in file #2 and reads the
definition. This is not possible with text files.

Changing an existing record in a random file is just as easy. Simply jump to the record and
use a WRITE statement. You can add to the end of the file by first using:

SET #3: POINTER END

You may also use the MAT READ and MAT WRITE statements to read or write an entire
array from or to a random file. With random files, the MAT WRITE statement puts all the
array elements in the same record, provided the record is long enough. You may then recover

the elements with a MAT READ statement — or with a READ statement that includes a
variable for each element.

Record Files

Record files are like random files, except that you can place only one value — numeric or
string —in a record. Although you will often find that a random file is better suited for a par-
ticular task, record files may be used if you are storing a single item per record.

When used with a record file, a WRITE statement stores each value in a separate record.
And a MAT WRITE statement will use as many records as there are elements in the array.
For example, the WRITE statement in:

' A new RECORD file
OPEN #2: NAME "STUFF1", CREATE NEW, ORG RECORD, RECSIZE 50

WRITE #2: name$, age, occupation$
will use three records to store the three quantities. Later, you may retrieve these values with:
READ #2: person$, a, occ$

or with:
READ #2: person$
READ #2: a

READ #2: occ$

The READ statement need not mirror the WRITE statement, but the variable type —
numeric or string — must be correct.

In contrast to a random file, calculating the proper record size for a record file is easy. Each
record in a record file contains four bytes of bookkeeping information. However, since the

234 BRONZE Edition Guide

size of this information is the same for all records, you do not need to account for it in the
record size (as you would for a random file). Thus, the record size of a record file need only
reflect the length of a number (which is 8 bytes) or the length of the longest string value you
expect to store in a single record. Remember that you may freely mix numeric and string val-
ues in a single record file, so the record size must reflect the length of the longest value you
plan to store in a record.

@ Note: The bytes actually included in the record size are different for random and
record files. For random files, the record size must include the extra, bookkeep-
ing bytes along with the data bytes. For record files, however, the record size
need include only the length of the data item to be stored. The bookkeeping
bytes are there, but you don’t need to account for them.

In all other respects, record files are like random files. They permit random access, and
you may use the same SET and ASK statements to move around and find out informa-
tion about them.

Byte Files

A bytefileis not a special kind of file but rather a way of looking at a file. When a file is viewed
as a byte file, it is considered simply as a sequence of bytes with no special format. That is,
True BASIC does not make any assumptions about a byte file, and it will not perform any of
the “housekeeping” tasks that it performs for other files (other than advancing the file
pointer).

You may view any True BASIC file as a byte file by specifying the ORG BYTE option in the
OPEN statement used to open that file. Indeed, you may view any file as a byte file, includ-
ing compiled True BASIC programs, files created by other applications, or files created on
another type of computer or under a different operating system.

As with other internal files, you use READ and WRITE statements to access byte files. The
number of bytes read by a single READ statement depends on the type of variable being
read.

A READ statement used to access a byte file may have only one variable, which is normally
a string variable, since the contents of the file may be any sequence of bytes. Although byte
files do not recognize records, True BASIC uses the current record size to decide how many
bytes to read to a string variable.

You may set the record size using a RECSIZE clause in the OPEN statement, as you would
for random or record files, or you may use a SET RECSIZE statement. Similarly, you may
use an ASK RECSIZE statement to find the current record size of a byte file, as you would
for random or record files. Because byte files are reading an arbitrary number of bytes, not

I. True BASIC File Types 235

actual records, you may use the SET RECSIZE statement to change the record size of a byte
file as many times as necessary.

Alternatively, you may specify the number of bytes to be read to a specific string variable by
including a BYTES clause in the READ statement. For example:

READ #7, BYTES 32: y$
would read the next 32 bytes in the file associated with channel #7 into the string variable y $.

This method of overruling the file’s record size within an individual READ statement is com-
monly used with byte files, since you may need to read strings of different lengths from a sin-
gle file. Often, you might want to read an entire file to a single string, as follows:

ASK #7: FILESIZE fs
READ #7, BYTES fs: y$

Ifyou use a READ statement with a numeric variable, the next eight bytes in the file will be
read as a numeric value stored in the IEEE eight-byte format. When a numeric value is read,
the file’s record size is ignored. Likewise, the BYTES clause is not allowed in a READ state-
ment that specifies a numeric variable.

If the file pointer is near the end of the file and the number of bytes remaining is less than
the current record size, a READ statement simply reads all the remaining bytes. If the
pointer is at the end of the file, however, a READ statement causes an error.

The WRITE statement may also be used with string or numeric values. With a string value,
it writes as many bytes as there are characters in the string. Numeric values are written to
byte files in the IEEE eight-byte format.

@ Note: The IEEE eight-byte representation used to store numeric values in a byte,
random, or record file is identical to the IEEE eight-byte representation pro-
duced by the NUMS$ built-in function (see Chapter 18). This means that num-
bers may be read from a byte file as eight-byte string values and converted to
numeric values using the NUM function. This may be a useful alternative to
reading those values directly into numeric variables.

Within a byte file, each byte is numbered as if it were a separate record (regardless of the
current “record size”) beginning with 1 at the first byte. Thus, the SET and ASK state-
ments that require or return a record number actually refer to a byte number. For exam-
ple, the statement:

SET #3: RECORD 120

when applied to a byte file, moves the file pointer to byte number 120. A program may read
any consecutive sequence of bytes, and it may overwrite any such portion of the file. You may
also use the WRITE statement to add to the end of the file, provided that the file pointer is
at the end of the file.

236 BRONZE Edition Guide

The following examples illustrate some instances when byte files are helpful. The first is a
routine that will copy any file, no matter what its format or content:

SUB FileCopy(from$, to$) ' Copy any file
OPEN #3: NAME from$, ORG BYTE ! Open two files
OPEN #4: NAME to$, CREATE NEWOLD, ORG BYTE
ERASE #4
SET #3: RECSIZE 1024 ' Copy in 1K pieces

DO WHILE MORE #3
READ #3: x$
WRITE #4: x$
LOOP
END SUB
This procedure uses 1024 bytes (1K) as a convenient unit to read and write at one time. (A
record size that is a power of two may allow your program to run faster.) If the file length is
not a multiple of this, the last READ will result in a shorter string x $, but it will cause no
error. The new file will have precisely the same content as the old one.

You may also use byte files to search a file for non-printing characters. Since True BASIC
reads all bytes, including those such as a line feed, each byte can be identified by its charac-
ter code. (See the ORD and CHRS$ functions in Chapter 8 “Built-in Functions.”) You could
therefore extract the text from any type of file by examining each byte and keeping only the
printing characters, as follows:

SUB Text_extract (from$, to$)

OPEN #3: NAME from$, ORG BYTE ' Open two files
OPEN #4: NAME to$, CREATE NEWOLD, ORG TEXT

ERASE #4

SET #3: RECSIZE 1 ' One byte at a time

DO WHILE MORE #3
READ #3: x$
IF 32<= 0rd(x$) and Ord (x$) <=127 then ! Standard
printing characters
PRINT #4: x$;
END IF
LOOP
END SUB
Note that this example is presented in the simplest form possible. There is plenty of room for
improvement. For instance, you might read larger sequences of bytes and build up an out-
put string in memory, sending it to the file only when it reaches a certain length. Each file
access takes time, and the fewer times your program accesses a file, the more quickly it will
run.

I. True BASIC File Types 237

As anillustration of how byte files can store any type of information, consider how you might
store a screen image, such as a complex diagram. The BOX KEEP statement stores the
image displayed within a specified area on the screen into a string variable, which you can
later display with the BOX SHOW statement (as described in Chapter 13 “Graphics”). If you
need to save these strings for later display, you can store them in byte files, as in the follow-
ing program fragment:

SET WINDOW 0,1,0,1

BOX KEEP 0,1,0,1 in keep$

OPEN #5: NAME "Image'", CREATE NEW, ORG BYTE

WRITE #5: keep$

Another program fragment may then retrieve and display the image as follows:
OPEN #5: NAME "Image'", ORG BYTE

ASK #5: FILESIZE fs ' Number of bytes in file?
READ #5, BYTES fs: keep$! Read entire file to
string

SET WINDOW 0,1,0,1
BOX SHOW keep$ at 0,0

Byte files in combination with the built-in PACKB subroutine and the built-in UNPACKB
function provide an efficient means of packing information to conserve storage space. As
you have seen, numeric values stored in internal files always occupy eight bytes — whether
the value is 0 or 3.7836126523e287. Often, however, your programs need to store only inte-
gers within a specific range. Eight bytes is generally much more storage than is necessary
for integers, so storing many integers into an internal file can use much more disk space than
would otherwise be required.

One way to eliminate this waste is to “pack” the integer values into string values, using the
PACKB subroutine, before storing them to the file.

The PACKB subroutine allows you to represent an integer value as a specific series of bits
within a string variable. For instance, the following program fragment writes a list of inte-
gers into a byte file.

It assumes that each integer fits into 16 bits (integers from 0 to 65,535) and there are n of
them in the array List:

LET x$ = ""
LET j = 1

FOR i = 1 to n
CALL Packb(x$,j,16,Llist(i))
LET j = j+16

NEXT i

WRITE #1: x$

238 BRONZE Edition Guide

Each integer is packed into x$ using the PACKB subroutine. Once all the numbers have
been packed into x$, x $ is written to the byte file.

Rather than maintaining the variable j as the starting bit position within the string x $, you
may find it simpler to use the following trick:

CALL Packb(x$,Maxnum,16,Llist(i))

Ifthe starting bit position provided to the PACKB subroutine is beyond the end of the string
value, the resulting series of bits will begin next to the last bit in the current string value. In
other words, by specifying a ridiculously large value as the starting bit position, you pack the
integer value in List (i) into the 16 bits immediately following the end of the current
value of x$. This eliminates the need for the variable j to keep track of the bit position.

You could recover the resulting list from the byte file using the UNPACKB function as fol-
lows:

ASK #1: FILESIZE fs
READ #1, BYTES fs: x$
LET j =1
FOR i = 1 to Len(x$)/2
LET Llist(i) = Unpackb(x$,j,16)
LET j = j+16
NEXT i
The first two lines are the standard way of reading an entire byte file into the string. The
first statement discovers how many bytes are in the file, and the second reads them all with
a single READ statement.

You would save storage and gain speed by packing each number into two bytes (16 bits). Such
packing is particularly important for storing large amounts of information. For example, if
you have one million “yes/no” replies, they can be packed into one million bits, or 125,000
bytes. A byte file is the only reasonable way of storing such information.

239

APPENDIX

BASIC to True BASIC Converter H

Introduction

The BASIC to True BASIC Converter (BtoTB) helps you convert programs written in other
versions of BASIC into True BASIC. Other versions of BASIC include BASICA for the IBM
PC and compatibles, Microsoft Compiled BASIC, GWBASIC, several versions of Microsoft
QuickBASIC, Macintosh QuickBasic, and Microsoft Visual Basic. We use the word “Basic”
to refer to any Basic-like languages other than True BASIC.

For simple programs as much as 85% of the original code will be converted to equivalent
True BASIC code. For that code not directly convertible, the expanded PDF manual that is
found in the same directory with the BtoTB Converter suggests other ways to rewrite your
original code into True BASIC and achieve your original purpose.

Start the BtoTB Converter by double-clicking on its icon. An application with two win-
dows and three buttons appears.

. Basic to True BASIC Converter =] E3

GetlLeft.bas CATB Gold\Utilities\BasToTB\GetLeft.tru
' GETLEFT.has ﬂ 130 ! hy: Halwvorson & Eygmyr ;I
' This program demonstrates the LEFT 140 ! page: 263
! from: Learn BASIC NOW 150 clear
' by: Halwvorson & Ryogmyr 160 let alphabet$ = "ABCDEFGHIJELMNC
' page: 263 170 print "How many characters (fron
180 print "string would you like to
CL3 190 print
200 print alphabet$! display test
alphabetd = "ABCDEFGHIJELMMNOPQRZTUVE 210 print
220 ! get from user number of leftmc
PEINT "How mahy characters (from lef 230 do ! loop until number i= in
PRINT "string would you like to disr 240 input prompt " Nurber (1-26):
PREINT 250 loop while (leftnum i < 1) or (l
PRINT alphabet$ 260 print
PRINT 270 let leftchard = (alphabetd)[1:1e
280 print "You specified™; len(leftc
' get from user nunber of leftmos PQD end |
T Ml E =
Done.

240 BRONZE Edition Guide

Click on the CONVERT button and a file selection dialog box will appear.

;- Basic to True BASIC Converter O] x]
Dpen file: EH ﬂ
Look jn: IaBasToTB j | | |‘=_’F|
BasTaTB.pdf GetRight.bas
BtoTE.exe Welcome. bas
BtaTBZ.BMP
Deflib.trc:
DefLib.tru
Getleft.bas
GetMid bas
File name: I Open I
Files of type: [l Fies [~ - Cancel |
|
Al 3 [I 2=l

[Messages of interest appear here.]

Convert | Cancel | Quit |

When you have selected the file you wish to translate, click Open and you will be pre-
sented with a file saving dialog box in whichyou can specify a new title. The BtoTB
Converter will suggest a default name based on the original file name.

As soon as the original file and the results file have been created, the Converter will begin
the translation. You will see the original code in the left window and the True BASIC code
in the right window.

A status message area is below the two windows and tells when the conversion is fin-
ished. The Cancel button and Quit button allow you to interrupt or stop any procedure.

Versions of Basic

Early versions of Basic, such as BASICA on the IBM PC, contained many statements for
working with that particular hardware. Most of these are no longer used. Furthermore,
many of the syntax rules have evolved toward the ANSI Standard for BASIC, upon which
True BASIC is based. As an example, early versions of Basic used WHILE and WEND to
contain a loop structure. While those keywords are retained for historical reasons, most
Basic programs are

now written using the DO and LOOP keywords, just as in True BASIC. Modern versions
of Basic allow creating Graphical User Interface (GUI) elements, such as push buttons
and scroll bars. True BASIC also allows these but through use of a subroutine library and

J. Basic to True BASIC Converter 241

subroutine calls, rather than through statements in the language. For such statements,
BtoTB merely suggests the subroutine to be called, but does not attempt to develop the
actual calling sequence.

Line Numbers

BtoTB accepts Basic programs that are line-numbered or not. The resulting True BASIC
program has line numbers. If the original program is line-numbered, the resulting True
BASIC program will have line numbers that correspond, and GOTO and similar state-
ments will be left untouched. (The original line numbers must be spaced far enough apart
to permit inserting additional statements.) For a non-line-numbered program, the GOTO
and similar statements will be converted to GOTO a line number in the converted pro-
gram. BtoTB does not attempt to convert the possibly “spaghetti code” of an old-fashioned
line-numbered Basic program into the more modern “structured” form.

While it is theoretically possible to do this, the result is actually more difficult to under-
stand. Therefore, all GOTO and similar statements are left as is. This manual describes
several simple cases for which manual conversion from GOTOs to structured constructs is
easily done and is recommended. BtoTB does not convert graphical user interface ele-
ments (buttons, windows, scroll bars, etc.) since the logic used to manage these elements
in True BASIC is entirely different from the approach of other versions of Basic. Neither
does it attempt to convert use of record files, as the logic used by True BASIC (and ANSI
BASIC) is altogether different from most other versions of Basic. Finally, the BtoTB can-
not convert data structures as there is no equivalent capability in True BASIC.

BtoTB works by reading a Basic program in a text file one line at a time, making the nec-
essary syntactical changes and rewriting the line to an intermediate file. Statements that
are the same in Basic and True BASIC are rewritten without change. Some Basic state-
ments that do not exist in True BASIC are modified to work equivalently. In some cases
this will involve invoking functions or calling subroutines located in the supporting
libraries. Other Basic statements, for which there is no direct or simple True BASIC
equivalent, are not converted, but are marked so that they will generate a True BASIC
compiler error.

A second pass copies the converted program from the intermediate file to the file you
named, filling in the forward jump references as it goes. The second pass also inserts any
needed special internal function definitions and fills in the DECLARE DEF statements.
(The right hand window shows the results of the first pass only.)

Whether the original Basic program is line-numbered or not, line numbers are included in
the result if there are GOTO or similar statements present.

242 BRONZE Edition Guide

General Caveats

Although many features of the various versions of Basic are found also in True BASIC,
sometimes in a slightly different form, many others are not found in True BASIC. One
reason is that most versions of Basic allow access to the specialized features of a particu-
lar machine. In contrast, True BASIC has, as one of its valuable features, cross-machine
portability.

BtoTB handles some of the machine-specific features through subroutines located in the
library files DEFLIB.TRU. A direct conversion of a particular feature from Basic to True
BASIC, through possible, may not be desirable. For example, many versions of Basic
determine the graphics mode on DOS machines by “peeking” at a certain byte. True
BASIC does this with the ASK MODE statement.

The smart user will use BtoTB to make the mechanical conversion of from 80% to 90% of
the program. The result should then be scrutinized carefully and parts recoded by hand.
A knowledge of the features of True BASIC and its libraries is essential to an efficient
and correct conversion.

The BtoTB Converter is designed so that it can be updated to include other conversion
routines that users find helpful. We welcome your ideas and suggestions. Direct your
messages to support@truebasic.com

Reference Materials

The process of program conversion is not trivial and it is important that you have proper
reference material for the task.

You will find a major portion of the True BASIC Reference information in your online
HELRP facility. Our website shows other available texts.

Translating a file

To minimize confusion, create a BtoTB directory or folder. In it place the original Basic
file you wish to translate to True BASIC and the BtoTB application program. As noted
earlier, the original source code file is a text file. Text files on the DOS/ Windows operat-
ing system and those on the MacOS operating system are slightly different. A DOS file
ends each line with a return and a linefeed character.

MacOS files end with only a return. If you are using a MacOS computer, the BBEdit Lite
text editor (also included in your MacOS Bronze Edition Utility directory) makes it very
easy to convert and save files from DOS to MacOS, by adding or removing the line feed
character at the end of each line.

J. Basic to True BASIC Converter 243

Testing the Converted Program

When you have finished your conversion, start up your copy the True BASIC Language
System by clicking on the True BASIC icon.

When True BASIC is up and running, open the converted program. You should also make
sure that the file DEFLIB.TRC is in the same directory, as the converted program may
need one or more subroutines in it.

You can now modify the converted program using the True BASIC screen editor.

When you select Run from the Run menu, the converted program should run and give the
same results as the old Basic program.

If you are not so lucky, the True BASIC may discover syntax errors, displaying them in
its Error Window. Double-clicking on a particular error will place the editing window cur-
sor at the offending code. BtoTB inserts “***” for some statements it cannot convert,
which will lead to a compiler error.

General Considerations

The purpose of BtoTB is to produce a True BASIC program that is as functionally equiva-
lent to the original Basic program as practical, but may not be the most concise or most
efficient. For example, it makes no attempt to convert GOSUB statements to CALL state-
ments. Some features not directly available in True BASIC are provided by subroutines.
For example, the SCREEN and COLOR statements in BASICA are converted to calls to
subroutines in True BASIC, since the treatment of color is different. Still other features of
Basic have no counterpart in True BASIC and are left as is. For example, there is no True
BASIC equivalent to the STRIG ON statement.

Line Numbers

Basic programs are assumed to be either line-numbered or not. BtoTB makes the distinc-
tion between the two by examining the first line of the file. If it starts with a line-number,
BtoTB assumes that all lines (except line continuations) start with line-numbers. In this
case, the line-numbers must be in order and must contain sufficient room between line-
numbers to permit inserting True BASIC statements. (True BASIC does not allow multi-
ple statements on a line and must put them on separate lines.) The first line number
must be large enough to allow for the Preamble, which is about 30 lines long.

If the first line does not contain a line number, BtoTB makes the assumption that line-
numbers, if present, are treated merely as statement labels. In this case there is no
restriction that line numbers be in order. It generates its own line numbers that will bear
no relation to the line number labels. Line number labels and other statement labels are
converted to ordinary line numbers.

244 BRONZE Edition Guide

BtoTB has two passes to handle forward references. The first pass does most of the con-
version, and places the result in a temporary file. The second pass fills in the forward
label references, if any, and places the result in the output file you named.

Finally, if there is no use of GOTO or similar statements in the entire file, BtoTB removes
the line numbers.

M IMPORTANT NOTE: You may get the cryptic message: Illegal line num-
ber at line -1. This message is generated when the compiler can not
determine if a program has line numbers. The error occurs when a
blank line exists in a line numbered program. ALL lines must have line
numbers, even if they are blank.

Preamble

BtoTB places a preamble at the beginning of each file of True BASIC programs. The
preamble may contain a LIBRARY statement that names DEFLIB.TRC as the file con-
taining subroutines needed by the converted program. It also places there, and at the
beginning of each program unit, a DECLARE DEF statement containing the names of the
actual functions needed, if any, and an OPTION BASE 0 statement. If no functions from
DEFLIB.TRC are needed, the DECLARE DEF statement is not added. The second pass
also inserts the actual code, if needed, of the several internal functions in True BASIC
that refer to files. (The reason is that True BASIC does not allow file reference numbers
to be passed to external functions; subroutines are needed instead.) Because there is often
no way for BtoTB to determine the scope of such functions, however, you may find it nec-
essary to move or copy these routines before the program will run correctly. The names of
these functions are: LOF, LOC, EOF, and FREEFILE. (See Section 6 of the BtoTB PDF
manual for alternate ways to code these in True BASIC.)

Numeric Accuracy

BtoTB properly handles the conversions between quantities of type integer and quantities
of type single- or double-precision. All arithmetic in True BASIC is performed using dou-
ble-precision floating point numbers with about fifteen decimal digits of accuracy. BtoTB
treats both single- and double-precision numbers in Basic as equivalent. The correspond-
ing conversion functions (CSNG, CDBL) are thus omitted.

BtoTB treats both long and short integer types in Basic as double precision in True
BASIC. It properly inserts a ROUND function whenever a non-integer quantity is

J. Basic to True BASIC Converter 245

assigned to an integer variable, or whenever an intermediate calculation, such as integer
divide or mod, requires that the result be an integer. For example,

LET a% = b!
is converted to the True BASIC
LET a_i = round(b)
If you know that b always has an integer value, you should remove the round function.

BtoTB properly deals with two or more different variables having the same name. For
example, x, x!, x%, x#, and x& are all different in a Basic program. They are changed to
True BASIC variables as follows:

Basic True BASIC
X X
X% X_1
x! X_Ss
x# x_d
X & x_Li

The type of x without a suffix is determined by the DEF type statements; the default type
is single precision.

For string variables, when the DEF type statements specify that variable names starting
with “a” are string type, a and a$ are treated by Basic as the same. Consequently, BtoTB
merely adds the “$” to the former.

Hexadecimal and Octal constants are converted to decimal integers.

Booleans

BtoTB properly handles Boolean expressions, including the IMP and EQV operators. For
the NOT operator, parentheses surround the entire clause since NOT NOT is allowed in
Basic but not in True BASIC.

If a logical expressions lack a relational operator, BtoTB adds a “<>0".

It does not convert Boolean-valued expressions that appear in arithmetic statements.
That is,

LET x =y < z

is legal in Basic (x is assigned 0 or -1, according as y < z is true or false), but not in True
BASIC. Instead, it is converted to:

LET x = y **% 7

246 BRONZE Edition Guide

The straightforward representation in True BASIC might be:
IF y < z then LET x = 0 else LET x =1

This is an example of a change that must be done by hand.

BtoTB does not handle logical expressions involving logical operators and numbers, or
bit-by-bit logical operations. For example,

IF (PEEK(123) AND &H30) <> &H30 THEN

will generate an error message and be left in its original form.

A determination must be made as to the purpose of the IF statement. In the example
above, it is designed to determine the type of graphics card.

330 DEF SEG=0

340 IF (PEEK(&H410) AND &H30) <> &H30 THEN COLS = 3:G0TO0 360
350 WIDTH 80:C0LS=38

360 DEF SEG

An alternative way in True BASIC might be:
ASK MODE mode$
IF mode$ = "MONO" then
SET MARGIN 80
LET cols = 8
ELSE
SET MARGIN 40
LET cols = 3
END IF

which is slightly longer but more understandable.

Arrays

BtoTB expects an array dimension statement to occur before (i.e., in a lowernumbered
line) any reference to it. Some versions of Basic allow you to dimension arrays at a higher-
numbered line than a reference to it, as long as the DIM statement is executed first.
Other versions of Basic allow automatic dimensioning of arrays. True BASIC requires
that all arrays be dimensioned, and that the DIM statement appears in a lower-numbered
line than any reference. BtoTB does not insert DIM statements where needed; they must
be inserted later by hand. Or, you can insert a complete set of DIM statements into the
original Basic program. In any event, the True BASIC compiler will provide a suggestive
error message when an attempt is made to use an undimensioned array.

Some versions of Basic allow you to use the same variable name for a numeric value and
an array, but True BASIC does not. If the variable name is the same as a previously
dimensioned array name, BtoTB will attach “_t” to the variable name. The variable name
will not be changed if there is an undimensioned array having the same name. Instead,
the error will be caught by the True BASIC compiler.

J. Basic to True BASIC Converter

247

More detailed documentation, in the Adobe Acrobat® PDF format, is included with your
copy of the BtoTB Converter. In it, you will find additional information on how to translate

functions and statements such as:

Defined Functions
IF-THEN Statements
Line Continuations
Variable & Array Types
Global and Local Variables
Program Units

FILE Input & Output
Text Files

Record Files

Binary Files
Statements

Functions

GOSUB & RETURN
CLOSE

COMMANDS$

Relative Graphics
DRAW Statement

EOF Function

Error Handling

GOTO Statements
INKEY$ Function
INPUT & INPUT$
KEY Statements
LOC Function
LOF Function
PEEK and POKE
Share and Static
TYPE Structures
VAL Function
VIEW Statement
Windows

Buttons

Edit Fields

Menus

CSRLIN & POS
Event Handling
File Dialogs

The BtoTB Converter is included with the Bronze Edition so that you can quickly convert
other BASIC programs that you might have used in the past into True BASIC code that will

continue tobe useful and functional in the future.

The BtoTB Converter and accompanying documentation is in the UTILITY directory that

is part of your original True BASIC CD.

ABS function, 170
Absolute value (See ABS function)
ACCESS clause (See Open-clause)
Accuracy (See Numbers)
ACOS function, 167, 170, 185
Addition (See Arithmetic operators)
Aliases, 116
Alt keys, 201
Ampersand (See Concatenation)
AND (See Logical operators)
ANGLE function, 170
Animation, 117, 124-125
Applications

creating, 204-205, 210, 214

launching, 18, 213
Arccosine function (See ACOS)
Arcsine function (See ASIN function)
Arctangent function (See ATN function)
Arguments

arrays as, 170, 173-175, 177, 181-

182, 197
expressions as, 153-154, 170
to functions, 110, 133, 153-154,
170-182, 185, 192, 200

numbers as, 106, 108, 153-154, 170-

1717, 179-182, 185, 197, 199-200

and parameters, 105-106, 153-154,
166, 199

strings as, 110, 170, 172, 175, 177-
179, 182

to subroutines, 105-106, 128, 153,
166

Arithmetic operators

addition (+), 10, 31, 33, 35-38, 60-
63, 83,91, 101, 118, 123, 142, 152,
162-167, 173, 191-194, 205, 210-13

division (/), 35-37, 140, 166, 168,
179, 188

exponentiation (*), 35-37

multiplication (¥), 35-37, 62, 101,
126, 136, 191

subtraction (-), 35-37, 101

Arrays

as arguments, 170-177, 181, 197

arithmetic, 101

assignments, 101, 150, 159, 169,

INDEX

171,174,177, 182-183
dimensioning, 94, 97, 99-101, 154,
159, 169, 175, 181-182, 191, 194,
197, 199-200
elements of, 94-97, 100-101, 157,
159, 169, 173, 181, 189
inputing, 85, 90, 100-101, 148, 150,
159,195
functions, 169, 174, 182
as parameters, 154, 200
printing, 90, 95, 99-100, 148, 150,
159
redimensioning, 101, 170-171, 174,
177,183, 185, 189
shape of, 101
shared, 189
variables, 93, 108, 112, 157
ASCII characters
codes, 168, 171, 183
order of, 53, 145
set of, 53, 145, 168, 178
ASIN function, 167, 170, 185
ASK statements
ACCESS statement, 150
BACK statement, 149
BACKGROUND COLOR statement
(See ASK BACK statement)
COLOR MIX statement, 149
COLOR, 149
CURSOR, 149
DIRECTORY, 149
ERASABLE, 150
FILESIZE, 150
FILETYPE, 150
FREE MEMORY, 147
MARGIN, 148, 150
MAX COLOR, 149
MAX CURSOR, 149
MODE, 149
NAME, 29, 39-40, 44-45, 149-150
ORG, 150
ORGANIZATION (See ASK ORG
statement)
PIXELS, 149
POINTER, 150
RECORD, 150

249

RECSIZE, 150
RECTYPE, 150
SCREEN, 149
SETTER, 150
TEXT JUSTIFY, 149
WINDOW, 149
ZONEWIDTH, 148, 150
Assignment statements, 25, 169, 171,
174,177, 182-183
Asterisk operator (See Arithmetic
operators)
ATN function, 170

Background color
current, 152
determining, 149
setting, 149, 164
Backspace key, 24, 28
Binary files (See Files)
Binding your program (See also
Bound programs)
Blank lines, 12, 28, 42, 51, 65, 67
Blinking cursor, 67
Boolean expressions (See
Expressions)
Bound programs, 7
BOX KEEP string format (See Image
string formats)
BOX statements
AREA, 120-121, 123, 149, 152
CIRCLE, 121-122, 149, 152
CLEAR, 124-125, 149, 152
DISK, 149
ELLIPSE, 121, 149, 152
KEEP, 124-125, 149, 152
LINES, 120-121, 149, 152
SHOW, 124-125, 149, 152
Breakpoints
BREAK command, 186
continuing after, 141, 186, 198
creating, 141-143, 151, 186, 204-205
executing, 141
finding, 204
BYE command, 198
Byte file (See Files)

250

CALL statement, 45, 105-106, 112,
128, 153, 166, 192
Caret operator (See Arithmetic oper-
ators)
CASE statement, 164, 187, 193
CAUSE ERROR statement, 151
CAUSE EXCEPTION statement, 151
CD command, 16-17, 37
CEIL function, 171
CGA (See Color graphics adapter)
Chaining programs, 149
CHANGE command, 75
Channel numbers
closing, 84
with files, 83-84, 86, 88, 187
with printers, 68, 84, 86
with windows, 187
Characters
ASCII values, 145-146
nonprinting, 175
number in a string (See LEN func-
tion)
CHECKED, 131, 143
CHRS$ function, 168, 171, 178
CLEAR statement, 125, 152-153
Clicking, 18-21, 24, 26-27, 71-72
Clipboard, 71-73, 151
Clipping, 161
Clock, 168, 182
CLOSE BOX, 84, 118, 131-133
Colors
background (See Background color)
customizing (See SET COLOR MIX
statement)
foreground (See Foreground color)
names, 123-124, 164-165, 194
numbers, 124
simulated, 165
Comma (See Print separators)
Command keys, 201
Command line arguments (See
Bound programs)
Command window, 18-19, 68-69, 141,
196, 198, 200, 205-207
Commands (See also individual com-
mands)
using, 18, 69, 141, 196, 200
Comments, 12, 27-29, 61, 65-66, 163
Communications ports (in SILVER)

Compiling programs
compiled files, 130, 210, 213-214
compiled libraries, 210, 215
compiled program, 116, 195, 209-15
CON array constant, 171
Concatenation, 40, 192, 200, 210
Conjunction, 56
Constants
array and matrix, 99, 171, 174, 177,
183,190, 195
numeric, 33-34, 39, 99-100, 164,
171,174, 183, 187, 190, 192, 195
string, 38-40, 43, 65, 99, 177, 183,
192
COPY command, 73
Copying text (See Text)
COS function, 171
Cosecant function (See CSC function)
COSH function, 167, 171
Cosine function (See COS function)
COT function, 167, 171
Cotangent function (See COT func-
tion)
Counters, 53, 60
CPOS function, 169, 172
CPOSR function, 169, 172
CREATE clause (See Open-clause)
Cross-referencing (See XREF utility)
CSC function, 167, 172
Cursor
moving with keys, 18-20, 24, 28, 85,
190, 205
moving with mouse, 19-20, 24, 75
positioning within program, 149
turning on and off, 20, 24, 181, 205
Cutting text (See Text)

Data
numeric, 8§9-90
reusing stored data, 88
storing, 86
DATA statement, 73-74, 77-80, 84,
136, 153, 190, 195, 197
DATE function, 172
DATE$ function, 172
Debugging
with breakpoints (See Breakpoints)
DEBUG statement, 205
and OPTION TYPO, 112, 141, 147-

BRONZE Edition Guide

148, 159-160, 190, 200
tools, 141
tracing (See TRACE utility)
Decision structures, 12, 52, 57, 59,
61, 63, 66
DECLARE statements
DEF, 112, 115, 133, 153
SUB, 112
DEF statement (See FUNCTION
statement)
DEF structure (See FUNCTION
structure)
Defined functions (See Functions)
DEG function, 167, 173
Deleting
characters, 24, 205
text (See Text)
DET function, 169, 173, 188, 195
Detached handler (See Error han-
dlers)
Determinant, 169, 173, 188
DIM array, 154
DIM statement, 94-95, 97, 154, 185,
193, 197, 199-200
Directories
in aliases (See Aliases)
changing, 15, 20, 26
creating, 15
current, 20, 149
subdirectories, 20, 66
Disjunction, 56
Disk drives
current, 20
Disks and diskettes
reading, 210
writing, 188
Division (See Arithmetic operators)

DO...LOOP structure, 47, 52-53, 55,
57,172,179, 133, 147, 154, 156, 159
DO statement, 55, 72, 80, 103, 154,
156
DO utilities, 213-14
DO command, 186, 196
DO programs, 7, 210-14
DOT function, 173, 195
Dot product, 169, 173
Double-clicking, 18
DOWN arrow, 19-20

Index

Dragging, 19, 28, 67-68
DRAW statement, 125-126, 128, 154-
155, 160, 192

ECHO command, 69, 196
Editing
Edit menu, 19, 71-75, 201-202, 204
find and change, 74-75
keep and include, 75, 196
select all, 76, 204

source window, 18-21, 23, 26-27, 29,

68, 74, 76, 140, 142, 188, 205
Editing Window, 18-21, 23, 26-27, 68,
74,76, 140, 142, 188, 205
EGA (See Enhanced graphics array)
ELSE statement, 164
Empty PLOT statement (See PLOT
statement)
Empty string (See Null string)
End of data, 197
END statement, 26, 47, 65, 87, 111-
1183, 140, 155, 192, 197, 201
END statements
DEF, 155-156
IF, 59, 155
PICTURE, 155-156
SELECT, 155
SUB, 105, 155-156
WHEN, 166
Enter key (See Return key)
EPS function, 173
Error handlers
entering, 151
exiting, 151
Errors
intercepting (See Error handlers)
messages, 44, 59, 79, 85, 88, 99,
139-140, 174, 185, 187, 189, 191,
193-195, 197-199, 201, 206
overflow, 195
runtime, 139-144
system, 198
window, 139-140, 206
Esc key, 19
Exception messages (See Error mes-
sages)
Exclamation point (See Comments)
EXE files (See Executable files)
EXIT statements

DEF, 156
DO, 156
FOR, 156
PICTURE, 156
SUB, 156
EXLINE function, 173
EXLINES function, 173
EXP function, 174
Exponentiation (Arithmetic operators)
Expressions
as arguments, 153-154, 170
array redimensioning, 170
numeric, 40, 170, 183, 192
rounded numeric, 170
string, 40, 136, 170, 183, 192
Extended memory (See Memory)
External procedures, 113, 116, 155-
156
EXTERNAL statement, 113, 156
EXTEXTS$ function, 140, 166, 174
EXTYPE function, 140, 166, 174, 185

File menu, 14, 19-21, 23, 26-27, 29,
31, 68, 84, 201-204
File selectors (See Files)
Files
byte, 83, 227
channels (See Channel numbers)
closing, 84, 86
compiled, 130, 195
creating, 7,9, 12, 15, 23, 27, 33, 69,
82-83, 85-89, 118, 131, 194
deleting, 150, 196, 204
editing, 18-19, 25, 28-29, 31, 53, 67,
69,71, 179, 162, 196
erasing, 86-87, 90-91
input, 86, 91
lengths, 150
libraries, 45, 113-114, 126, 133,
156, 158, 160, 199, 210
listing names of (See FILES com-
mand)
margin, 148, 150
moving, 76, 91
multiple, 68
naming, 7, 20, 23, 29, 69, 85-88,
106, 133, 145, 158, 163, 194-196
numbers (See Channel numbers)
opening, 20, 39, 53, 66, 83-89, 91,

251

166, 187-188
organizing, 148
output, 21, 69, 84, 86, 88, 91, 186,
188, 206
printing, 7, 30, 38, 42-43, 50-51, 58,
65, 67-69, 86-91, 96, 206
random, 229
record, 91, 233
recsize, 150
renaming, 31, 34, 72, 75, 196, 201
saving, 26-27, 29, 31, 39, 72, 75, 82,
85, 128, 188, 196
stream, 228
text, 83, 85-87, 89, 91, 187, 223
zonewidth, 148
FILES command, 194
Finding, 73-74, 141
Fixing program errors (See
Debugging)
FLOOD statement, 121, 156
Floor function (See INT function)
FOR statement, 47-49, 95, 103, 144,
156-157
FOR..NEXT structure, 47-50, 52-53,
60, 62, 78-80, 95, 99, 110, 116, 125,
140, 147, 154, 156-157, 160, 189
Foreground color
current, 152, 156, 161
determining, 149
FORGET command, 198
Format string, 183
FORMAT utility, 66-69, 140-141, 205
Formatting (See FORMAT utility)
FP function, 174
Free memory (See Memory)
FUNCTION structure, 149
Functions
built-in, 7, 49, 57-58, 62, 98, 101,
106, 108, 116, 129, 140, 167, 169,
171,178, 175,177,179, 181, 183
external, 110-113, 115-116, 126,
148,153
internal, 111-112, 126, 153
invoking, 7, 153-154
multi-line, 108, 154
numeric, 149, 195
one-line, 107-108
string, 40
as structures, 61, 140, 148-149,
154,185

252

user-defined, 131, 133, 154

G_Click, 130-133
G_Create, 131, 133
G_Free, 132
G_Hide, 132
G_Move, 131, 134
G_Show, 132
G_ShutDown, 131, 133-134
G_StartUp, 130, 133-134
GET statements
GET_MOUSE subroutine, 129, 149
Global variables (See Variables)
Graphics
animation, 117, 124-125
drawing lines, 117-118, 120-121,
126, 149, 152, 161
drawing shapes, 120-121, 124-125,
152, 155, 190
pictures, 141, 155-156, 160, 192
transformations, 126, 128
GRAPHICS mode, 122, 124
Graphics modes (See Screen modes)
GraphlLib library, 128-129

Help
files, 197
HELP command, 200
Help menu, 200, 205
Highlighting text (See Text)
Hyperbolic cosine function (See
COSH function)
Hyperbolic sine function (See SINH
function)
Hyperbolic tangent function (See
TANH function)
Hyperbolic functions, 167-168, 171,
180, 182

Identifiers, 153-154, 166

IDN array constant, 169, 174, 189

IEEE 8-byte format, 178

IF statement, 59, 63-64, 142, 144,
155, 157, 187

IF structure, 60, 62-63, 66-67, 147,
155, 157

INCLUDE command, 75, 196

Increments, 48

Indentation, 12, 48, 51, 66-67, 140

Index variable (See Variables)
Infinite loops (See Loops)
Inner product (See Dot product)
INPUT PROMPT, 43-44, 85-86, 90,
96, 115, 158
INSERTION point, 28-29, 72-76
INT function, 174
INV array function, 174
IP function, 175
Input
from files, 43, 83-91, 186
formatted, 85-86, 88
graphical, 20, 37, 64, 68, 72, 75,
121, 129, 149
items, 44, 84-85, 88, 199
key, 84, 87,149, 197
line, 29, 41, 44-45, 77, 82-86, 88-91,
97, 100, 148, 150, 158-159, 186-
187,195, 198-199
matrix, 85, 90, 100-101, 148, 150,
159, 195
prompt, 42-44, 68, 85-86, 90, 96,
115, 158
INPUT statement, 29-31, 38, 40-45,
77, 84-85, 90, 101, 148, 158-159,
183, 186, 193, 197-199
INPUT PROMPT statement, 44
Insertion point, 28-29, 72-76
Installation, 13-17, 19, 210, 213
INT function, 174
Integer division (See DIVIDE)
Integer part function (See INT func-
tion and IP function)
Internal color numbers (See Colors)
Internal files (See Files)
Internal format
Internal procedures (See Functions
and Subroutines)
INV array function, 169, 174, 186,
191
IP function, 175

Joining lines, 28

KEEP command, 75
Keyboard
equivalents, 71, 201
Keywords, 7, 25, 58-59, 65, 67, 84, 87,
99, 121-122, 140, 157, 190-191,
196, 198

BRONZE Edition Guide

LBOUND function, 175
LCASES$ function, 175
LEN function, 175
LET statement, 25, 29, 31, 34, 54-55,
60, 158, 169, 171, 174, 177, 182-
183,198
Libraries
accessing, 45, 113, 128, 130, 133,
158, 199, 210
creating, 210, 214
files (See Files)
LIBRARY statement, 45, 113, 128,
130, 133, 158, 199
Limits, 97
LINE INPUT statement, 41, 44-45,
717, 82-83, 85-86, 89-90, 97, 100,
148, 150, 158-159, 187
LINE INPUT PROMPT statement,
90, 158
Line numbers (See also NUM,
UNNUM, and RENUM utilities),
12, 69, 76, 85, 173, 190, 194, 196
Lines
blank, 12, 28, 42, 48-51, 65-67, 85,
100, 159
blocks of, 67, 71, 196
commenting, 28-29, 65, 72-73, 78,
163,214
continuations, 37
copying, 73
deleting, 28, 72, 196
indenting, 12, 51, 66-67
joining, 28
marking, 30, 117
moving, 52, 68, 72, 76, 100
selecting, 67-68, 72-73, 141, 187
splitting, 28
LIST command, 68
LOAD command, 199
LOCAL statement, 110, 112, 141,
154, 158-160, 200
Local variables (See Variables)
LOG function, 175
LOG10 function, 175
LOG2 function, 176
Logical expressions (See Expressions)
Logical operators
AND, 56
NOT, 56
OR, 56

Index

LOOP statement, 54-55, 84, 154, 156,
159
Loops
DO (See DO...LOOP structure)
FOR (See FOR...NEXT structure)
infinite, 81
nested, 50-51
Lower bounds (See Subscripts)
LTRIMS function, 169, 176
LTRIMS function, 176

Main program, 105-106, 110-113,
163, 193, 197, 199, 201, 210
Margins
determining, 148, 150
in files, 148, 150
setting, 43, 148, 150
MAT assignment statement, 171,
174,177, 182-183
MAT constants, 171, 174, 177, 183
MAT statements
INPUT, 85, 100-101, 148, 150, 159
LINE INPUT, 85, 100, 148-150, 159
PLOT AREA, 129-130, 149-150
PLOT LINES, 129, 149-150
PLOT POINTS, 129, 149-150
PRINT, 99-100, 148, 150, 159
READ, 99-101, 148, 150, 159
REDIM, 101, 150, 185, 189
WRITE, 150
Math coprocessor (See Coprocessor)
Mathematical functions, 167-168
MAX function, 176
MAXLEN function, 176
MAXNUM function, 167, 176, 187-
188,195
MAXSIZE function, 176
Memory
available, 97
increasing, 194
reclaiming, 198
MENU TYPE, 75
Menu bar, 18-19
Menu item
TEXT, 14, 73
Menus
equivalents (See Keyboard)
items, 19, 141, 194, 201
operation, 201

MIN function, 176
Minus operator (See Arithmetic oper-
ators)
MOD function, 177
Modes (See Screen modes)
Modules
structure, 150
Mouse
button, 18-20
clicking, 18-21, 24, 26-27, 71-72
cursor, 19, 24, 67, 72
double-clicking, 7, 18, 28, 72, 139-
140
dragging, 18-20, 28, 68
pointer, 19, 24, 67, 72
operation of, 18-20, 26, 68, 71-72
MS-DOS (See DOS)
Multiplication (See Arithmetic opera-
tors)
Music, 75, 79-81, 135-137

NCPOS function, 169, 177
NCPOSR function, 169, 177
Negation, 56
Nested loops, 50-51
NEXT statement, 38, 47-48, 54, 58,
125, 156-157, 160, 189
NOLET command, 191, 198
Nonfatal exceptions, 186-187, 195,
197,199
NOT (See Logical operators)
NULS$ array constant, 177
Null string, 109-112, 172, 178-179
NUM function, 178, 191
Num lock, 205
NUMS$ format (See IEEE 8-byte for-
mat)
NUMS function, 178, 191
Numbers
accuracy of, 61
as arguments, 108, 170, 172-173,
175, 181, 185, 199-200
in arrays, 94-95, 97, 99-101, 157,
169, 171, 173-174, 181-183, 191
as constants (See Constants)
converting to strings (See STR$
and NUMS$ functions)
decimal, 171
display of, 38, 42, 47-50, 62-63, 66-
67, 89, 93-95, 99-100, 108, 162, 187

253

in expressions (See Expressions)
hexadecimal, 145
rounding, 170, 180
as variables (See Variables)
Numeric coprocessor (See
Coprocessor)

Odometer order, 159
OLD command, 196
ON GOSUB statement, 147
ON GOTO statement, 147
OPEN statements
with files, 84, 87, 186-187
PRINTER, 68, 84, 86, 186
SCREEN, 149, 187, 197
Operators
arithmetic (See also Arithmetic
operators), 35-37
logical (See also Logical operators),
56
string (See Concatenation)
OPTION statements
ANGLE, 126-128, 147-148, 155,
160, 170-173, 179-181, 190
ARITHMETIC, 148, 190
BASE, 148, 190
COLLATE, 148, 190
NOLET, 148, 190-191
TYPO, 112, 141, 147-148, 159-160,
190, 200
USING, 148, 190
OR (See Logical operators)
ORD function, 178, 191
Order of evaluation (See Expressions)
ORG clause (See ORGANIZATION
clause)
ORGANIZATION clause (See Open-
clause)
Output
command window, 18, 21, 69, 206
echoing to file, 69, 196
echoing to printer, 68-69
to files, 21, 69, 84, 86, 88, 91, 186,
188, 206
full screen, 188
listing program, 7, 20, 68-69, 77,
79, 88, 93, 140-141, 153
printing graphics, 69, 115, 129-132,
printing matrices, 90, 95, 99-100,
148, 150, 159, 198

254

Output Window, 18, 21, 27, 30, 43,
68-69, 84, 117, 129, 133, 143, 153,
187, 206

PACKB subroutine, 151
Parameters
and arguments, 105-106, 153-154,
166, 199
arrays as, 141, 154, 200
expressions as, 153-154
to functions, 105, 107, 109-111, 141,
154
numbers as, 106, 153-154, 166, 199
passing by reference, 153, 166
passing by value, 154
passing mechanism, 160
to subroutines, 105-106, 109, 111-
112, 154, 160, 166
Pasting text (See Text)
Paths, 210
PAUSE statement, 125, 160
PC-DOS (See DOS)
PEEK function, 43
PI function, 178
PICT file (See Files)
Pictures
PICTURE statement, 141, 155-156,
160
PICTURE structure, 125-126, 149,
155, 160, 193
transformations on (See
Transformations)
Pixels
in current window, 149
determining color of, 149
PLAY statement, 79, 135, 161, 189
PLOT statements (See also MAT
statements)
abbreviated form, 117-118, 161-162
AREA, 122, 129, 161
LINES, 161-162
POINTS, 161
TEXT, 162
Plus operator (See Arithmetic opera-
tors)
Pointer (See Mouse)
Points (See PLOT statements)
POS function, 178
POSR function, 179
Precision (See Numbers)

Preface bytes (See Assembly lan-
guage)
Preprocessors (See DO utilities)
Print separators, 30, 41-43, 47, 51-52,
68, 87, 90, 100, 159, 162
PRINT statement, 25-26, 30, 38-39,
41-43, 47-49, 51-52, 54-55, 58, 68,
99, 159, 162, 181
PRINT USING statement, 43, 55,
162, 183, 186
Print zones, 41, 52, 162
Printers
opening a channel to, 68, 84, 86,
186
ports (See Ports)
trouble-shooting, 68, 199
PRIVATE statement, 150
Procedures (See Functions and
Subroutines)
PROGRAM statement, 163
Programs
closing, 84
compiled, 130, 195, 210-211, 213
creating, 7,9, 12, 23, 27, 118
deleting, 75
editing, 10, 18-21, 25-31, 50, 53, 67,
69, 71, 78-79, 85, 105, 112, 114,
130, 162, 188, 194, 196
extensions, 20
formatting, 65-67, 69, 71, 140-141
listing names of (See FILES com-
mand)
naming, 7, 23
opening, 20, 27, 39, 48, 50, 53, 66,
69, 72, 83, 87, 90-91, 93, 97, 129,
135, 139
printing, 7, 30, 38, 42-43, 50-51, 58,
65, 67-69, 88, 90-91, 96
renaming, 72
running, 7, 11, 13, 15, 17, 19-21, 23-
30, 33-34, 37-42, 44-45, 47, 54-55,
59-60, 62, 65, 68, 72-73, 78, 83-84,
88-90, 94, 101, 105, 109-110, 116-
118, 128-129, 135, 139-144, 163,
185-186, 198, 213-214
saving, 26-27, 29, 31, 39, 128, 210
stopping, 21, 61, 74, 82, 84-85, 110,
140-143, 155, 160, 174, 186, 197
PUBLIC statement, 189

BRONZE Edition Guide

Quitting, 13, 31, 132, 188, 201-204
Quote mark, 30, 39, 44, 65, 79, 158,
186, 190, 196

RAD function, 179

Raising to a power (See Arithmetic
operators)

Random files (See Files)

RANDOMIZE statement, 61-62, 163,
179

READ statement, 74-75, 77-79, 99,
159, 163, 183, 188, 197

Reclaiming memory (See Memory)

Record files (See Files)

RECSIZE clause (See Open-clause)

RECTANGLE, 120-121, 132, 152

Redimensioning, 170

Relational operators, 52, 189

REM statement, 163

REMAINDER function, 179

RENAME command, 196

Renaming files (See Files)

REPEATS$ function, 179

Repeating statements (See Loops)

Reserved words, 193

RESET statement, 87, 91

Resolution (See Graphics resolution
and Pixels)

RESTORE statement, 81, 163

RETURN (See CHAIN statement)

Return key, 19, 21, 23-24, 28, 30, 37,
45, 59, 73-74, 205

RETURN statement, 45

RND function, 61-62, 179

ROTATE transformation (See
Transformations)

ROUND function, 180

RTRIMS$ function, 180

RUN command, 21, 69, 198

Run menu, 21, 24, 67, 141, 143, 204-
206, 209-210

Running programs (See Programs)

RUNTIME function, 180

SAVE command, 29

Saving
files (See Files)
images (See BOX KEEP statement)
programs (See Programs)

Index

screens, 124
workspaces (See STORE command)
SCALE transformation (See
Transformations)
Scientific notation (See Exponential
notation)
Scope, 10
Screen
clearing, 124-125, 153
coordinates, 187
editor, 11, 83, 85
modes (See Screen modes)
scrolling, 18
Screen modes (See also individual
modes)
default, 122, 165
determining, 149
graphics, 122-124
Scripts
files (See Files)
startup, 134
Scroll bar
Searching and replacing (See
CHANGE and TRY commands)
SEC function, 180
Secant function (See SEC function)
SELECT CASE structure, 64, 103,
147, 164, 192
Selecting text (See Text)
Semicolon (See Print separators)
SENSITIVE, 74-75, 130, 132
SET statements
BACK, 149, 164
BACKGROUND COLOR (See SET
BACK statement)
COLOR MIX, 124, 149
COLOR, 122-124, 149, 164-165, 194
CURSOR, 149
DIRECTORY, 149
MARGIN, 43, 148, 150
MODE, 149, 165
NAME, 149
POINTER, 150
RECORD, 150
RECSIZE, 150
TEXT JUSTIFY, 129, 149
WINDOW, 119-124, 126-130, 149,
165, 187, 200

ZONEWIDTH, 43, 148, 150
SGN function, 108, 180
SHARE statement, 200
Shared variables (See Variables)
SHEAR transformation (See
Transformations)
SHIFT transformation (See
Transformations)
Signum function (See SGN function)
Simple-statement, 157
SIN function, 180
Sine function (See SIN function)
SINH function, 180
SIZE function, 181
Slash operator (See Arithmetic oper-
ators)
SOUND statement, 137, 165
Source window, 27-29, 75
Splitting lines, 28
Square root function (See SQR func-
tion)
SQR function, 181
Stand-alone programs (See
Applications)
Startup file (See Scripts)
Step size, 48-49
Stopping a program run (See
Programs)
STOP statement, 61-62, 165
STR$ function, 168, 181
Strings
as arguments, 172, 175, 177, 182
in arrays, 94, 169-170, 176-177,
182,192
concatenating (See Concatenation)
as constants (See Constants)
converting to numbers (See VAL
and NUM functions)
expressions (See Expressions)
formatting, 55, 178, 183
joining (See Concatenation)
maximum length, 53, 176
quoted, 43, 79, 88, 153, 186
substrings, 40
unquoted, 153, 160
as variables (See Variables)
Structures (See individual struc-
tures)
STRWIDTH function, 181

255

SUB structure, 148, 155, 166
Subdirectories (See Directories)
Subroutines
built-in, 151
external, 110-113, 126, 156
internal, 111, 126
invoking, 45, 104-106, 112, 128,
153, 166, 173, 192
as structures, 103, 166, 192
Subscripts
lower bound, 175
range of, 173
upper bound, 182
Substrings (See Strings)
Subtraction (See Arithmetic opera-
tors)
Switching directories (See
Directories)
Switching disk drives (See Disk
Drives)
Switching files (See Files)
Switching modes (See Screen modes)

TAB function, 43, 181
TAN function, 181
Tangent function (See TAN function)
TANH function, 168, 182
TD_LINEINPUT, 45
Text
changing, 75
copying, 71, 73
cursor (See Cursor)
cutting, 71-72
deleting, 71, 205
files (See Files)
finding, 7, 15, 28, 33-34, 42, 49, 54-
55, 59, 67, 69, 71, 73-75, 80, 83, 87,
89,93, 95, 101, 103, 105-107, 111,
119, 123, 125, 130-132, 139, 141,
169, 185-187, 189, 192-194, 196-
198, 201, 204, 209-215
including, 75, 196

justification (See SET TEXT JUS-
TIFY statement)

keeping, 75

modes (See Screen modes)
output, 38, 129, 153

pasting, 71,73

256

selecting, 28, 71-73, 75, 205
TEXTEDIT, 11, 121-122, 124-125,
130-134, 151
text editor
LINE, 18,73, 85, 187
TIME function, 182
Time, setting, 34, 141
TIMES function, 182
Timing a program (See Programs)
TRACE utility
Transformations
and BOX statements, 127, 155
combining, 128
and DRAW statements, 126-128,
155, 160
on pictures, 126, 128, 160
ROTATE, 126-128, 154
SCALE, 154-155
SHEAR, 126-127, 154-155
SHIFT, 126, 128, 154
Transpose (See TRN array function)
Trigonometric functions, 160
TRIMS function, 182
TRN array function, 169, 182
TRUNCATE function, 182

UBOUND function, 182
UCASES function, 183
Undo command, 71, 204

UNPACKB function, 151

Unquoted strings (See Strings)

UNTIL (See DO loop)

Upper bounds (See Subscripts)

USE statement, 166

USING (See PRINT USING state-
ment)

USINGS function, 183

VAL function, 183, 195, 198, 200
Variables
global, 109-110, 112
index, 47-51, 189
local, 110-112, 116, 141, 158-159,
200
numeric, 38-39, 43, 49, 60, 78-79,
93-94, 144, 157-158, 160, 163,
188, 191, 200
public, 200

shared, 105, 109, 111-112, 116, 200

string, 38-40, 43, 65, 79, 94, 124,
158, 160, 163, 176, 191, 200
Vectors (See Arrays)

BRONZE Edition Guide

WHEN ERROR IN, 188, 195
WHEN structure, 140, 151, 166, 185,
195
WHILE (See DO loop)
WINDOW statement, 119-120, 126-
127, 165, 187, 200
Windows
activating, 19, 117
clearing, 149, 153
closing, 84, 131, 133, 142, 188, 204
coordinates, screen, 187
coordinates, window, 119, 126-127,
165
framing, 128
opening, 27, 123, 139, 141, 187,
205
switching, 19
WITH (See CHAIN statement and
DRAW statement)

ZER array constant, 183
Zonewidth, 43, 148, 150

01/2002

	Table of Contents
	Using this Guide
	1: Introduction to Programming
	2: Why True BASIC?
	3: Installation and Using the TB Editor
	4: Writing and Running Your First Program
	5: Modifying and Saving Programs
	6: Constants, Variables and Expressions
	7: More on Input and Output
	8: Loop Structures
	9: Decision Structures
	10: Formatting & Printing Your Program
	11: Editing Hints & Shortcuts
	12: Using & Storing Data
	13: Arrays & Matrices
	14: Functions & Subroutines
	15: Libraries
	16: Graphics
	17: Sound & Music
	18: Correcting Errors & Debugging
	Appendices
	A: ASCII Character Set
	B: TB Statemetns
	C: Built-In Functions
	D: Error Messages
	E: Making your own DO Programs
	F: PRINT USING Statement
	G: True BASIC File Types
	H: BASIC to True BASIC Converter

	Index

