

Introduction

The Statistics Graphics Toolkit. It provides you with the tools you need to write good-
looking, accurate software that has just the features you want. Use the toolkit routines
both for doing statistical calculations and for graphic the results, or present the results
in textual form. Let the routines handle the details; you just link them together with
True BASIC statements.

There are hundreds of routines in this toolkit, and we include the source code for each
one so that you can learn how theyy work and modify them to suit your needs. There
are also many complete demo programs supplied with the toolkit to show you how to
apply them.

Use the capabilities of True BASIC to import data from other applications, such as
spreadsheets, into your statistical package.

Included in this Package
STAT1LIB Main statistics toolkit
STAT2LIB Statistical graphics
STAT3LIB Nonparametric statistics
STAT4LIB ANOVA, Fits, Regression
FRAMELIB Low-level framing routines
MSGLIB Mini-Scientific Graphics Toolkit
PRTLIB Low-level routine to print screen
Demo programs

© 2001 - True BASIC Inc. 04047-0501 USA. All rights reserved.

TRUE BASIC REFERENCE SERIES:

Statistics Graphics
Toolkit

Installing the Statistics Graphics Toolkit
Your Statistics Graphics Toolkit disk is not copy-protected, so you can easily install it
on your hard disk or local network. We suggest that you create a directory (“folder”)
especially for this Toolkit, and copy the entire diskette into this directory.

If you install this Toolkit on a network, please respect our intellectual property rights
and call us to arrange for a site license.

This Toolkit includes a file named MSGLIB, a stripped-down form of the Scientific
Graphics Toolkit file SGLIB. If you already own the Scientific Graphics Toolkit, change
the LOADSTAT and STAT2LIB files to refer to your copy of SGLIB rather than
MSGLIB. Then recompile STAT2LIB and replace its old compiled version.

Important Notes
Statistics is a large and complicated branch of learning, and this manual makes no
attempt to introduce statistical concepts or explain when and how the various statisti-
cal tests should be used. We strongly recommend that you consult a good statistics
book before using tests that you don’t fully understand.

Notation
The notation used in statistics is not really standardized. What some people call the
phi coefficient, for example, is called Cramer’s V by others. We have chosen the most
common names for use in this Toolkit; to attempt to satisfy all the different notations
would be impossible.

Calculations
Worse yet, even the tests themselves are not quite standardized. For example, there
are several ways to compute a chi-square statistic. Wherever possible, we have chosen
the most common definition of a test as the default but have supplied Set routines that
let you switch to other methods.

———————————————————————————————————————

x NOTE: If the results given by a routine in this Toolkit do not match
what you expect, the Toolkit may be using a more advanced algo-
rithm than given in your reference books. Nonetheless, check your
data carefully!

———————————————————————————————————————

2 Statistics Graphics Toolkit

01/01

Two-Tailed Probabilities
All probabilities computed by this Toolkit are two-tailed. If you want the one-tailed
probability, divide by two.

Using This Toolkit
This Toolkit is designed for general statistics use, with particular attention to graphics
and to nonparametric statistical measures. Since it’s a large package, we give a
“roadmap” below that describes which routines can be useful for given types of work.

Descriptive Statistics
Stats and GroupedStats for general statistics such as mean, standard deviation, etc.
DataToFreq, TableToFreq, PlotHist, PlotCum, etc., for histograms and frequency poly-
gons. PlotScat for scatter plots.

Exploratory Data Analysis
LetterValues and BoxPlot. PlotResid and PlotObsResid for graphing residuals. The
section on “Data Transforms.” ScatPlot with SetLineType(“median”) for resistant line-
fitting and SetGraphType(“logy”) for semi-log scales. Friedman for nonparametric two-
way ANOVA. The entire “Nonparametric Tests” section.

Regressions and ANOVA
The “Line-Fits, Regressions, and ANOVA” section. PlotScat, PlotObs, and their residu-
als versions. Friedman and KruskalWallisH for nonparametric tests.

Simulations
The “Simulated Distributions” and “Sampling” sections. The “Data Transforms” sec-
tion may also be useful.

Introduction 3

01/01

References
The books listed below were used in preparing the Statistics Graphics Toolkit, so you
can be sure that their concepts and notations come close to matching those in this
Toolkit.

Statistics, by D. Freedman, R. Pisani, and R. Purvis. W. W. Norton, 1978. A slow-
paced, gentle introduction.

Beginning Statistics with Data Analysis, by F. Mosteller et al. Addison-Wesley,
1983. Clear introduction with interesting examples.

An Introduction to Mathematical Statistics and its Applications, by R. Larsen and
M. Marx. Prentice-Hall, 1986. Good textbook for college mathematics courses.

Mathematical Statistics with Applications, by W. Mendenhall et al. Duxbury
Press, 1986. Another good math textbook.

Understanding Robust and Exploratory Data Analysis, edited by D. Hoaglin, F.
Mosteller, and J. Tukey. Wiley 1983. Superb introduction to modern “robust”
statistics.

Exploring Data Tables, Trends, and Shapes, edited by D. Hoaglin, F. Mosteller,
and J. Tukey. Wiley 1985. Advanced topics in modern “robust” statistics.

Practical Statistics for the Physical Sciences, by L. Havilcek and R. Crain. Ameri-
can Chemical Society, 1988. Introduction to statistics for scientific work.

Statistical Analysis for Business and Economics, by D. Harnett and J. Murphy.
Third edition, Addison-Wesley, 1985. A thorough textbook.

Basic Statistics, by T. Kurtz. Prentice-Hall, 1963. A clear introductory textbook to
mathematical statistics.

Applied Statistics: A Handbook of Techniques, by L. Sachs. Springer-Verlag, 1982.
A good, thorough collection of descriptions and techniques.

Nonparametric Statistical Methods, by M. Hollander and D. Wolfe. Wiley, 1973.
Methodical and relatively easy to read.

Nonparametric Statistical Inference, by J. Gibbons. McGraw-Hill, 1971. Fairly
thorough and rather advanced.

Classical and Modern Regression with Applications, by R. Myers. Duxbury Press,
1986. Fairly thorough book on linear and nonlinear regression. Quite readable.

4 Statistics Graphics Toolkit

01/01

Getting Started

Let’s begin with some examples. First, use the script LOADSTAT command from the
Command window to bring the compiled versions of FRAMELIB and STATLIB into
memory. This is not necessary, but makes your programs start much faster.

Loading will take some time. When that’s done, call up STATS from your disk and run
it. It prints some statistics about the sizes of files in a directory:

Figure 43.01: Output of the STATS program.

———————————————————————————————————————

x NOTE: Numbers shown in this manual may not exactly match the
results given on your computer since accuracy of calculations
depends on your computer’s floating point arithmetic accuracy.

———————————————————————————————————————
STATS has three important parts. The first is the library statement which names
STAT1LIB. This lets you use the Statistics Graphics Toolkit even if you haven’t loaded
it before you begin your session.

The second is the mat read statement and its associated data. This reads the dataset
into an array.

The last is the call PrintStat statement, which prints statistics about the data in
window #0.

Getting Started 5

01/01

Graphing A Histogram
Now call up STATS2 from your disk and run it. It graphs a histogram of the same data:

Figure 43.02: Output of the STATS2 program.
———————————————————————————————————————

x NOTE: The illustrations in this manual may not exactly match what
appears on your screen. Since the Toolkit automatically adjusts
graphs to best fit your computer’s screen resolution, it could pick dif-
ferent scales for some graphs. But the illustrations will give you a
good idea of what to expect.

———————————————————————————————————————
STATS2 is like STATS but has three differences: the statements that draw the his-
togram.

The first is call SetHistoColor, which sets the colors of the histogram’s bars.

The second is call SetText, which defines the graph’s title and horizontal and vertical
labels.

The third is call PlotHist, which draws the histogram with bars running from 0 to 10K
at centerpoints that are 512 units apart. The call to PlotHist also contains the color

6 Statistics Graphics Toolkit

01/01

scheme for this graph: the title color, frame color, and data color.

Looking at the histogram, you can immediately spot several facts that weren’t appar-
ent from the printed statistics. For instance, the distribution of file lengths isn’t even
close to a normal distribution!

Note that many files are bigger than 10K bytes; they are represented by the “hi” bar on
the histogram. Such “hi” (and “lo”) bars contain all the points outside the chosen range
— just so you don’t forget that they exist.

Graphing a Scatter Plot with Least-Squares Fit
Now let’s turn to graphing data points. Call up the program SCAT from your disk, and
run it. Its output looks like this:

Figure 43.03: Output of the SCAT program.

This program first reads the data points’ coordinates into the x and y arrays.

Then it sets up for the scatter plot. SetLS turns on automatic least-squares curve
fitting. SetConfBand turns on confidence bands for the least-squares line; here the
bands are for the 95% confidence interval, drawn in line style 3 (dotted). SetText gives
the graph’s title and labels.

Getting Started 7

01/01

Finally, PlotScat draws the scatter plot. Each point is marked in point style 10 (solid
block). Line style 0 means that connecting lines between the points are omitted. And
finally, PlotScat also gives the color scheme.

Multiple Scatter Plots
It’s equally easy to plot several datasets on the same graph. Call up SCATMANY from
your disk, and run it.

Figure 43.04: Output of the SCATMANY program.

This program plots the number of home runs hit by the leading batters in the National
and American baseball leagues between 1920 and 1940. A rather interesting pattern
emerges.

SCATMANY is much like SCAT except that the x() and y() arrays are two dimensional
so they can hold information about multiple datasets. In addition, the program defines
a legend$() array that holds the legends for the two datasets: “National League” and
“American League.”

PlotManyScat draws all the datasets, picking nice colors and point styles for each set.

As always, you should be wary of blithely fitting least-squares lines to data! Compare

8 Statistics Graphics Toolkit

01/01

the same data, shown below, with lines fitted by a “resistant” technique that’s less
influenced by outlying data points. Now — do you believe either of these linear fits?

Figure 43.05: Output of the SCATMED program.

Log and Semi-Log Graphs
This Toolkit also makes it very easy to get log and semi-log graphs of your data. For an
example, call up SCATLOG and run it.

Figure 43.06 shows the results of SCATLOG. It displays two graphs side-by-side. Both
show the same exponential dataset. The left graph uses normal X/Y coordinates; the
right uses a log-y scale. It takes just one statement, call SetGraphType, to switch to log
graphs.

Getting Started 9

01/01

Figure 43.06: Output of the SCATLOG program.

A Complicated Example
Now let’s try something more complicated. Call up OBS from your disk and run it. It
shows two views of the same data points (car stopping distances):

The left window shows the raw data points, with a polynomial fit superimposed. This
polynomial is of degree 2 — a parabola — but any degree can be used. The right win-
dow shows a least-squares linear fit applied to the square root of the y measure (stop-
ping distances).

OBS has three major parts. First, it reads data into arrays. There are missing values in
this data, so it reads the data as text, then calls TextToNum2 to convert the data, with
missing values, to numbers.

Second, it opens the left window. SetDataStyle tells what point style to use for the raw
data points. SetPolyFit gives the degree of polynomial to fit. And PlotObs actually
draws the graph.

Third, the program opens the right window. It turns off polynomial fitting and turns on
least-squares linear fitting. Then it calls SqrTran2 to apply the square root transform
to the y(,) array. Finally it draws the resulting graph.

10 Statistics Graphics Toolkit

01/01

Figure 43.07: Output of the OBS program.

An ANOVA Table
The Statistics Graphics Toolkit can also handle ANOVA (analysis of variance) prob-
lems. Call up the ANOVA program from your disk and run it.

Figure 43.08: Output of the ANOVA program.

This program first mat reads three columns of data into a string array d$(,); it uses “?”
to represent missing data elements, since the columns have different lengths.

Getting Started 11

01/01

Then it converts d$(,) to a numeric array d(,) by calling TextToNum2.

Finally, it uses PrintAnova to print the ANOVA table, passing channel #0 for output —
the current window.

Multiple Linear Regression
Multiple linear regressions are just as easy. Call up MULTIREG and run it.

Figure 43.09: Output of the MULTIREG program.

———————————————————————————————————————

x NOTE: If you are using a small Mac screen and find that the right
portion of this output does not show on your screen, switch to the
small Output font.

———————————————————————————————————————
It has only two important statements. It mat reads data into an array, then calls Print-
MultiRegress.

“Robust” Statistics
The Statistics Graphics Toolkit contains a particularly large collection of nonparamet-
ric and other “robust” statistical tools. Nonparametric techniques have been in com-
mon usage for the past forty years; the newer robust techniques — such as “box plots”
— are just now coming into general use.

For a quick example, call up FANCYBOX from your disk and run it. It displays box
plots of the ten largest cities in each of 16 countries using a semi-logarithmic scale.

12 Statistics Graphics Toolkit

01/01

Figure 43.10: Output of the FANCYBOX program.

The Grand Tour
The Statistics Graphics Toolkit can draw many more kinds of graphs than we’ve shown
here. For a grand tour, call up STATDEMO from your disk and run it. It’s an endless
loop, so stop the program when you’ve seen enough.

Getting Started 13

01/01

Data Management

This section describes routines that make it easy to manipulate rows and columns of
matrices, sort a vector, read and print the “missing” value, and import data from other
programs — for example, numbers that contain commas or dollar signs.

Missing Values
By default, the Statistic Graphics Toolkit sets aside one number to be the “missing
value” so you can use datasets that include missing points. If you want, you can change
which number is used for the missing value, or tell the Toolkit to disallow missing val-
ues entirely.

The missing value is preset to –9.9e99 and its text representation is preset to “?”.

SetHaveMissing (f)
If f = 0, disallow missing values. That is, there will be no special number or string that
stands for a “missing” data item. Otherwise, there will be a missing value; see SetMiss-
ing and SetMissingText to control the numeric and string forms of the missing value.

AskHaveMissing (f)
Return 1 if missing values are accepted, 0 otherwise.

SetMissing (n)
Use n as the missing value. Data items with this value will be ignored whenever statis-
tics are being computed; it’s as if they don’t exist in the dataset. You can use any num-
ber n as the missing value.

AskMissing (n)
Return the current missing value in n.

SetMissingText (s$)
Change the missing text value. By default, the missing text is “?”; that is, missing val-
ues are converted to question marks by StatStr$, and question marks stand for the
missing value in StatVal.

AskMissingText (s$)
Return the current value of the missing text.

14 Statistics Graphics Toolkit

01/01

Conversion Between Strings and Numbers

This section describes routines that convert between strings and numbers. They cor-
rectly convert missing values as well as standard numbers.

In addition, they ignore dollar signs, commas, and asterisks when converting strings to
numbers, to make it easier to import data.

def StatVal (n$)
Like True BASIC’s Val function, StatVal converts a string to a number. However, it
ignores spaces, dollar signs, commas, and asterisks. If the “missing” text is a null
string, it will convert any illegal string into the missing value. But if the missing text is
not null, it will convert only that string into the missing value; all other illegal strings
will get an error message.

For example, StatVal(“$3,230”) = 3230. If the missing text is the null string, then Stat-
Val(“hi”) gives the missing value. If the missing value is “?”, then StatVal(“?”) gives the
missing value but StatVal(“hi”) gives an error.

Exceptions:
735 Can’t convert to number or missing value: xxx

def StatStr$ (n)
Like True BASIC’s Str$ function, StatStr$ converts a number to a string. However, if
the number is the missing value, StatStr$ produces the “missing” text instead as Text-
ToNum.

TextToNum (n$(), n())
TextToNum converts a string array n$() to the corresponding numeric array n() by
using StatVal on each element. The two arrays needn’t have the same bounds; the tar-
get array’s lower bound is left untouched and its upper bound adjusted.

Exceptions:
735 Can’t convert to number or missing value: xxx

NumToText (n(), n$())
NumToText converts a numeric array n() to the corresponding string array n$() by
using StatStr$ on each element. The two arrays needn’t have the same bounds; the tar-
get array’s lower bound is left untouched and its upper bound adjusted.

Conversions Between Strings and Numbers 15

01/01

TextToNum2 (n$(,), n(,))
TextToNum converts a string array n$(,) to the corresponding numeric array n(,) by
using StatVal on each element. The two arrays needn’t have the same bounds; the tar-
get array’s lower bounds are left untouched and its upper bounds adjusted.

NumToText2 (n(,), n$(,))
NumToText converts a numeric array n(,) to the corresponding string array n$(,) by
using StatStr$ on each element. The two arrays needn’t have the same bounds; the tar-
get array’s lower bounds are left untouched and its upper bounds adjusted.

GetStatFile (#n, n$(,))
GetStatFile reads a text file full of statistics data into an array. The file #n must be
opened before you call GetStatFile by a statement such as OPEN #1: NAME “datafile”.
Each row and column of the text file data goes into the appropriate item of n$(,).

Each line of the text file is treated as a row. Blank lines are ignored. Columns are sepa-
rated by either a tab character, or two or more spaces. Lines in the file may have differ-
ent numbers of columns; short rows are “left justified” in the n$(,) array. Thus if the
first line in a file contains three columns but some line within the file contains only one
data item, the last two n$(,) entries for that line are the null string. For example:

File n$(,)
Name Age Weight “Name” “Age” “Weight”
Allen 34 185 “Allen “34” “185”
Byron 170 “Byron” “170” ““
Darcy “Darcy” ““ ““

These rules let you read SPSS files, Excel files, Lotus 1-2-3 files, and text files created
by most common application programs.

Note that all data items are taken as strings; thus you can use files that include col-
umn headers, extraneous information, etc. To convert n$(,) to a numeric array, chang-
ing all nondata items to missing values, try:

call SetHaveMissing(1)
call SetMissingText(““)
call TextToNum2(n$(,), n(,))

See the program GETFILE on your disk for an example.

16 Statistics Graphics Toolkit

01/01

Exceptions:
7004 Channel isn’t open.
8011 Reading past end of file.
8501 Must be text file.

GetRow (a(,), r, v())
Get a row r of the 2-D array a(,) into the vector v. This redims v to have Lbound = 1.

GetCol (a(,), c, v())
Get a column c of the 2-D array a(,) into the vector v. This redims v to have Lbound
= 1.

AppendArray (a(), b())
Concatenation for vectors: a() = a() & b(). In other words, the elements of b() are added
to the end of a().

AppendRow (a(,), r())
Add a new row r() at the bottom of a 2-D array a(,). The row sizes must match unless
the 2-D array has no elements, in which case it will simply be changed to match the
new row.

Exceptions:
742 New row doesn’t match array’s shape in AppendRow.

AppendCol (a(,), c())
Add a new column c() at the right side of a 2-D array a(,). The column sizes must match
unless the 2-D array is empty, in which case it will simply be changed to match the new
column.

Exceptions:
743 New column doesn’t match array’s shape in AppendCol.

SortAndCount (d(), s(), nm, nnm)
Sort d(), placing the sorted results into s(). Missing items will be removed, so s() may be
smaller than d(). The d() array will not be changed. The number of missing items will
be in nm, and non-missing items — i.e., Size(s) — will be in nnm.

Conversions Between Strings and Numbers 17

01/01

Making Graphs

The Statistics Graphics Toolkit makes it easy to draw many kinds of graphs. This sec-
tion describes what all these graphs have in common.

The Frame. A graph’s frame includes a rectangular box around the canvas, a title, a
horizontal and a vertical label, some marks along the edge of the box, and ticks which
join the marks to the box. Complicated graphs can also include legends which identify
different datasets. Legends usually go in the frame, just below the title, but you can
also put them elsewhere.

The Canvas. The canvas lies inside the frame. It’s where the data is plotted.

A Color Scheme. Your color scheme tells how the title, frame, and data display
should be colored.

Figure 43.11: Parts of a Statistics Graph.

Titles and Labels
Before you draw a graph, you should specify its title and horizontal and vertical labels
by calling SetText.

18 Statistics Graphics Toolkit

01/01

Title
Legend

Vertical
Marks

Horizontal Label

Vertical
Label

Horizontal Marks

Canvas

SetText (title$, hlab$, vlab$)
SetText sets the current text for the title, horizontal label, and vertical label. If any of
these texts are null strings, that space is added to room for the data display.

AskText (title$, hlab$, vlab$)
AskText returns the current texts of the title, horizontal label, and vertical label. It
returns the null string for those labels which don’t yet have values.

Color Schemes
Whenever you draw a graph, you must give a color scheme. It tells what colors to use
for the graph’s title, frame, and data.

Usually a color scheme gives at least three colors. The first is the title’s color. The sec-
ond is the frame’s color. (The frame includes the horizontal and vertical labels.) And
the remaining colors are used, in sequence over and over, for the data values.

For example, a color scheme “white blue red yellow green” gives a white title, blue
frame, and data colors which cycle from red to yellow to green and back to red again.

If you give fewer than three colors, the last color is used to fill out the remaining colors.
So the color scheme “red green” gives a red title, green frame, and green data. The color
scheme “white” draws everything in white. The null color scheme ““ simply uses the
current foreground color for everything.

What Color Names Can You Use?
You can use any True BASIC color in the color scheme. In particular, you might want
to use “background” if you’ve used SetCanvas to change the graph’s canvas color. Then
you can use the real background color to get a reverse-video effect.

You can also use colors such as “1” or “13” to access any of your computer’s colors, even
if they lack True BASIC names. For example, the color scheme “white 1 12” gives a
white title, frame in color #1, and data in color #12.

Canvas Colors
The SetCanvas routine controls the canvas color. For example, call SetCanvas(“red”)
gives you a red canvas. As in color schemes, you can use numbers like “13” as well as
color names. Once you’ve set the canvas color, all graphs will use this color until your
program stops or you call SetCanvas again. For more information, see the “Advanced
Graph Control” section.

Making Graphs 19

01/01

Your Computer’s Modes
Most computers have several graphics modes. You can use the Statistics Graphics
Toolkit in any graphics mode. If you don’t pick a mode, the Toolkit will switch to mode
“GRAPHICS” before it begins to draw. (Exception: it will use an EGA mode on IBM
PCs and PS/2s with EGA cards.)

To control the mode, use True BASIC’s set mode statement to switch to that mode
before you call any Toolkit routine. For example, use the set mode “medres” statement
on an IBM PC with EGA adaptor to draw in the medium resolution mode.

Many graphs cannot be drawn in low or medium resolution. The textual labels don’t fit
in the space allowed. Therefore, you may wish to switch to a high resolution before
drawing a graph. On an IBM PC with a Color Graphics Adaptor, for instance, you may
wish to set mode “hires” before you call any Toolkit routines.

Point and Line Styles
Point styles are used for graphing data points. The line styles can be used to connect
data points, add confidence bands, or show fitted curves. You can also use GraphPoint
and GraphLine to draw points and lines wherever you wish. They’re described in the
“Advanced Graph Control” section.

Available Point Styles
Point styles are numbered from 1 to 13. You may also use style 0, which means that no
point should be drawn. The visible styles are:

Style Appearance Style Appearance
1 dot 8 down triangle
2 plus 9 diamond
3 asterisk 10 solid box
4 circle 11 solid up triangle
5 X 12 solid down triangle
6 box 13 solid diamond
7 up triangle

20 Statistics Graphics Toolkit

01/01

Available Line Styles
Line styles are numbered from 1 to 4. You may also use style 0, which means that no
line should be drawn. The visible styles are:

Style Appearance
1 solid
2 dashed
3 dotted
4 dash-dotted

AskMaxPointStyle (n)
AskMaxPointStyle returns the maximum number of point styles currently supported
by the Statistics Graphics Toolkit. At present, this number is 13. See the previous sec-
tions in this section for more information.

If more point styles are added to later versions of the Toolkit, this routine will return a
larger number.

AskMaxLineStyle (n)
AskMaxLineStyle returns the maximum number of line styles currently supported by
the Statistics Graphics Toolkit. At present, this number is 4. See the previous sections
in this section for more information.

If more line styles are added to later versions of the Toolkit, this routine will return a
larger number.

Printing A Graph
Every computer has a different way to print its screen on a printer. Usually you must
press some combination of keys on the keyboard, and the computer then takes a snap-
shot of the screen onto the printer. See your True BASIC User’s Guide to find out how
to do this on your computer.

You can also take a snapshot from within a program. Just add library “prtlib” to your
program. Then call PrtSc whenever you want to print the screen image.

———————————————————————————————————————

x NOTE: Many computers require some kind of special preparation
before you can print a picture on your printer.

———————————————————————————————————————

Making Graphs 21

01/01

Often you must run some utility program before you start running True BASIC. (On
the IBM PC or compatibles, Call PrtSc simply mimics the Shift-PrtSc keystroke combi-
nation, and will not work without a driver installed.) Read your computer’s Owner’s
Manual to find out what you must do to capture a screen on your operating system.

22 Statistics Graphics Toolkit

01/01

Simple Statistics

This section describes how to find simple descriptive statistics about a set of numbers:
the mean, median, root mean square, and so forth.

Stats (data(), st())
Analyze a dataset data() and return the array st() full of statistics. You can use the fol-
lowing functions to index this st() array; see the “Subscript Functions” section for more
help with using these functions. If there are no non-missing elements in data(), Stats
gives an error message.

st_n number of elements
st_nm number of missing elements
st_nnm number of non-missing elements
st_sum sum of items
st_mean mean (average)
st_ssq sum of squares
st_var variance
st_sd standard deviation
st_sem standard error of the mean
st_med median
st_low lowest value
st_hi highest value
st_range range
st_rms root mean square (quadratic mean)
st_md mean absolute deviation
st_cvar coefficient of variance
st_wmean Winsorized mean

By default, the variance, standard deviation, and coefficient of variance are computed
with denominator equal to the number of non-missing items minus 1, nnm–1 . To use
nnm instead, call SetSD(0) before calling Stats.

GroupedStats (freq(,), st())
GroupedStats analyzes a frequency dataset freq(,) and returns the same st() array as
Stats. Frequency datasets give rougher values than raw datasets since information
was lost in grouping the data. Winsorized means aren’t defined for grouped data, so the

Simple Statistics 23

01/01

simple mean is returned in its place. Also, the extreme ends of the appropriate inter-
vals — not the centerpoints — are returned as the lowest and highest values.

By default, grouped statistics are computed without Sheppard’s correction. If you wish
to use the correction, call SetSheppard(1) before calling GroupedStats. As with Stats,
call SetSD(0) before calling GroupedStats if you want to compute variance, etc., with
denominator n instead of n–1.

MeanSD (data(), mean, sd)
MeanSD returns the mean and standard deviation sd of a dataset data(). You can get
the same information from Stats but this is often handier. Call SetSD(0) to compute
the standard deviation based on denominator n instead of n–1.

GeoMeanSD (data(), mean, sd)
GeoMeanSD returns the geometric mean and standard deviation sd of a dataset
data(). These values are only defined for datasets containing strictly positive numbers.
Call SetSD(0) to compute the standard deviation based on denominator n instead of
n–1.

HarMean (data(), mean)
HarMean returns the harmonic mean of a dataset data(). Note that harmonic means
are defined only for datasets containing strictly positive numbers.

Modes (data(), n, modes(), count)
Modes returns all the modes of the dataset data() in modes(), and n equal to the num-
ber of modes. If there are no modes, n = 0.

Otherwise n = Size(modes) and each element of modes() is a mode of the dataset. Count
tells the number of occurences of the modal value(s).

GroupedModes (freq(,), n, modes(), count)
GroupedModes returns all the modes of the frequency dataset freq(,) in modes(), and n
equal to the number of modes. If there are no modes, n = 0.

Otherwise n = Size(modes) and each element of modes() is a mode of the frequency
dataset, i.e, the centerpoint of an interval that has a high count. Count gives the fre-
quency value of the modal centerpoint(s).

24 Statistics Graphics Toolkit

01/01

PrintStats (#n, data())
Print a table of the Stats information about a dataset to channel #n. Pass #0 to print in
the current window.

The first line displays N = nnm, the number of non-missing elements, with the number
of missing elements added afterwards in parentheses.

Output of the STATS program.

PrintLongStats (#n, data())
Print a table of the Stats information about a dataset, plus its modes, skew, and kurto-
sis, to channel #n. Pass #0 to print in the current window. This routine uses the
moment definitions of skew and kurtosis, and is significantly slower than PrintStats
since they take some time to compute.

Output of the LONGSTAT program.

PrintGroupedStats (#n, freq(,))
Print a table containing the GroupedStats information about a frequency dataset, plus
a list of its modes, to channel #n. Pass #0 to print in the current window.

Simple Statistics 25

01/01

LetterValues (data(), sorted(), lv())
Return the letter values of the dataset data() in lv() and the samples sorted into
increasing order in sorted(). You can use the following functions to index this lv() array;
see the “Subscript Functions” section.

See the BoxPlot routine below for a graphical picture of the letter values. The arrays
can all have different lower bounds; the lower bounds for sorted() and lv() are kept
intact, and their upper bounds adjusted.

lv_nnm number of non-missing elements
lv_med median
lv_lhin left hinge (roughly 1st quartile)
lv_rhin right hinge
lv_leig left eighth
lv_reig right eighth
lv_linf left inner fence
lv_rinf right inner fence
lv_louf left outer fence
lv_rouf right outer fence
lv_lout number of left outliers (to left of left extreme)
lv_rout number of right outliers (to right of right extreme)
lv_lext leftmost value inside left inner fence
lv_rext rightmost value inside right inner fence
lv_lmax smallest value
lv_rmax largest value
lv_tri Tukey’s trimean

The letter values are computed by first sorting the raw data. Definitions of the letter
values are: Median, as usual. Hinges, values whose positions are Int(median position
+ 1) / 2. Eighths, values whose positions are Int(hinge position + 1) / 2. Hinge spread,
difference between left and right hinges. Inner fences, 1.5 hinge-spreads out from the
hinges. Outer fences, 1.5 hinge-spreads out from inner fences. Outliers, values out-
side the inner fences. Extremes, the most extreme values that are not outliers. Max-
ima, outermost values. Trimean, (left hinge + 2 * median + right hinge) / 4.

26 Statistics Graphics Toolkit

01/01

BoxPlot (data(), col$)
Plot a “box-whisker” plot using the letter values of the dataset data(). The color scheme
col$ has the usual meaning; for instance, “red green blue” gives a red title, green
frame, and blue box plot.

A “+” marks the median. The box stretches from left hinge to right hinge. Whiskers
extend to the extremes. Outliers inside the outer fences are plotted as stars “*” those
outside as circles “o”. The vertical scale is meaningless. Call SetDataStyle to add the
data points.

Figure 43.13: Output of the BOXPLOT program.

ManyBoxPlot (data(,), names$(), col$)
Plot stacked “box-whisker” plots using letter values of the datasets data(,). Each col-
umn of data(,) is taken as an independent dataset, and gets its own box plot. The plot is
scaled so all data points are in the graph. Datasets need not have the same numbers of
elements; just pad short sets with missing values. Each dataset’s name is displayed
beside its plot. Pass names in the names$() array. Size(names$) must equal
Size(data,1).

The color scheme col$ has the usual meaning; for instance, “red green blue” gives a red
title, green frame, and blue box plot. If you give multiple data colors, the boxes are

Simple Statistics 27

01/01

drawn in that sequence of colors.

A “+” marks the median. The box stretches from left to right hinge. Whiskers extend to
the extremes. Outliers inside the outer fences are plotted as stars “*”; those outside as
circles “o”. By default, data points are not shown; call SetDataStyle to add the data
points.

Figure 43.14: Output of the MANYBOX program.

Advanced Options on Box Plots
By default, this Toolkit draws horizontal box plots. To get vertical boxes, just call
SetBoxVert(1) before drawing the box plot.

You can add “crossbars” to the whiskers by calling SetErrorBeam(p) where p is the
number of pixels wide each side of the bar should be.

See BOXVERT, on your diskette, for an example of a vertical plot with crossbars on the
whiskers.

28 Statistics Graphics Toolkit

01/01

Figure 43.15: Output of the BOXVERT program.

You can also use SetGraphType to get a semi-logarithmic scale, and SetBoxColor to
shade the box. See FANCYBOX, on your diskette, for an example of both options.

SetBoxColor (col$)
Change the color used for subsequent boxes. The new color col$ can be a True BASIC
color name such as “red” or a color number such as “1”. It will be used for the insides of
boxes; the outlines and whiskers are controlled by the graph’s color scheme. Pass ““ to
get uncolored boxes (the default).

AskBoxColor (col$)
The opposite of SetBoxColor. It returns col$ = the color used for subsequent box colors.

Skew, Kurtosis, and Moment Routines
Skew and kurtosis have various definitions: moment, Pearson’s first or second, quar-
tile, and percentile. This Toolkit includes routines for all, plus routines to find
“moments” about a dataset’s mean or an arbitrary origin.

Simple Statistics 29

01/01

SkewM (data(), skew)
Moment coefficient of skew: m3 / (sd^3) where m3 is the third moment about the mean.
See MomentAbout below for a definition of moments about a point.

Exceptions:
713 Can’t use SkewM with SD = 0.

Skew1 (data(), skew)
Pearson’s first coefficient of skew: (mean – mode) / sd. Note that this is chancy to use;
the mode often doesn’t exist or isn’t unique.

Exceptions:
708 Can’t use Skew1 with SD = 0.
709 Skew1 needs data with exactly one mode.

Skew2 (data(), skew)
Pearson’s second coefficient of skew. This is defined as (mean – median) / sd.

Exceptions:
710 Can’t use Skew2 with SD = 0.

SkewQ (data(), skew)
Quartile coefficient of skew: (Q3 – 2*Q2 + Q1) / (Q3 – Q1).

Exceptions:
711 Quartiles 1 and 3 equal in SkewQ.

SkewP (data(), skew)
Percentile coefficient of skew: (P90 – 2*P50 + P10) / (P90 – P10).

Exceptions:
712 Percentiles 10 and 90 equal in SkewP.
761 Need at least 99 data items for Percentiles.

KurtosisM (data(), k)
Moment coefficient of kurtosis: m4 / (sd^4) where m4 is the fourth moment about the
mean. See MomentAbout below for a definition of moments about a point.

Exceptions:
714 Can’t use KurtosisM with SD = 0.

30 Statistics Graphics Toolkit

01/01

KurtosisP (data(), k)
Percentile coefficient of kurtosis: .5 * (Q3 – Q1) / (P90 – P10).

Exceptions:
715 Can’t use KurtosisP with percentiles 10 and 90 equal.
761 Need at least 99 data items for Percentiles.

Moment (data(), r, mr)
Given r, and dataset data(), this computes the rth moment mr about the dataset’s mean.

Exceptions:
716 Moment ‘r’ must be a positive integer: r

MomentAbout (o, data(), r, mr)
Given r, an arbitrary origin o and dataset data(), compute the rth moment mr about o
as shown by the formula where n = Size(data).

n
Σ (data(i) – o)r

i = 1
————————

n
Exceptions:

716 Moment ‘r’ must be a positive integer: r

Quartiles and Percentiles
These routines return the quartiles and percentiles of a dataset.

Quartiles (data(), q1, q2, q3)
Quartiles of a dataset data(), returning the first quartile in q1, second (median) in q2,
and third in q3. Your dataset must contain at least 3 non-missing items. Quartile val-
ues will be interpolated when the quartile falls between two data items.

Exceptions:
762 Need at least 3 data items for Quartiles.

Percentiles (data(), p())
Percentiles of a dataset data() in the array r() which is automatically redimensioned to
p(1:99). Thus, for example, p(95) will contain the 95% percentile value. Your dataset

Simple Statistics 31

01/01

must contain at least 99 non-missing items. Percentile values will be interpolated
when the percentile falls between two data items.

Exceptions:
761 Need at least 99 data items for Percentiles.

Set/Ask Routines
These routines govern the workings of other routines described in this section.

SetSD (f)
Control whether variance, standard deviation, and coefficient of variance are com-
puted by using n, the number of non-missing items, in the denominator, or the more
common n – 1.

By default, this Toolkit uses n – 1. Call SetSD with f=0 to use n, or f=1 to revert to
using n – 1.

AskSD (f)
Opposite of SetSD. Returns 0 if variance calculations use n in the denominator, 1 if
they use n – 1.

SetSheppard (f)
SetSheppard controls whether or not Sheppard’s correction is used when calculating
grouped statistics. By default, it is not used. Call SetSheppard(1) to turn on Shep-
pard’s correction in all subsequent calls to GroupedStat.

AskSheppard (f)
The opposite of SetSheppard. Returns 1 if Sheppard’s correction will be used for later
calls to GroupedStat, 0 otherwise.

SetBoxVert (f)
SetBoxVert controls whether box plots are drawn horizontally (the default) or verti-
cally. Call SetBoxVert with f = 0 to get horizontal plots, or 1 for vertical plots.

AskBoxVert (f)
The opposite of SetBoxVert. Returns 1 if subsequent box plots will be drawn vertically,
0 if horizontally.

32 Statistics Graphics Toolkit

01/01

Frequency Distributions

This section describes frequency distributions and how to create and use them with the
Statistics Graphics Toolkit. Think of a frequency distribution as a histogram; indeed, a
histogram is simply a picture of a frequency distribution.

Figure 43.16: Output of the HISTAREA Program.

The “count” of each interval is the number of items in a dataset that is less than or
equal to the top end of the interval, but not in any interval farther to the left.

Absolute vs. Relative Frequency Distributions
In the simplest terms, frequency distributions contain counts and so are integers.
However, true histograms show relative frequency distributions in which each count is
a fraction, and the total area (count x interval width) sums to 1. Percent frequency dis-
tributions are like relative distributions, but the area sums to 100 instead of 1.

Frequency Distributions 33

01/01

Cumulative Frequency Distributions
Cumulative frequency distributions — also known as ogives — keep running totals of
the counts (or relative counts) in the intervals. Thus each count is ≤ the count to its
right, since its value gets included in that of its right neighbor.

Low and High Values
We have neglected the question of data values that are below the lowest interval or
above the highest. Therefore, the Toolkit’s frequency datasets include two more
counts: one for those data values below the intervals and one for those above. These are
called the low and high values.

Bar Heights vs. Areas
Remember that relative histograms and frequency polygons plot areas of intervals, not
heights! If two intervals have the same count, therefore, the wider interval will be
shorter than the narrower interval.

The figure below illustrates. When counts are plotted, each bar’s height indicates its
count; but when you plot a relative histogram, each bar’s area (interval width x frac-
tional count) indicates its relative size.

Frequency Dataset Formats
This Toolkit stores frequency datasets in a special kind of array f(i,j) in the following
format:

j
-1 0 +1

low -Maxnum count low end - epsilon

low end #1 count high end #1

low end #2 count high end #2

i

low end #n count high end #n

high high end #n count Maxnum

The Statistics Graphics Toolkit gives two basic ways to construct frequency datasets.
One is suitable for cases in which every bar is the same width; the other for cases in
which bars have different widths.

34 Statistics Graphics Toolkit

01/01

Making “Same-Width” Frequency Datasets
To create frequency datasets where each interval is the same width, you give three
parameters:

from the centerpoint of the lowest interval

step the distance between centerpoints

to the top end of the frequency distribution

To be precise, the topmost interval has its centerpoint at the largest number from + k *
step ≤ to. Thus if from = 1, step = 2, and to = 6, the topmost bar has its centerpoint at 5.
For all distributions, from must be less than to, and there must be at least one interval!
The interval’s “height” is the count of how many raw data items fit inside that bar’s
interval. Intervals are defined as pt-step/2 < x ≤ pt+step/2.

DataToFreq (data(), from, to, step, freq(,), n)
Convert the raw data items from data() into frequency counts in freq(,). The from, to,
and step variables define the intervals as described above. Note that freq(,) will contain
integer counts, and that the first element in freq(,) will be the “low” count, and the last
element the “high” count. Missing data items in data() are simply ignored. The total
number of non-missing items is returned in n. Note that data() and freq(,) need not
have the same bounds; the lower bound for freq(,) is left untouched and the upper
bound adjusted.

DataToRelFreq (data(), from, to, step, freq(,), n)
This is precisely like DataToFreq except that the resulting freq(,) array will contain
relative frequencies — each count is divided by n to give its relative value. Missing data
items in data() are simply ignored. The total number of non-missing items is returned
in n. Note that the lower bound for freq(,) is left untouched and the upper bound
adjusted as needed.

DataToCum (data(), from, to, step, freq(,), n)
Convert raw data items from data() into cumulative frequency counts in freq(,). The
from, to, and step variables define the intervals as described above. Note that freq(,)
will contain integer counts; its first element will be the “low” count, and its last the
cumulative “high” count, i.e., n. Missing data items in data() are simply ignored. The
number of non-missing items is returned in n. The lower bound for freq(,) is left
untouched and its upper bound adjusted as needed.

Frequency Distributions 35

01/01

DataToRelCum (data(), from, to, step, freq(,), n)
DataToRelCum is like DataToCum but produces a relative cumulative frequency
dataset.

Making “Irregular” Frequency Datasets
To use frequency datasets where intervals have different widths, you give an array of
strings that describe the intervals. For example:

dim int$(5)
mat read int$
data 10:20, 20:40, 50:100, 100:250, 250:1000

This array int$ defines 5 intervals: 10 < x ≤ 20; 20 < x ≤ 45; 45 < x ≤ 100; 100 < x ≤ 250;
and 250 < x ≤ 1000.

Intervals must be given in ascending order and cannot overlap. If two intervals don’t
meet, as in 40 and 50 above, the halfway point is taken as the true interval marker.

The Toolkit automatically adds low and high intervals if you don’t supply them. If you
want to add either one yourself (so you can supply a count for TableToFreq) give a null
string as the first and/or last interval description.

DataToIrrFreq (int$(), data(), freq(,))
Given data() items and an interval description int$() as described above, create the
associated frequency dataset freq(,). Remember: freq(,) will contain low and high inter-
vals even if you don’t supply them in int$().

See IRRDATA on your diskette for an example.

TableToFreq (int$(), counts(), freq(,))
Given an interval description int$() as described above, and the counts() for each inter-
val, create the associated frequency table. The arrays int$() and counts() must have the
same bounds but freq(,) can have any bounds; it will be adjusted as necessary.

See IRRTABLE on your diskette for an example.

36 Statistics Graphics Toolkit

01/01

Relative and Cumulative Frequencies
Once you have a frequency dataset, you can convert it to a relative or cumulative fre-
quency dataset.

FreqToRelFreq (freq(,), rfreq(,))
Converts a frequency distribution to a relative frequency distribution. Note that freq(,)
and rfreq(,) need not have the same bounds; the lower bound for rfreq(,) is left
untouched and its upper bound adjusted. SetHist(“%”) makes the area sum to 100; oth-
erwise it sums to 1.

FreqToCum (freq(,), cfreq(,))
Converts a frequency distribution to a cumulative frequency distribution. Note that
freq(,) and rfreq(,) need not have the same bounds; the lower bound for rfreq(,) is left
untouched and its upper bound adjusted.

Call SetReverseCum(1) before calling this routine to create a “reverse” cumulative fre-
quency dataset with 1 at the low end of cfreq(,) and 0 at the high end.

SetReverseCum (f)
Call SetReverseCum(1) to create reverse cumulative frequency distributions, that is,
high at the low end tapering off to zero at the high end. Use 0 to switch back to the
default.

This routine also controls plotting of cumulative histograms and frequency polygons.

AskReverseCum (f)
This is the opposite of SetReverseCum. Returns 1 if creating reverse frequency distri-
butions, 0 otherwise.

Frequency Distributions 37

01/01

Histograms and Frequency Polygons

This section describes how to plot histograms or frequency polygons of one-sample
data distributions. You can plot these graphs either for raw datasets or for frequency
datasets (created, say, by the DataToFreq routine).

Options
Reverse cumulative graphs. To plot reverse cumulative graphs, call SetReverseCum(1)
before calling any of these routines.

Normalized areas. By default, all histograms and frequency polygons are shown as
counts rather than as areas. Call SetHist to switch to displaying areas.

Superimposed normal curves. Call SetNormal(1) to automatically superimpose normal
curves on your histograms or frequency polygons.

Normal residuals. See the description of PlotNormFit, in the “Residuals” section, for a
way to compare histograms or frequency polygons against the normal curve.

Colored bars. By default, all bars are drawn in outline only. Call SetHistoColor to set
the bar colors.

Figure 43.17: Output of the HIST program.

38 Statistics Graphics Toolkit

01/01

PlotHist (data(), from, to, step, col$)
Plot the frequency distribution of the raw dataset data(), grouped into bars with cen-
terpoints at from, from+step, ..., from+k*step ≤ to. All data() values lower than from are
included in a “lo” bar centered at from-step, and all high values are included in a “hi”
bar centered one step beyond the interval’s end. If there are any low or high values,
these bars are flagged with labels lo or hi as appropriate.

The rules governing from, to, and step are described in the “Frequency Datasets” sec-
tion. Any missing values in data() are ignored. The color scheme col$ is treated as
usual, so a scheme like “red green blue” gives a red title, green frame, and blue his-
togram.

Call SetNormal(1) to automatically superimpose normal curves on subsequent his-
tograms. See its description at the end of this section.

Figure 43.18: Output of the CUMHIST program.

PlotCumHist (data(), from, to, step, col$)
This routine is precisely like PlotHist except that it plots a cumulative histogram.

It plots a cumulative frequency distribution of the raw dataset data(), grouped into
bars with centerpoints at from, from+step, ..., from+k*step ≤ to. All data() values lower

Histograms and Frequency Polygons 39

01/01

than from go in a “lo” bar centered at from-step; high values go in a “hi” bar centered
one step beyond the interval’s end. These bars are flagged with labels lo or hi if non-
empty.

The rules governing from, to, and step are described in the “Frequency Datasets”
section. Any missing values in data() are ignored. The color scheme col$ is treated as
usual, so a scheme like “red green blue” gives a red title, green frame, and blue
histogram.

Call SetNormal(1) to automatically superimpose cumulative normal curves on subse-
quent histograms. See its description at the end of this section.

PlotFP (data(), from, to, step, ps, ls, col$)
This routine is like PlotHist, except that it plots a frequency polygon instead of a his-
togram.

It plots the frequency distribution of the raw dataset data(), grouped with centerpoints
at from, from+step, ..., from+k*step ≤ to. All data() values lower than from are included
in a “lo” point centered at from-step, and all high values in a “hi” point centered one
step beyond the interval’s end. If there are low or high values, these end points are
flagged with labels lo or hi.

Figure 43.19: Output of the FP program.

40 Statistics Graphics Toolkit

01/01

Centerpoints are drawn in the ps point style connected by lines drawn in the ls line style.
If ps = 0, no points are shown. If ls = 0, no connecting lines are shown. There are currently
13 point styles and 4 line styles to choose from; see the “Making Graphs” section for infor-
mation. The rules governing from, to, and step are given in the “Frequency Datasets” sec-
tion. Missing values in data() are ignored. The color scheme col$ is treated as usual, so a
scheme like “red green blue” gives a red title, green frame, and blue polygon.

Figure 43.20: Output of the CUMFP program.

PlotCumFP (data(), from, to, step, ps, ls, col$)
This routine is precisely like PlotFP except that it plots the cumulative frequency poly-
gon of the raw dataset data(), grouped with centerpoints at from, from+step, ...,
from+k*step ≤ to. All data() values less than from go in a low point centered at from-
step; all high values go in a high point centered one step beyond the interval’s end. If
there are low or high values, they are flagged lo or hi as appropriate.

Centerpoints are drawn in the ps point style connected by lines drawn in the ls line style.
If ps = 0, points are omitted. If ls = 0, connecting lines are omitted. There are currently
13 point styles and 4 line styles; see the “Making Graphs” section for information.

The rules for from, to, and step are given in “Frequency Datasets.” The color scheme
col$ is treated as usual, so “red green blue” gives a red title, green frame, and blue fre-
quency polygon.

Histograms and Frequency Polygons 41

01/01

PlotHistFromFreq (freq(,), col$)
This routine is like PlotHist but takes data from freq(,), a frequency dataset, rather
than a raw dataset.

Figure 43.21: Output of the IRRTABLE program.

PlotCumHistFromFreq (freq(,), col$)
Like PlotHistFromFreq but plots a cumulative histogram. See Figure 43.22.

PlotFPfromFreq (freq(,), ps, ls, col$)
This routine is like PlotHistFromFreq, except that it plots a frequency polygon instead
of a histogram. It plots the centerpoints of the frequency dataset freq(,) as the x coordi-
nates, with counts as y coordinates. If there are low or high values, these end points are
flagged with labels lo or hi as appropriate.

The centerpoints are drawn in the ps point style connected by lines drawn in the ls line
style. If ps = 0, no points are shown. If ls = 0, no connecting lines are shown. There are
currently 13 point styles and 4 line styles to choose from; see the “Making Graphs” sec-
tion for information.

The color scheme col$ is treated as usual, so a scheme like “red green blue” gives a red
title, green frame, and blue frequency polygon.

42 Statistics Graphics Toolkit

01/01

Figure 43.22: Output of the CUMIRR program.

Figure 43.23: Output of the IRRFP program.

Histograms and Frequency Polygons 43

01/01

PlotCumFPfromFreq (freq(,), from, to, step, ps, ls, col$)
This routine is precisely like PlotFPfromFreq except that it plots the cumulative fre-
quency polygon.

Figure 43.24: Output of the CUMIRRFP program.

AddNormalPlot (area, mean, var, ls, col$)
Draw a normal curve over the previous graph. Its shape is defined by its area, mean,
and variance var. You can call Stats to find a dataset’s mean and variance; the area is
the number of non-missing elements for absolute plots, 1 for relative plots, or 100 for
percentage plots.

The line style ls is defined in the “Making Graphs” section. Title and frame colors in
the color scheme col$ are ignored; thus, “red green blue” draws a blue line.

For most purposes you can simply call SetNormal(1) before drawing a histogram or fre-
quency polygon. Then the corresponding normal curve is automatically added to the
data graph. Furthermore, if the graph is cumulative, so also will be the normal curve.

44 Statistics Graphics Toolkit

01/01

Figure 43.25: Output of the NORMAL program.

AddCumNormalPlot (area, mean, var, ls, col$)
Just like AddNormalPlot except that it adds the cumulative normal curve.

SetHist (type$)
Switch histogram or frequency polygon types. You can use any mixture of upper and
lower case.

Type$ Frequency Dataset contains...
“COUNT” Height = Absolute counts. Default.
“REL” Area = Relative proportions (0 to 1).
“%” Area = Percentages (0 to 100).

SetHist also controls DataToRelFreq, and all other routines that convert to relative
frequencies. It governs whether they convert to a relative area of 1 or 100.

AskHist (type$)
The opposite of SetHist. Return the current histogram (or frequency polygon) type in
upper case.

Histograms and Frequency Polygons 45

01/01

SetHistoColor (col$)
Set the color used for subsequent histogram bars. This color can be a True BASIC color
name, such as “red” or a number such as “1”.

AskHistoColor (col$)
The opposite of SetHistoColor. Return the current histogram bar color.

SetNormal (f)
Call SetNormal(1) to add a normal curve automatically to every subsequent histogram
and frequency polygon. The normal curve will be automatically scaled to fit the data’s
area, mean and variance, and will be shown as a cumulative normal curve for cumula-
tive plots. Use 0 to turn off automatic normal curves.

AskNormal (f)
The opposite of SetNormal. Returns 1 if subsequent histograms and frequency poly-
gons will have normal curves added automatically. Otherwise returns 0.

T-tests and Confidence Intervals

This section describes T-tests and the confidence interval calculations that rely on
them. See the “Nonparametric Tests” section for ways of estimating point locations
and confidence intervals without using T-tests.

Ttest (data(), null, alt, t, p, mean, se, df)
One sample T-test. You must supply the dataset in data() and the null and alternate
tests in null and alt. The null hypothesis is that the mean value of the population
equals whatever you passed in null.

The alt parameter lets you construct one- or two-sided tests: a negative number means
the alternative is that the true mean is less than null; 0 means that it’s not equal; and
positive means that it’s greater. Thus the test is two-sided if alt = 0; otherwise it’s one-
sided.

Example: Ttest with null = 3 and alt = 0 gives a two-sided T-test. The null hypothesis
is that the true mean is 3. The alternative is that the mean is not 3.

46 Statistics Graphics Toolkit

01/01

The test returns:
t the T-statistic
p significance probability of t
mean mean value of data()
se standard error of the mean
df degrees of freedom

Ttest2 (a(), b(), null, alt, t, p, mean, se, df)
Two sample T-test with assumption of equal variance for a() and b(). You must supply
the datasets in a() and b(), and the null and alternate tests in null and alt. The null
hypothesis is that the true mean difference of the populations equals whatever you
passed in null.

The alt parameter lets you construct one- or two-sided tests: a negative number means the
alternative is that the true mean is less than null; 0 means that it’s not equal; and positive
means that it’s greater. Thus the test is two-sided if alt = 0; otherwise it’s one-sided.

Example: Ttest2 with null = 17 and alt = –1 gives a one-sided T-test. The null hypothe-
sis is that the difference of population means is 17. The alternative hypothesis is that
the mean is less than 17.

The test returns:
t the T-statistic
p significance probability of t
mean mean of a() minus mean of b()
se standard error
df degrees of freedom

Use Ftest, described at the end of this section, to check that two normally-distributed
datasets come from populations with equal variances. If your datasets don’t have equal
variances, use Ttest2Var instead of Ttest2.

Ttest2Var (a(), b(), null, alt, t, p, mean, se, df)
Ttest2Var gives a two sample T-test without an assumption of equal variance for a()
and b(). You must supply the datasets in a() and b(), and the null and alternate tests in
null and alt. The null hypothesis: the true mean difference of the populations equals
whatever you passed in null.

The alt parameter lets you construct one- or two-sided tests: a negative number means
the alternative is that the true mean is less than null; 0 means that it’s not equal; and
positive means that it’s greater. Thus the test is two-sided if alt = 0; otherwise it’s one-

T-tests and Confidence Intervals 47

01/01

sided. The Smith-Satterthwaite approximation (below) is used to compensate for
unequal variances in the two datasets.

Example: Ttest2Var with null = 0.5 and alt = 1 gives a one-sided T-test. The null
hypothesis is that the difference of population means is 0.5; the alternative hypothesis
is that the difference is greater than 0.5. See TTESTVAR, on your diskette, for a real
example.

The test returns:

t the T-statistic
p significance probability of t
mean mean of a() minus mean of b()
se standard error
df degrees of freedom

If na and nb are the number of items in a() and b(), and ssa is ∑(ai – abar)2 and ssb is
∑(bi – bbar)2, Smith-Satterthwaite approximates a t-distribution with df computed as
follows (rounded down to an integer).

ssa————
1 K2 (1– K)2 na – 1

—— = ———— + —————, where K = ————————
df na – 1 nb – 1 ssa ssb——— + ———

na – 1 nb – 1

Ttest2MP (a(), b(), null, alt, t, p, mean, se, df)
Ttest2MP gives a two sample T-test for matched pairs a() and b(). You must supply the
datasets in a() and b(), and the null and alternate tests in null and alt. The null
hypothesis is that the true mean difference of the populations equals whatever you
passed in null.

Arrays a() and b() must be the same size. If either element in a pair is missing, the pair
is ignored.

The alt parameter lets you construct one- or two-sided tests: a negative number means
the alternative is that the true mean is less than null; 0 means that it’s not equal; and
positive means that it’s greater. Thus the test is two-sided if alt = 0; otherwise it’s one-
sided.

Example: Ttest2MP with null = 3 and alt = 0 gives a two-sided T-test. The null hypoth-
esis is that the difference of population means is 3. The alternative hypothesis is: the
difference of means is not 3.

48 Statistics Graphics Toolkit

01/01

The test returns:
t the T-statistic
p significance probability of t
mean mean of a() minus mean of b()
se standard error
df degrees of freedom

See TTEST2MP, on your diskette, for an example.

ConfInt (data(), ci, left, right, se, df)
Use the one-sample T-test to compute a confidence interval for the true mean of a pop-
ulation. You must supply the dataset in data() and the desired confidence level in ci.
For example ci = .95 gives a 95% confidence interval.

The test returns:

left left edge of confidence interval
right right edge of confidence interval
se standard error
df degrees of freedom

ConfInt2 (a(), b(), ci, left, right, se, df)
Use the two-sample T-test, with assumption of equal variance of a() and b(), to com-
pute a confidence interval for the difference of the population means. You must supply
the datasets in a() and b() and the desired confidence level in ci. For example ci = .95
gives a 95% confidence interval.

The test returns:

left left edge of confidence interval
right right edge of confidence interval
se standard error of the difference used
df degrees of freedom

ConfInt2Var (a(), b(), ci, left, right, se, df)
Use the two-sample T-test, with no assumption of equal variance of a() and b(), to com-
pute a confidence interval for the difference of the population means. The Smith-Sat-
terthwaite approximation is used to compensate for the differing variances. You must
supply the datasets in a() and b() and the desired confidence level in ci. For example ci
= .95 gives a 95% confidence interval.

T-tests and Confidence Intervals 49

01/01

The test returns:
left left edge of confidence interval
right right edge of confidence interval
se standard error of the difference used
df degrees of freedom

See TTESTVAR, on your diskette, for an example.

ConfInt2MP (a(), b(), ci, left, right, se, df)
Use the matched-pairs T-test to compute a confidence interval for the difference of the
population means. You must supply the datasets in a() and b()and the desired
confidence level in ci. For example ci = .95 gives a 95% confidence interval.

The test returns:
left left edge of confidence interval
right right edge of confidence interval
se standard error of the difference
df degrees of freedom

See TTEST2MP, on your diskette, for an example.

ConfPlot (data(), ci, col$)
Plot a “confidence interval” plot of the dataset data(). These confidence intervals are
based on T-tests. The plot is scaled so all data points are within the graph coordinates.
Your confidence interval ci should be a number such as .95 for a 95% confidence inter-
val.

The color scheme col$ has the usual meaning; for instance, “red green blue” gives a red
title, green frame, and blue box plot.

By default, the actual data values are not displayed. Call SetDataStyle(ps) with ps ≠ 0
to display data points. Intervals and points are drawn in the same colors, but points
are lowered slightly to make them visible as shown in the figure below.

50 Statistics Graphics Toolkit

01/01

Figure 43.26: Output of the CONF program.

ManyConfPlot (data(,), names$(), ci, col$)
Plot stacked “confidence interval” plots of the datasets data(,). These confidence inter-
vals are based on T-tests. Each column of the data(,) is taken as an independent
dataset, and gets its own confidence interval plot. The plot is scaled so all data points
are within the graph coordinates.

Your confidence interval ci should be a number such as .95 for a 95% confidence
interval.

Datasets need not have the same numbers of elements; just pad the short datasets
with missing values. Each dataset’s name is displayed on the frame beside its box plot.
Pass the names in the names$() array. Size(names$) must equal Size(data,1).

The color scheme col$ has the usual meaning; thus, “red green blue” gives a red title,
green frame, and blue box plot. If you give multiple data colors, the intervals are drawn
with that sequence of colors.

By default, the actual data values are not displayed. Call SetDataStyle(ps) with ps ≠ 0
to display data points. The first dataset is drawn with point style ps, the next with
ps+1, and so forth. When the end of the point styles are reached, the styles will cycle
back to style 2 (skipping style 1 because it’s hard to see). Intervals and points are

T-tests and Confidence Intervals 51

01/01

drawn in the same colors, but the points are lowered slightly to make them visible as
shown in the figure on the facing page.

Figure 43.27: Output of the MANYCONF program.

Ftest (a(), b(), f, p)
Perform an F-test on two datasets a() and b() from normally distributed populations to
see if the populations have equal variances.

The test returns:
f the F-statistic
p significance probability for test of equal variance

———————————————————————————————————————

x WARNING: The F-test is very sensitive to deviations from a normal
distribution. If normality is not assured, use the nonparametric
Siegel-Tukey test instead.

———————————————————————————————————————
It is also wise to remember that p is an approximation — for small samples, use a table
of critical values instead! See Applied Statistics by L. Sachs, pp. 260-264, or F-TEST,
on your diskette, for an example.

52 Statistics Graphics Toolkit

01/01

Chi-Square and Contingency Tables

This section describes contingency tables and chi-square (c2) tests. The Statistics
Graphics Toolkit handles most of these cases in full generality; it has only a few special
routines for 2 x 2 tables.

ChiSq (data(,), chi2, df, p)
Perform a chi-square test on tabular data. The data(,) array can have any numbers of
rows and columns. Call SetYates(1) if you want to use Yates correction for the chi-
square analysis. The test returns:

chi2 chi-square χ2

df degrees of freedom

p significance probability for test of independence

Note that ChiSq is just a simple interface to the ContTable routine.

FisherExact (t(,), p)
Compute Fisher exact probability for a 2 x 2 table t(,). The result:

p Fisher exact probability for this table;
this is not the significance probability!

This requires computing quite a few factorials, so results get slow as table values get
big. When table values are quite big (say >50) you may get overflows, underflows, or
inaccuracies due to round-off error. See FISHER, on your diskette, for an example.

Exceptions:
759 FisherExact dataset can’t contain missing values.
760 FisherExact works on 2x2 tables only.

Chi-Square and Contingency Tables 53

01/01

ContTable (data(,), chi2, df, p, v, cc, ccc, ca, e(,), rs(), cs(), gs)
Compute contingency table statistics based on a data(,) array. The data(,) array need
not be square; but ca is undefined for other shape tables and for them is returned as
the missing value.

The test returns:
chi2 chi-square χ2

df degrees of freedom
p significance probability
v Cramer’s V (a.k.a. phi for 2 x 2 tables)
cc Pearson’s contingency coefficient
ccc Pawlik’s corrected cc
ca correlation of attributes (square data(,) only)
e(,) expected data values
rs() row sums
cs() column sums
gs grand sum (total)

The v, cc and ccc coefficients are not defined for some tables; ContTable returns the
missing value for those cases and does not give an error.

By default, Yates’ correction for discontinuity is not used in this analysis. To get Yates’
correction, call SetYates(1) before you call ContTable.

Exceptions:
732 Can’t do contingency table with 0 row.
733 Can’t do contingency table with 0 column.

PrintCrossTab (#n, data(,))
Perform a chi-square test on tabular data and print a cross-tabulation table. The
data(,) array can have any numbers of rows and columns. If #n is #0, the result is
printed in the current window.

Call SetYates(1) if you want to use Yates’ correction for the chi-square analysis.

Exceptions:
732 Can’t do contingency table with 0 row.
733 Can’t do contingency table with 0 column.
7004 Channel isn’t open.
8501 Must be text file.

54 Statistics Graphics Toolkit

01/01

Output of the CROSSTAB program.

McNemarChi (t(,), chi2, p)
Perform McNemar chi-square test on a 2 x 2 table t(,). This is a specialized test for the
intensity of change between two dependent samples. It is very different from the ordi-
nary chi-square test and the two cannot be used interchangeably!

The results:
chi2 McNemar chi-square statistic
p significance probability

———————————————————————————————————————

x WARNING: McNemarChi should not be used if b + c < 8. The software
does not check for this condition but does use a continuity correction
if b + c < 30. Calculations are as shown below.

———————————————————————————————————————
t(,) 8 ≤ b + c < 30 b + c ≥ 30

———————————————————————————————————
 a b (|b – c| – 1)2 (b – c)2

 χ2 = ———————— χ2 = ——————
 c d b + c + 1 b + c + 1

Reference: Applied Statistics by L. Sachs, pp. 363-365. See MCNEMAR, on your
diskette, for an example.

Exceptions:
759 McNemarChi dataset can’t contain missing values.
760 McNemarChi works on 2x2 tables only.

Chi-Square and Contingency Tables 55

01/01

SetYates (f)
By default, Yates’ correction is not used when analyzing contingency tables and chi-
square statistics. Call SetYates(1) to use Yates’ correction in subsequent computa-
tions; use 0 to turn it off again.

AskYates (f)
The opposite of SetYates. Returns 1 if Yates’ correction will be used on subsequent con-
tingency table and chi-square calculations; 0 otherwise.

Nonparametric Tests

This section describes the nonparametric tests included in the Statistics Graphics
Toolkit. These kinds of tests are sometimes called distribution-free tests because they
do not require the underlying populations to be normally distributed.

See the “References” for a list of books that describe statistical tests. Nonparametric
Statistical Methods describes various nonparametric tests in detail, but you can also
find good descriptions in Statistical Analysis and Applied Statistics.

KS2 (a(), b(), d, p)
KS2 gives the Kolmogorov-Smirnov test for two independent samples. This tests
whether two samples a() and b() were drawn from the same population.

The output is:
d Kolmogorov-Smirnov test statistic
p significance probability of d (see Warning)

———————————————————————————————————————

x WARNING: The probability p is an approximation good for medium
to large samples (Size(a)+Size(b) ≥ 35). For smaller samples, use a
table of critical values instead!

———————————————————————————————————————
See Siegel’s Nonparametric Statistical Methods, pp. 394-419, for critical value tables
and KS, on your diskette, for an example.

56 Statistics Graphics Toolkit

01/01

MannWhitney2 (a(), b(), ci, n, u, z, p, med, low, high)
MannWhitney2 gives the Mann-Whitney U test for two unpaired sets of data. This test
helps estimate the median difference of the populations. It is equivalent to the
Wilcoxon two-sample rank-sum test. Pass datasets a() and b() with a confidence inter-
val ci. The test returns:

n the number of non-missing samples from the two datasets
u the Mann-Whitney U statistic
z critical value for u (see Warning)
p probability of z (see Warning)
med estimated median difference
low low end of confidence interval for difference
high high end of confidence interval for difference

By default, this test does not use fractional counts when computing the confidence
intervals; that is, the (low,high) pair are values existing in the pairwise differences
between the two datasets. Call SetFracConf(1) if you wish to use fractional counts and
hence interpolate values for the confidence intervals.

———————————————————————————————————————

x NOTE: The returned values z and p are obtained from a normal
approximation and are reasonable so long as both datasets have at
least 8 non-missing values and n > 60.

———————————————————————————————————————
See Applied Statistics, pp. 293-303, for a critical value table. and MANNWHIT, on
your diskette, for an example.

Wilcoxon1 (data(), ci, n, rhat, z, p, med, low, high)
Wilcoxon1 gives the Wilcoxon Signed-Rank Sum procedure for one dataset. This test
helps estimate the median of a population. Pass dataset data() with a confidence inter-
val ci. The test returns:

n the number of non-missing samples in data()
rhat the Wilcoxon statistic
z critical value for rhat
p probability of z (see Warning)
med estimated median
low low end of confidence interval for median
high high end of confidence interval for median

Nonparametric Tests 57

01/01

By default, this test does not use fractional counts when computing the confidence
intervals; that is, the (low,high) pair are values existing in the dataset. Call
SetFracConf(1) if you wish to use fractional counts and hence interpolate values for
the confidence intervals. See Basic Statistics, p. 310, for a critical value table.

———————————————————————————————————————

x WARNING: The returned value p is a good approximation so long as
n > 25.

———————————————————————————————————————

Wilcoxon2 (a(), b(), ci, n, w, z, p, med, low, high)
Wilcoxon2 gives the Wilcoxon Rank Sum test for two unpaired sets of data.

This test helps estimate the median difference of two populations; it’s equivalent to the
Mann-Whitney U test. Pass datasets a() and b() with a confidence interval ci. The test
returns:

n the number of non-missing samples from the two datasets
w the Wilcoxon statistic
z critical value for w
p probability of z (see Warning)
med estimated median difference
low low end of confidence interval for difference
high high end of confidence interval for difference

By default, this test does not use fractional counts when computing the confidence
intervals; that is, the (low,high) pair are values existing in the pairwise differences
between the two datasets. Call SetFracConf(1) if you wish to use fractional counts and
hence interpolate values for the confidence intervals.

———————————————————————————————————————

x WARNING: The returned value p is a good approximation so long as
n > 25.

———————————————————————————————————————
See Basic Statistics, p. 310, for a critical value table, and SIGNRANK, on your
diskette, for an example.

Wilcoxon2MP (a(), b(), ci, n, rhat, z, p, med, low, high)
Wilcoxon2MP gives the Wilcoxon Rank Sum test for matched pairs. This test helps

58 Statistics Graphics Toolkit

01/01

estimate the median difference. Pass datasets a() and b() with a confidence interval ci.
The two datasets must have the same number of elements. If either element of a pair is
missing, the entire pair is discarded. The test returns:

n the number of non-missing pairs from the two datasets
rhat the Wilcoxon statistic
z critical value for rhat
p probability of z (see Warning)
med estimated median difference
low low end of confidence interval for difference
high high end of confidence interval for difference

By default, this test does not use fractional counts when computing the confidence
intervals; that is, the (low,high) pair are values existing in the pairwise differences
between the two datasets. Call SetFracConf(1) if you wish to use fractional counts and
hence interpolate values for the confidence intervals.

———————————————————————————————————————

x WARNING: The probability p is a good approximation so long as n > 25.
———————————————————————————————————————
See Applied Statistics, pp. 312-315, for a critical value table.

Spearman (a(), b(), n, rho, t, p)
Spearman gives Spearman’s rank correlation coefficient ρ (rho) for matched pairs.
This tests for correlation between two datasets. Pass independent paired datasets a()
and b(). The two datasets must have the same number of elements; if either element in
a pair is missing, the pair is ignored. The test returns:

n the number of non-missing pairs
rho Spearman rank correlation coefficient
z test statistic for rho
p probability of z (see Warning)

There are several common techniques for computing Spearman’s rho when the data
has ties, and they give different results. By default, this routine uses a complicated
method to compute rho for ties; see the description of SetSpearmanTie as the end of
this section, and Nonparametric Statistical Inference, p. 234. Many statistics books
give only the simple form, so you may have to call SetSpearmanTie(0) to get answers
that match your statistics book.

Nonparametric Tests 59

01/01

———————————————————————————————————————

x WARNING: The z and p results are good approximations so long as n > 9.
———————————————————————————————————————
See Applied Statistics, pp. 396-403, for a critical value table.

KendallTau (a(), b(), n, tau, z, p)
KendallTau gives Kendall’s rank correlation coefficient τ (tau) for matched pairs. This
tests for correlation between two datasets and is an alternative to Spearman’s rho.
Pass independent paired datasets a() and b(). They must have the same number of ele-
ments; if either element of a pair is missing, the pair is ignored. The test returns:

n the number of non-missing pairs
tau Kendall rank correlation coefficient
z test statistic for tau
p probability of z (see Warning)

———————————————————————————————————————

x WARNING: The z and p results are good approximations so long as
n > 10.

———————————————————————————————————————
See Nonparametric Statistical Methods, pp. 384-393, for a critical value table and
TAU, on your diskette, for an example.

WallisMoore (data(), h, z, p)
WallisMoore gives the Wallis-Moore phase frequency test. This tests the randomness
of a sequence by checking the number of “phases” – runs of increasing/decreasing data
values – in data(). The initial and final phases are not counted. The test returns:

h count of phases
z test statistic for h
p probability of z (see Warning)

———————————————————————————————————————

x WARNING: z and p are good approximations only if n > 10. A
continuity correction is applied if Size(data) ≤ 30. “Zero” changes
from one item to the next are treated as no change in phase. If data()
is a single run, both z and p will be zero.

———————————————————————————————————————
See Applied Statistics, pp. 378-379, and WALLIS, on your diskette, for an example.

60 Statistics Graphics Toolkit

01/01

RunTest1 (data(), n, r, z, p)
RunTest1 gives the Wald-Wolfowitz runs test on a single sample. This test helps deter-
mine if a population’s median is zero by counting runs of positive and negative num-
bers. Zero is treated as positive. Pass dataset data(). The test returns:

n the number of non-missing samples from the dataset
r the number of runs
z standardized r
p significance probability of z (see Warning)

———————————————————————————————————————

x WARNING: The z and p results are good approximations so long as n >
20. If the entire dataset consists of a single run, both z and p will be zero.

———————————————————————————————————————
See Applied Statistics, pp. 375-378, for a critical value table.

RunTest2 (a(), b(), n, r, z, p)
RunTest2 gives the Wald-Wolfowitz runs test for unpaired samples. This test helps
determine whether both samples were drawn from the same population. Datasets a()
and b() need not have the same number of elements. The test returns:

n the number of non-missing samples from the two datasets
r the number of runs
z standardized r
p significance probability of z (see Warning)

———————————————————————————————————————

x WARNING: The z and p results are good approximations so long as n > 20.
———————————————————————————————————————
See Applied Statistics, pp. 375-378, for a critical value table.

MedianTest (a(), b(), t(,), chi2, p)
MedianTest performs a median test on two independent datasets to check if the two
datasets are drawn from populations with equal medians. Pass the datasets in a() and b().

The median test first pools all dataset values and finds their common median. Then it
creates a 2 x 2 table from the number of values in each dataset greater or less than this
common median, as shown below. And finally it uses a chi-square test to analyze this
table. Call SetYates to control whether Yates’ correction is used when computing the
chi-square statistic.

Nonparametric Tests 61

01/01

The test returns:
t(,) 2 x 2 median contingency table
chi2 chi-square statistic for t(2,2)
p significance probability of chi2 (see Warning)

On output, t(,) contains the 2 x 2 contingency table, as follows, that was used for com-
puting chi2 and p:

Number of occurrences
Dataset ≤ common median > common median

a() a b
b() c d

———————————————————————————————————————

x WARNING: The chi2 and p results are only chi-square approximations.
———————————————————————————————————————
For more information, see Applied Statistics by L. Sachs, pp. 301-302; or Basic Statis-
tics by T. Kurtz, pp. 235-241, and MEDIAN, on your diskette, for an example.

SiegelTukey (a(), b(), ia, z, p)
SiegelTukey gives the Siegel-Tukey rank dispersion test, a nonparametric replace-
ment for the F-test for equal variances. Pass the two datasets to compare in a() and b().

The test returns:
ia Siegel-Tukey index sum for a()
z approximate standard normal for ia
p significance probability of z (see Warning)

small p indicates unequal variances
———————————————————————————————————————

x WARNING: Both z and p are approximations that can be safely used
if Size(a)>9 and Size(b)>9, or Size(a)>2 and Size(b)>20. For small sam-
ple sizes, use a critical value table for Siegel-Tukey index sums on ia.

———————————————————————————————————————
See Applied Statistics by L. Sachs, pp. 286-289, for the algorithm and a small critical
value table. See also Nonparametric Statistical Inference by J. Gibbons, pp. 183-184.

This algorithm makes corrections to z and p when more than one fifth of the items are
involved in cross-sample ties, and corrects for “very different” sample sizes when sizes
differ by a factor of 2 or more.
See SIEGEL, on your diskette, for an example.

62 Statistics Graphics Toolkit

01/01

KruskalWallisH (data(,), pairsig, h, p, diff(,))
KruskalWallisH gives the Kruskal-Wallis H-test for independent samples. Pass a
data(,) array that contains “treatments” in its columns; that is, each column is a
dataset. Short columns can be padded out with missing values. Also pass pairsig, the
significance level at which columns are considered to be different. The test returns:

h the H-hat statistic from the Kruskal-Wallis test; note that if more
than 25% of all values are involved in ties, h is the corrected H-hat
statistic

p significance probability of h (see Warning)

diff(,) pairs (i,j) of rank indices that test significantly different

For example, you could pass pairsig = .05 to find all columns that are different at the
5% level. If there are no such columns, Size(diff,1) is zero. But if there are, say, three
such pairs of columns i-j, i-k, and k-l, then Size(diff,1) is 3; and diff(1,1) is i, diff(1,2) is
j; diff(2,1) is i; diff(2,2) is k, etc.

By default, pairwise significances are computed by via chi-square distributions, as
given in Applied Statistics, p. 305. To switch to Dunn’s procedure for pairwise compar-
isons via normal distributions, call SetHtest(1) before calling this routine.

———————————————————————————————————————

x WARNING: For small samples, Size(data,1) < 5 or Size(data,2) < 4, p
may be incorrect. Use a critical value table instead.

———————————————————————————————————————
See Applied Statistics, pp. 303-306, for a critical value table.

Exception:
755 Too many identical values for Kruskal-Wallis H test.

See KRUSKAL, on your diskette, for an example.

Friedman (d(,), cr(), fs, p)
Friedman gives the Friedman rank-ANOVA test, a distribution-free two-way ANOVA
for correlated samples.

Input the data in d(,) where each column is a treatment. The output is:
cr() column rank sums
fs Friedman statistic
p significance probability of fs (see Warning)

Nonparametric Tests 63

01/01

———————————————————————————————————————

x WARNING: The probability p is an approximation good only for large
samples. If you have only 2 treatments, use the Wilcoxon2MP test
instead. If you have 3 treatments and <10 observations, or 4 treat-
ments and <5 observations, do not use the p value; use a critical value
table instead.

———————————————————————————————————————
See Applied Statistics, pp. 549-553, for a critical value table.

The FRIEDMAN program, on your diskette, uses a Friedman test to evaluate whether
the timings for three ways to round first base (in a baseball game) are significantly dif-
ferent. The data gives a series of 22 timings for the three techniques: wide-out, narrow-
angle, and round-out.

Figure 43.29: Three Methods of Rounding First Base.

The “best” way to round first base is that which takes the least time. The resulting
statistic shows that there is indeed a statistically significant difference in the various
ways to round first base.

The data were collected in 1970 by W. F. Woodward, shortstop of the Cincinnati Reds
baseball team. The analysis and figure are taken from Nonparametric Statistical
Methods by Hollander, p. 141.

64 Statistics Graphics Toolkit

01/01

Round-Out

Home Plate

Second Base

Third Base First Base

Narrow Angle

Wide Angle

KendallW (a(,), w, f, p)
KendallW gives Kendall’s W coefficient of concordance. Pass an array a(,) that contains
“judges’ rankings” in its columns; that is, each column is a dataset.

Each row must contain integers in the range 1 to n, where n is the number of columns;
duplicates are allowed for tie values. Thus to get W for four judges’ rankings of three
items, you might pass:

1 2 3
2 3 1
2 1 1
2 1 3

KendallW returns:
w W coefficient of concordance, ranging from 0 to 1 inclusive,

where 1 means perfect concordance
f F-value of w
p significance probability of f (see Warning)

———————————————————————————————————————

x NOTE: Calculations for f and p have been taken from Analysing
Qualitative Data by A. E. Maxwell, pp. 119-121, but Maxwell does not
supply information on the accuracy of these computations. Use a crit-
ical-value table for W for anything but quick work.

———————————————————————————————————————
See KENDALLW, on your diskette, for an example.

SetFracConf (f)
SetFracConf determines whether or not fractional values should be used to interpolate
nonparametric confidence intervals. Pass f = 0 to forbid using fractional intervals, or
any nonzero value to use them (and hence interpolate). By default, fractional intervals
are not used.

AskFracConf (f)
AskFracConf is the inverse of SetHtest. It returns f = 1 if fractional confidence inter-
vals will be interpolated, and zero otherwise.

SetHtest (f)
SetHtest determines which procedure will be used to compute pairwise significances in
the Kruskal-Wallis H test. Pass f=0 for the usual procedure via the chi-square distri-
bution, or any nonzero value to use Dunn’s procedure instead.

Nonparametric Tests 65

01/01

AskHtest (f)
AskHtest is the inverse of SetHtest. It returns f = 0 if the usual procedure will be fol-
lowed for comparing pairwise significances in the Kruskal-Wallis H test, or 1 if Dunn’s
procedure will be used instead.

SetSpearmanTie (f)
SetSpearmanTie determines which procedure will be used to compute Spearman’s rho
in cases with tied data. Pass f = 0 for the simple procedure, or any nonzero value to use
the more complicated (but better) procedure instead. By default, the complicated cal-
culation is used.

Simple calculation (f = 0), where D is the dataset of rank differences between datasets
x and y:

6 ΣD2
rho = 1 – ——————

n(n2 – 1)

Complex calculation (f = 1), where R(xi) is the rank of the ith element of dataset x:

n(n + 1) 2

ΣR(xi)R(yi) – ——————
4rho = ————————————————————————————

—————————————————————————
n(n + 1)2 n(n+1)2√ [ΣR2(xi) – ——————] [ΣR2(yi) – ——————]

4 4

See Nonparametric Statistical Inference, p. 228. Many statistics books give only the
simple form, so you may have to call SetSpearmanTie(0) to get answers that match
your statistics book.

AskSpearmanTie (f)
AskSpearmanTie is the inverse of SetSpearmanTie. It returns f = 0 if the simple proce-
dure will be followed for calculating Spearman’s rho in the presence of ties, or 1 if the
more complicated procedure will be used instead.

66 Statistics Graphics Toolkit

01/01

Line-Fits, Regressions, and ANOVA
This section describes least-squares linear, least absolute deviation linear, and polyno-
mial curve-fitting routines, multiple linear regressions, and ANOVA calculations.

LSFit (x(), y(), resid(), ls())
LSFit computes a least-squares linear fit of the dependent variable y() to the independent
variable x(). The x() and y() arrays must have the same sizes but needn’t have the same
upper and lower bounds; they’re taken as paired data points (xi, yi) starting with the first
element of each array. If either number in a pair is missing, the pair is not used.

Residuals are returned in resid(), which is resized as needed. If an x or y value is miss-
ing, the corresponding residual value will be missing.

The resulting statistics are returned in ls(), which can be indexed via the function
names below. For instance, ls(ls_r2) is the r2 value. See the “Subscript Functions” sec-
tion for more information.

Least-Squares Statistics Subscript Functions
ls_n number of non-missing x/y points
ls_slo slope of fitted line
ls_int intercept of fitted line
ls_xbar mean of x()
ls_ybar mean of y()
ls_ssx sum of squares x
ls_sxy sum of products xy
ls_ssy sum of squares y
ls_sse sum of squares error
ls_se standard error
ls_ts t-statistic for slope
ls_dfs degrees of freedom for slope
ls_p probability for slope’s t-statistic
ls_r Pearson’s product-moment correlation coefficient
ls_r2 r2 (coefficient of determination)
ls_z Fisher’s z-transform of r
ls_f F-statistic (same as ts2)

See the “Scatter and Residual Plots” section for an example of how to plot least-squares
fits to data points.

Line-Fits, Regressions, and ANOVA 67

01/01

If you give only one data point, no statistics can be computed except xbar and ybar.
The other statistics will be set to the missing value. If ssx, ssy, or se = 0, then cer-
tain statistics can’t be computed and will be set to the missing value instead. If you
have disallowed missing values, you will get an error in these cases.

Use PolyFit if you need to assign weightings to the data points.

Exception:
110 Data arrays have different bounds in LsFit.
717 Can’t use LsFit with SSX, SSY, or SE = zero.

PolyFit (x(), y(), w(), n, coeff(), resid(), var, cv(,))
PolyFit computes a least-squares polynomial fit of the dependent variable y() to the
independent variable x(). The x() and y() arrays must have the same sizes but needn’t
have the same upper and lower bounds; they’re taken as paired data points (xi, yi)
starting with the first element of each array. If either number in a pair is missing, the
pair is not used.

The w() array gives weights for each of the x/y data points. Pass a zero-size array if you
want all points to have the same weighting. If w() is not zero-sized, its size must match
those of x() and y().

You must also pass n, the degree of the polynomial. For instance, if you give n = 2, Poly-
Fit will fit a second-degree polynomial through the data points.

The polynomial coefficients are returned in coeff(), which is redimensioned to
coeff(0:n), so coeff(0) is the constant term, coeff(1) is the x term, coeff(2) is the x2 term,
and so forth. The residuals are returned in resid(); if either xi or yi is missing, the corre-
sponding residual is also missing. The variance is returned in var, and the covariance
matrix in cv(,).

See the “Scatter and Residual Plots” section for an example of how to plot polynomial
fits to data points.

Exception:
110 Data arrays have different bounds in PolyFit.
741 Polynomial degree must be positive integer in Polyfit: n

MultiLSFit (d(,), y, corr(,), int, beta(), se(), t(), p(), ey(), res(), sres(),
stres(), press(), hat(,), ra())

MultiLSFit computes a multiple linear regression based on least-squares linear
fitting. It finds the intercept int and slopes beta() for the equation:

y = int + ß1x1 + ... + ßnxn

68 Statistics Graphics Toolkit

01/01

You must supply a nonsingular array of data points d(,) in which each column is a
dataset, and an index y that indicates which column is the dependent variable. This y
must be an integer in the range Lbound(d,2) to Ubound(d,2). Naturally d(,) must have
≥ 2 columns, but there is no upper bound. It cannot have any missing values. MultiLs-
Fit returns quite a few results:

corr(,) correlation matrix
int intercept
beta() ß values
se() standard errors of beta()
t() t-statistics for beta()
p() probability of t()
ey() estimated y() values (int + ∑bixi)
res() residuals
sres() standardized residuals
stres() Studentized residuals. Let s be ra(ra_se).

Then stres(i) = res(i) / (s * Sqr(1–hat(i,i)).
press() PRESS residuals: res(i) / (1 – hat(i,i))
hat() HAT matrix = d*Inv(Trn(d)*d)*Trn(d) with d’s y column

replaced by 1’s
ra() miscellaneous Regression ANOVA statistics (see next page)

The ra() array contains a number of regression ANOVA statistics. You can access these
array elements by using the function names below. For instance, ra(ra_ar2) is the
adjusted R2 value. See the “Subscript Functions” section for more information.

Regression ANOVA Statistics Subscript Functions
ra_ssm sum squares mean
ra_ssr sum squares regression
ra_sse sum squares error (residual)
ra_sst sum squares total
ra_dfm degrees of freedom mean
ra_dfr degrees of freedom regression
ra_dfe degrees of freedom error (residual)
ra_dft degrees of freedom total
ra_msr mean square regression
ra_mse mean square error (residual)
ra_se standard error

Line-Fits, Regressions, and ANOVA 69

01/01

ra_f F-statistic
ra_p Prob(f)
ra_r multiple R
ra_r2 R-square
ra_ar2 adjusted R-square
ra_d Durbin-Watson d statistic
ra_press PRESS statistic: ∑press(i)2

Exceptions:
756 Too few observations in MultiLSFit.
757 Dependent variable must be integer between i and j: y
758 Singular matrix in MultiLSFit.
759 MultiLSfit dataset can’t contain missing values.

PrintMultiRegress (#n, d(,), y)
PrintMultiRegress computes a multiple linear regression based on least-squares lin-
ear fitting, and then prints a concise table of regression statistics.

Channel #n must refer to an open window or a text file. Pass #0 to print in the current
window.

You must supply an array of data points d(,) in which each column is a dataset, and an
index y that indicates which column of d(,) should be taken as the dependent variable.
This y must be an integer in the range Lbound(d,2) to Ubound(d,2). Naturally d(,)
must have at least two columns but there is no upper bound on the number of columns.

Exceptions:
756 Too few observations in MultiLSFit.
757 Dependent variable must be integer between i and j: y
758 Singular matrix in MultiLSFit.
759 MultiLSfit dataset can’t contain missing values.
7004 Channel isn’t open.
8501 Must be text file.

70 Statistics Graphics Toolkit

01/01

Figure 43.30: Output of the MULTIREG program.

Figure 43.31: Output of the REGPRESS program.

Line-Fits, Regressions, and ANOVA 71

01/01

Advanced Examples in Multiple Regression
Your diskette contains three sample programs that illustrate advanced techniques in
multiple regression. You should skip this section unless you are truly zealous and well-
versed in regressions.

The REGPRESS program analyzes a model of asphalt shingle sales. It is taken from
Myers’ Classical and Modern Regression with Analysis, pp. 108-111, and illustrates
how PRESS residuals and the PRESS statistic can be used to evaluate a 2-variable
model. Columns display actual vs. predicted y values, simple residuals, and corre-
sponding PRESS residuals. See Figure 43.31.

The REGHAT program analyzes a model of U. S. Navy Bachelor Officers’ Quarters
manpower and workload. It too is taken from Myers, pp. 144-147. As he notes, careful
analysis of the Studentized residuals leads one to believe that the model is strained for
y > 2000, perhaps because of nonhomogeneous variance. Data point 23 is particularly
troublesome as its Studentized residual is large and its HAT diagonal value indicates
that the point is remote from the data center.

Columns display actual vs. predicted y values, simple and Studentized residuals, and
the corresponding HAT matrix diagonal values.

Figure 43.32: Output of the REGHAT program.

72 Statistics Graphics Toolkit

01/01

The REGHAT2 program shows the same results as a scatter plot of Studentized resid-
uals vs. predicted man-hours. This figure is directly drawn from Myers, p. 147, but also
draws data points “distant” from the data center as solid blocks for emphasis. Distance
is measured by a point’s HAT value — not by the coordinate system that this graph
uses — and that’s why one of the “distant” points happens to be near the “center” of
this graph.

The lowest point is data point 23 as shown in the table on the facing page. Note that it
has the most extreme Studentized residual and is distant from the data center in
terms of the HAT measure. This strongly suggests an unusual departure from zero.

Figure 43.33: Output of the REGHAT2 program.

Anova (d(,), an())
Anova computes a one-factor analysis of variance from the data points d(,) and returns
statistics in the an() vector. Each column of d(,) is taken as one dataset, so “within”
refers to columns and “between” refers to rows. You can access the an() array elements
by using the function names below. For instance, an(an_f) is the F-statistic. See the
“Subscript Functions” section for more information.

If you want to get fancier, try the MultiLSFit routine. See also the Friedman routine
for a nonparametric two-way ANOVA.

Line-Fits, Regressions, and ANOVA 73

01/01

ANOVA Statistics Subscript Functions
an_msw mean square within
an_msb mean square between
an_ssw sum of squares within
an_ssb sum of squares between
an_sst sum of squares total
an_dfw degrees of freedom within
an_dfb degrees of freedom between
an_dft degrees of freedom total
an_f F-statistic
an_p Prob(F)

PrintAnova (#n, d(,))
PrintAnova computes a one-factor analysis of variance from the data points d(,) and
prints an ANOVA table from the results. Each column of d(,) is taken as one dataset, so
“within” refers to columns and “between” refers to rows. If you want to get fancier, try
the PrintMultiRegress routine.

Channel #n must already be open. It can refer to a window or a text file. Pass #0 to
print in the current window.

Exceptions:
7004 Channel isn’t open.
8501 Must be text file.

MedFit (x(), y(), slope, inter, mad,resid())
MedFit computes a “median” (least absolute deviation) linear fit of the dependent vari-
able y() to the independent variable x(). The x() and y() arrays must have the same sizes
but needn’t have the same upper and lower bounds; they’re taken as paired data points
(xi, yi) starting with the first element of each array. If either number in a pair is miss-
ing, the pair is not used.

MedFit is like LSFit except that it uses a more “robust” technique so that outliers have
less effect on the fitted line. It is, however, significantly slower than LSFit.

MedFit returns the slope and intercept of the fitted line in slope and inter, the mean
absolute deviation mad, and the residuals in resid().

Use SetLineFit to switch to using least-absolute-deviation fits instead of least-squares
fits in scatter and regression plots.

74 Statistics Graphics Toolkit

01/01

DataToNormResid (data(), from, to, step, resid())
Compute the “residuals” derived by subtracting a normal curve from the dataset’s his-
togram. This gives a quick check to see if the data appears normally distributed. This
routine is used by PlotNormFit to calculate its residuals; see its description for a pic-
ture of the results.

You must pass a data() array, and from, to, and step to define the histogram grouping.
For instance, values of 1, 10, and .5 create a histogram with centerpoints at 1, 1.5, ...,
9.5, 10. As usual, low and high values are collected one step beyond either end of the
interval; in this example, all low values are collected in .5 and all high values into 10.5.
See the “Frequency Distributions” section for more information about from, to, and
step.

Once the histogram has been created, it is subtracted from the normal curve defined by
the data’s mean and variance. If histograms are being plotted by count, these absolute
differences are directly plotted as the residuals. But if not, the curve and histogram are
first normalized so the area equals 1. Then the residuals are computed. Finally, the
residuals are divided by the normal curve’s highest value to give a relative residual.
This makes it easier to spot variations between curves with different variances.

Data() and resid() may have any bounds. The lower bound of resid() is left unchanged,
but the upper bound is adjusted to hold the residuals.

FreqToNormResid (freq(,), resid(,))
This is just like DataToNormResid except that the input and output arrays freq(,) and
resid(,) are frequency distributions instead of raw data.

Such frequency distributions can be created by DataToFreq, etc. See the “Frequency
Distributions” section for more information.

Freq(,) and resid(,) may have any bounds. The lower bounds of resid(,) are left
unchanged, but the upper bounds are adjusted to hold the residuals.

Line-Fits, Regressions, and ANOVA 75

01/01

Scatter and Residual Plots

This section describes how to get scatter plots. In general, you simply pass your x/y
data to the appropriate routine, along with information about point and line styles and
the color scheme.

If you wish, you can have least-squares or “median” (least absolute deviation) fitted
lines, confidence bands, and/or polynomial fits added automatically to all scatter plots.
See the end of this section for details.

Logarithmic scaling for either the X or Y axis, or both, is easy. Just call SetGraphType
before drawing your graph:

call SetGraphType(“logx”)
call SetGraphType(“logy”)
call SetGraphType(“logxy”)

See the “Advanced Graph Controls” section for more information.

PlotScat (x(), y(), ps, ls, col$)
Draw a scatter plot of the x/y pairs. These two arrays must have the same bounds; if
either coordinate in a point is missing, that point is ignored. By default, PlotScat auto-
matically picks coordinates that show all the data. You can, however, override it by
calling SetXscale and SetYscale.

If x() is the “null” vector, (having no elements), then the x-coordinates will be 1,2, ….

Points are drawn in the ps point style connected by lines drawn in the ls line style. If ps
= 0, no points are shown. If ls = 0, no connecting lines are shown. There are currently
13 point styles and 4 line styles to choose from; see the “Making Graphs” section for
more help.

PlotScat draws the first point given in x and y, then the next point, and so forth. This
might not be in left-to-right order, so if you connect unordered points, the result will
look scrambled. You can use SortPoints to order the points before graphing them.

If you call SetLS, SetConfBand, or SetPolyFit before calling PlotScat, the scatter plot
will be drawn with an automatic linear fit, confidence band, or polynomial fit.

The color scheme col$ is treated as usual. A string such as “red green yellow” gives a
red title, green frame, and yellow data. The data color is used for data points, fitted
line, confidence bands, and polynomial fitting (if requested). See the end of this section
for more about least-squares, confidence bands, and polynomial fitting, and the “Mak-
ing Graphs” section for help with color schemes.

76 Statistics Graphics Toolkit

01/01

AddScatPlot (x(), y(), ps, ls, col$)
Add a scatter plot of x/y pairs to the existing graph. These arrays must have the same
bounds; if either coordinate in a point is missing, that point is ignored. If ps ≠ 0, each
point is drawn in that style. If ls ≠ 0, the points are connected in order by lines in that
style. AddPlotScat uses the existing coordinates, so some or all of your added data may
not be visible on the graph.

Title and frame colors are ignored in the color scheme col$. A string such as “red green
yellow” gives yellow data, as does a string such as “yellow”. The data color is used for
data points, fitted line, confidence bands, and polynomial fitting (if requested). See the
end of this section for fitted lines, confidence bands, and polynomial fitting, or “Making
Graphs” for help with color schemes and point and line styles.

Figure 43.34: Output of the SCAT2 program.

PlotManyScat (x(,), y(,), connect, legend$, col$)
PlotManyScat plots multiple sets of data points in one graph. Each row of the x and y
arrays contains the coordinates for one set of data points, so x and y must have the
same sizes. As illustration, dim x(3,15) creates an x array with 3 datasets of 15 points
each. You can mat read these coordinates from 3 data statements, each of which holds
15 numbers.

Scatter and Residual Plots 77

01/01

The datasets’ point styles are taken in order from the GraphPoint set – plus, asterisk,
circle, and so on – and cycle through the set if you plot more than 12 datasets in one
graph. (Style #1 isn’t used since it’s hard to see.)

If connect is nonzero, each data point is connected to its neighbors by a straight line.
You can use SortPoints2 to make sure your data points are in order. If you’ve used
SetLS to turn on fitted lines, each dataset gets its own line. Confidence bands and con-
necting or fitted lines have the same colors and line styles. To distinguish them, use
PlotScat and AddPlotScat to control colors and line styles.

Size(x,1) gives the number of datasets. Each is identified by a label from legends$() just
below the graph’s title, so Size(x,1) must equal Size(legends$).

The col$ string gives the color scheme; thus “red yellow green blue” gives a red title,
yellow frame, and green and blue datasets. If you give more datasets than data colors,
PlotManyScat uses different line styles to distinguish the connecting or fitted lines.
First it draws solid lines in the colors you’ve chosen. Then it switches to dashed, dotted,
and then dash-dotted lines. So if you graph five datasets with connecting lines in the
color scheme above, you get (in order): solid green, solid blue, dashed green, dashed
blue, dotted green. See the “Making Graphs” section for more help.

Compare the output of Figures 43.04 and 43.05 to see the correlation differences.

Figure 43.35: Output of the LINEFIT program.

78 Statistics Graphics Toolkit

01/01

AddLinFitPlot (x(), y(), ls, col$)
Draw a least-squares or least-absolute-deviation line for the x/y data on top of the
existing graph. These two arrays must have the same bounds; if either coordinate in a
point is missing, that point is ignored. The least-squares line for non-missing data
points is drawn in line style ls. The points themselves are not displayed.

AddLinFitPlot uses the existing coordinates, so some or all of your added line may not
be visible on the graph. Use SetLineType to switch between least-squares and least-
absolute-deviation line fits.

Title and frame colors are ignored in the color scheme col$. A string such as “red green
yellow” gives a yellow line. See the “Making Graphs” section for information about
color schemes and a list of line styles.

AddPolyPlot (coeff(), ls, col$)
Draw a least-squares polynomial with coefficients coeff() on top of the existing graph in
line style ls. AddPolyPlot uses the existing coordinates, so some or all of your added
line may not be visible on the graph.

Figure 43.36: Output of the POLYFIT program.

Scatter and Residual Plots 79

01/01

Coeff(0) is the constant term, coeff(1) is the x term, coeff(2) is the x2 term, etc. The array
size determines the polynomial degree: all coeff() elements are used as terms. You can
get coeff() by PolyFit.

Title and frame colors are ignored in the color scheme col$. A string such as “red
green yellow” gives a yellow line. See the “Making Graphs” section for information
about color schemes, and a list of line styles.

PlotResid (x(), y(), ps, ls, col$)
Plot the residuals of y() against x(), where the residuals are computed against the
least-squares or median-fit line for the x/y data points. These arrays must have the
same bounds; if either coordinate in a point is missing, that point is ignored. If ps ≠ 0,
each point is drawn in that point style. If ls ≠ 0, the points are connected in order by a
line in that style.

By default, PlotResid picks coordinates that show all the data. To override it, use
SetXrange and SetYrange.

The color scheme col$ is treated as usual. A string such as “red green yellow” gives a
red title, green frame, and yellow data.

Figure 43.37: Output of the RESID program.

80 Statistics Graphics Toolkit

01/01

See the end of this section for more about linear fits, confidence bands, and polynomial
fitting, and the “Making Graphs” section for information about color schemes and a list
of point and line styles.

Figure 43.38: Output of the RESID2 program.

PlotPolyResid (x(), y(), n, ps, ls, col$)
Plot the residuals of y() against x(), where the residuals are computed against the
least-squares polynomial of degree n for the x/y data points. These arrays must have
the same bounds; if either coordinate in a point is missing, that point is ignored. If ps ≠
0, each point is drawn in that point style. If ls ≠ 0, the points are connected in order by a
line in that style.

By default, PlotResid automatically picks coordinates that show all the data. You can,
however, override its choices by using SetXrange and SetYrange.

The color scheme col$ is treated as usual. A string such as “red green yellow” gives a
red title, green frame, and yellow data.

Exception:
741 Polynomial degree must be positive integer in PlotPolyResid: n

Scatter and Residual Plots 81

01/01

PlotNormFit (data(), from, to, step, ps, ls, col$)
Plot the “residuals” derived by subtracting a normal curve from the dataset’s his-
togram. This gives a quick check to see if the data appears normally distributed.

You must pass a data() array and from, to, and step to define the histogram grouping.
For instance, values of 1, 10, and .5 create a histogram with centerpoints at 1, 1.5, ...,
9.5, 10. As usual, low and high values are collected one step beyond either end of the
interval; in this example, all low values are collected in .5 and all high values into 10.5.
See the “Frequency Distributions” section for more information about from, to, and step.

Once the histogram has been created, it is subtracted from the normal curve defined by
the data’s mean and variance. If histograms are being graphed by count, these abso-
lute differences are directly plotted as the residuals.

But if not, the curve and histogram are first normalized so the area equals 1. Then the
residuals are computed. Finally, the residuals are divided by the normal curve’s high-
est value to give a relative residual. This makes it easier to spot variations between
curves with different variances.

Figure 43.39: Output of the NORMFIT program.

The residual points are drawn in the ps point style connected by lines drawn in the ls
line style. If ps = 0, no points are shown. If ls = 0, no connecting lines are shown. There

82 Statistics Graphics Toolkit

01/01

are currently 13 point styles and 4 line styles to choose from; see the “Making Graphs”
section for information.

As usual, col$ gives the color scheme; for instance “red green blue” gives a red title,
green frame, and blue data.

Observation Plots
This section describes how to plot data with multiple observations of each item. For
example, you may have run an experiment three times and hence have three observa-
tions of each data point.

X Coordinates
The X coordinates for observation plots are given by a series of strings rather than
numbers. Thus you can label your horizontal axis with marks such as “1:1” and “2:1”,
or “Jan” and “Feb”, and so forth. Of course, you can also get standard numbers along
the X axis by passing “1”, “2”, or whatever.

If your X axis labels are all numbers, the Toolkit will use those numbers to define the
coordinates of the observation plot. But if they aren’t, it will assign the first mark an X
coordinate of 1, the second one 2, and so forth.
———————————————————————————————————————

x WARNING: If you supply non-numeric labels for the X axis, legends
that include line slope, intercepts, and so forth, will be based on the
implied X coordinates of 1, 2, 3, This may not be what you want! In
addition, log-X plots will look bizarre.

———————————————————————————————————————
Remember, if you supply numeric X axis labels, the legend’s slope, intercept, etc., will
in fact match the graph, and log-X plots will work correctly.

PlotObs (data(,), xlabel$(), meanps, ls, col$)
Plot a dataset data(item,obs) where each data item has multiple observations. Each
row contains observations of the same data point.

By default, PlotObs doesn’t plot individual observation points; it plots the mean of each
set of observations, and an error bar that extends 1 standard deviation above and
below the mean. Call SetErrorBeam to change the shape of the error bar, SetObsSD to
control its length or remove it altogether, or SetObsSE to draw bars of standard error
rather than standard deviation.

Scatter and Residual Plots 83

01/01

Each mean observation is drawn in point style meanps; pass meanps = 0 to omit plot-
ting the mean points. If ls ≠ 0, the mean points are connected by a line drawn with line
style ls. See the “Making Graphs” section for information on these styles.

You can also ask for least-squares lines, polynomial fits, and confidence bands to be
drawn through the means of each observation. See SetLS, SetPolyFit, and SetConf-
Band for more information.

Each set of observations is labelled, along the X axis, by a corresponding label from the
xlabel$() array. Therefore, Size(data,1) must equal Size(xlabel$). You may use what-
ever labels you like in the xlabel$() array so long as they all fit on the screen. The color
scheme col$ works as usual; for instance “red green blue” draws a red title, green
frame, and blue data.

Call SetDataStyle(ps) to plot the individual data points in the indicated point style.

AddObsPlot (data(,), meanps, ls, col$)
AddObsPlot is just like PlotObs except that it simply draws the data on top of an exist-
ing graph. Because it does not adjust the graph’s scale, the new data may lie outside
the graph frame and hence be invisible. To plot multiple sets of data and make sure
they all show, use PlotManyObs.

Figure 43.40: Output of the MANYOBS program.

84 Statistics Graphics Toolkit

01/01

PlotManyObs (data(,,), legend$(), xlabel$(), col$)
Plot multiple observation datasets on one graph. The data(,,) array contains all
datasets: data(set,item,obs). These datasets needn’t have the same sizes; simply pad
short datasets with the missing value.

First the graph is scaled so all data points are visible. Then the datasets are plotted in
turn, as if by PlotObs. Use SetObsSD or SetObsSE to control the error bars. Set-
DataStyle works as follows: if you’ve set a nonzero value, data points are plotted using
this sequence of point styles: circle, X, up triangle, down triangle, plus. If you have
more than 5 datasets, styles are reused.

Mean points are always plotted. Their symbols are: solid box, box, solid diamond, dia-
mond, solid up triangle. Symbols are reused if need be. Lines that connect a dataset’s
mean observations area are also plotted; their styles cycle through all available styles.
You can also ask for linear fits, polynomial fits, and confidence bands to be drawn
through the means of each observation. See SetLS, SetPolyFit, and SetConfBand for
more information.

If col$ = “red green blue brown” then dataset 1 is plotted in blue, 2 in brown, 3 in blue,
and so forth.

Figure 43.41: Output of the OBSRESID program.

Scatter and Residual Plots 85

01/01

The X axis is labelled by the xlabel$() items, so Size(xlabel$) must equal Size(data,2).
Each dataset is identified by a legend; pass legend items in legend$(). Hence Size(leg-
end$) must equal Size(data,1).

PlotObsResid (data(,), xlabel$(), meanps, ls, col$)
Plot residuals of the data(,) set from a linear fit through the data points. Parameters
are as in PlotObs.

PlotPolyObsResid (data(,), xlabel$(), n, meanps, ls, col$)
Plot residuals of data(,) from a least-square polynomial of degree n that fits the data
points. Aside from the polynomial degree n, parameters are as in PlotObs.

Exception:
741 Polynomial degree must be positive integer in PlotPolyObsResid: n

ObsResid (data(,), xlabel$(), n, resid(,))
Compute residuals resid(,) of the data(,) set from a least-squares polynomial of degree
n that fits the data points. If xlabel$() contains numbers, these will be used as the X
coordinates for the polynomial fit; otherwise the first data points will have X coordi-
nate 1, the second points will have 2, and so forth.

Exception:
741 Polynomial degree must be positive integer in ObsResid: n

Box Plots of Observations
You can also see box-and-whisker plots of your observed data, instead of graphs with
error bars. These box plots are appropriate when you are not sure that your data is
normally distributed. Just call SetObsBox before drawing the observation plot.

Program OBSBOX, on your diskette, shows a box-observation plot.

Fitted lines are based on the medians of box plots, rather than means. (Remember that
the median is marked with a “+” in box plots.)

If you ask to see the raw data points (with SetDataStyle), they are displayed slightly to
the right of the box plot as shown above. The box plot itself occupies the correct hori-
zontal position.

86 Statistics Graphics Toolkit

01/01

Figure 43.42: Output of the OBSBOX program.

SetLS (f)
Add least-squares or median lines, automatically, to every subsequent scatter or
observation plot. Use non-zero f to turn on the least-squares lines, 0 to turn them off.
The line will be drawn in line style 1 (solid line).

Note that this routine is also used by the Scientific Graphics Toolkit, so if you use both
toolkits together, you only need to call this one routine. By default, least-squares lines
are turned off.

AskLS (f)
The opposite of SetLS. Returns 1 for automatic least-squares lines, 0 otherwise.

SetConfBand (ci, ls)
Add confidence bands to every subsequent scatter or observation plot. These bands
show the confidence interval for the least-squares line, not for the data!

The bands are added at the ci confident interval in the ls line style. For example ci = .95
and ls = 3 gives dotted lines at the 95% confidence interval. Use ls = 0 to turn off the
confidence bands. By default, confidence bands are off.

Box Plots of Observations 87

01/01

AskConfBand (ci, ls)
The opposite of SetConfBand. Returns the current confidence interval for automatic
confidence bands, along with its line style.

SetLineFit (type$)
Set the type of linear fits used in scatter and regression plots. Pass type$ = “LS” for
least-squares fits, or “MEDIAN” for median (least-absolute-deviation) fits.

Note that confidence bands, r2 values, etc., cannot be computed for median fits.

AskLineFit (type$)
The opposite of SetLineFit. Returns the current linear fitting type as “LS” or
“MEDIAN”. The default is “LS”.

SetPolyFit (n)
Add a polynomial curve fit of degree n, automatically, to every subsequent scatter or
observation plot. For instance, n = 2 fits a parabola to subsequent scatter plots. Note
that n must be a non-negative integer. The polynomial is drawn in line style 1 (solid
line). Call SetPolyFit(0) to turn off the polynomial. By default, polynomial fitting is
turned off.

Exception:
741 Polynomial degree must be positive integer in SetPolyFit: n

AskPolyFit (n)
The opposite of SetPolyFit. Returns n > 0 for automatic polynomial fitting of degree n,
0 otherwise.

AskLineStats (ls())
Return the statistics computed for the last least-squares line fitted through data
points, either by calling LSFit or by adding a least-squares line to a graph. This array
has the same format as that returned by LSFit.

AskPolyCoeff (coeff())
Return the coefficients for the last polynomial fitted through data points, either by call-
ing PolyFit or by adding a least-squares polynomial fit to a graph. This array has the
same format as that returned by PolyFit.

88 Statistics Graphics Toolkit

01/01

SetDataStyle (ps)
Set the point style ps used to plot individual data points in observation plots and
confidence interval plots. For instance, SetDataStyle(2) will draw data points in point
style 2 in subsequent observation or confidence interval plots. Your ps must be a point
style as defined in the “Making Graphs” section or 0 to omit plotting the raw data
points. By default, raw data is not plotted in these graphs.

AskDataStyle (ps)
The opposite of SetDataStyle. Return the current point style used for raw data points
in observation plots and confidence interval plots.

SetErrorBeam (pix)
By default, error bars are shown as simple vertical lines. You can switch to an I-beam
shape if you wish.

To get I-beams, call SetErrorBeam before you graph a data range. Pass in pix the pixel
length for each side of the cross-bar. The full cross-bar is 2*pix+1 pixels wide.

All subsequent data ranges will be drawn as I-beams with cross-bars of this size. For
most computers, 2 or 3 pixels are enough for a cross-bar. But you can make them as big
as you want. To go back to the simple vertical lines, just pass pix = 0.

AskErrorBeam (pix)
AskErrorBeam is the opposite of SetErrorBeam. It returns the current size of the
cross-bar for error bars (in pixels).

SetObsSD (n)
Call SetObsSD(n) to create error bars n * sd units long, where sd is the standard devia-
tion of a set of observations. For instance SetObsSD(2) will tell PlotObs to produce
error bars 2 sd’s long about the mean of each observation set. To turn off error bars, call
SetObsSD(0). By default, n = 1.

Notes: use SetSD to control whether the standard deviation is computed with a denom-
inator of n data items or n – 1. If you call SetObsSD, then SetObsSE will automatically
be turned off.

Exception:
704 SetObsSD can’t be negative: n

Scatter and Residual Plots 89

01/01

AskObsSD (n)
The opposite of SetObsSD. Returns the current sd multiplier for error bars in observa-
tion plots.

SetObsSE (n)
Call SetObsSE(n) to create error bars n * se units long, where se is the standard error
of the mean of a set of observations. For instance, SetObsSE(2) will tell PlotObs to pro-
duce error bars 2 sem’s long about the mean of each observation set. To turn off error
bars, call SetObsSE(0). By default, n = 0.

Notes: use SetSD to control whether the standard deviation, and hence the standard
error of the mean, is computed with a denominator of n data items, or n – 1. If you call
SetObsSE, SetObsSD will automatically be turned off.

Exception:
704 SetObsSE can’t be negative: n

AskObsSE (n)
The opposite of SetObsSE. Returns the current se multiplier for error bars in observa-
tion plots.

SetObsBox (f)
Pass f = 1 to use box-and-whisker plots in observation plots, or 0 to return to using the
default (error bars).

AskObsBox (f)
The opposite of SetObsBox. Returns f = 0 if observation plots use error bars, 1 if they
use box plots.

90 Statistics Graphics Toolkit

01/01

Mixing Statistics, 3-D, Scientific,
and Business Graphics

This section shows how you can mix and match tools from True BASIC’s graphics
packages. By using tools from different packages together, you can get clear and
useful graphs tailored to specific problems.

The 3-D Graphics Toolkit lets you draw data plots or functions in three dimensions
with just one or two subroutine calls. It’s ideal for displaying multi-dimensional
data.

The Business Graphics Toolkit provides very good ways to draw overlapped
histograms, scatter plots that use words or letters as point marks, pie charts and
area charts.

The Scientific Graphics Toolkit can draw splines and Bezier curves, and plots
arbitrary functions with ease.

Just remember to call SetOverlay(1) as you do when overlaying scientific graphs.
You may also want to call SetScale from the Business Graphics Toolkit to alter the
overlaid chart’s scale.

———————————————————————————————————————

x NOTE: If you use the Business, Scientific, and Statistics Graphics
Toolkits together, you need only one copy of FRAMELIB. If your
copies of FRAMELIB have different version numbers, use the latest
version. Your graphs will all have scientific-style tick marks inside
all four edges of the frame. Call SetInTicks("") to get the usual
Business Graphics ticks.

———————————————————————————————————————

Mixing Statistics, 3-D, Scientific and Business Graphics 91

01/01

3-D Graphics
The STAT3D program, on your disk, shows a 3-D bar chart of a 5 x 5 contingency
table so you can easily see the data distribution. It adds bar charts for the row and
column sums along the sides, and prints various statistics in a separate window
along the bottom of the screen. The bar-chart routines come from the 3-D Graphics
Toolkit, so you need that Toolkit to run STAT3D.

Figure 43.43: Output of the STAT3D program.

92 Statistics Graphics Toolkit

01/01

Data Transforms

This section describes the Data Transforms available in the Statistics Graphics
Toolkit. Transformation is a very powerful technique in data analysis that can be
used to clarify raw data with any of the following characteristics:

• Strong asymmetry

• Many outliers in one tail

• Batches at different levels with different spreads

• Large and systematic residuals

The illustration below, taken from Understanding Robust and Exploratory Data
Analysis, shows output of your diskette’s CITIES1 and CITIES2 programs side by
side. Notice how applying a Log10 transform to the raw data corrects for increasing
spread as a function of level.

Notice how many “spurious” outliers have been removed, and how smaller countries
are now much easier to read.

Figure 43.44: Using Log10 Transform to Correct Spread

Data Transforms 93

01/01

True BASIC’s MAT Statements
Remember that you can use the mat statements for many kinds of transforms. For
instance, to “aggregate” two variables x1() and x2() into a new variable x():

mat x = x1 + x2

You can build even complicated weighted aggregations by sequences of mat scalar
multiplications and additions.

One-Dimensional Transforms
These transforms handle advanced matrix manipulation that can’t be done directly
with mat statements.

If these routines cannot transform a data value — for example, if they must take Sqr
of a negative number — they supply the missing value instead or give an error if you
have disallowed missing values.

PowerTran (x(), n)
Box-Cox power transform. If n = 0, then x’ = Log(x); else x’ = (xn–1)/n.

LogitTran (x())
Logit transform: x’ = Log(x/(1–x)).

AddTran (x(), k)
Add a constant: x’ = x + k. Note that multiplication and division can be accomplished
with True BASIC mat statements: mat x = k * x or mat x = (1/k) * x.

ToNthTran (x(), n)
Nth power: x’ = xn. Note that n can be negative; for example, n = –1 gives 1/x.

SinTran (x())
Sine transform: x’ = Sin(x).

CosTran (x())
Cosine transform: x’ = Cos(x).

94 Statistics Graphics Toolkit

01/01

AsinTran (x())
Arcsine transform: x’ = Asin(x).

SqrTran (x())
Square root transform: x’ = Sqr(x).

LogTran (x())
Natural logarithm transform: x’ = Log(x).

Log2Tran (x())
Logarithm base-2 transform: x’ = Log2(x).

Log10Tran (x())
Common logarithm transform: x’ = Log10(x).

ExpTran (x())
Natural exponential transform: x’ = ex.

SgnTran (x())
Sign transform: x’ = Sgn(x).

IntTran (x())
Greatest integer (“floor”) transform: x’ = Int(x).

Two-Dimensional Transforms
The same transforms are also defined for two-dimensional data arrays (not frequency
arrays!):

PowerTran2 (x(,), n)
Box-Cox power transform. If n = 0, then x’ = Log(x);
else x’ = (xn–1)/n.

Data Transforms 95

01/01

LogitTran2 (x(,))
Logit transform: x’ = Log(x/(1–x)).

AddTran2 (x(,), k)
Add a constant: x’ = x + k. Note that multiplication and division can be accomplished
with True BASIC mat statements: mat x = k * x or mat x = (1/k) * x.

ToNthTran2 (x(,), n)
Nth power: x’ = xn. Note that n can be negative; for example, n = –1 gives 1/x.

SinTran2 (x(,))
Sine transform: x’ = Sin(x).

CosTran2 (x(,))
Cosine transform: x’ = Cos(x).

AsinTran2 (x(,))
Arcsine transform: x’ = Asin(x).

SqrTran2 (x(,))
Square root transform: x’ = Sqr(x).

LogTran2 (x(,))
Natural logarithm transform: x’ = Log(x).

Log2Tran2 (x(,))
Logarithm base-2 transform: x’ = Log2(x).

Log10Tran2 (x(,))
Common logarithm transform: x’ = Log10(x).

ExpTran2 (x(,))
Natural exponential transform: x’ = ex.

96 Statistics Graphics Toolkit

01/01

SgnTran2 (x(,))
Sign transform: x’ = Sgn(x).

IntTran2 (x(,))
Greatest integer (“floor”) transform: x’ = Int(x).

Probabilities and Critical Values
This section describes the functions that the Statistics Graphics Toolkit uses to
approximate significance probability and critical value functions.

Probabilities and critical values are computed for normal, Student-T, chi-square, and
F distributions. The results are accurate to about 8 significant digits in most cases.

For small samples, you should always check critical values against published critical
value tables; but these functions are very good approximations for larger sample
sizes, and also handy for “rough and ready” calculations.

def NorProb (x)
Returns the Gaussian (normal) integral to the left of x. For right tail probabilities,
call with argument –x instead of x.

def NorCrit (p)
Returns the critical value for the normal distribution of right-tail probability p.

def Tprob (df, x)
Returns the t-probability integral to the left of x with df degrees of freedom. For
right tail probabilities, call with argument –x instead of x.

def Tcrit (df, p)
Returns the critical value for the t-distribution with df degrees of freedom of right-
tail probability p.

def ChiProb (df, x)
Returns the chi-square density integral to the left of x with df degrees of freedom.

Probabilities and Critical Values 97

01/01

def ChiCrit (df, p)
Returns the critical value for the chi-square distribution with df degrees of freedom
of right-tail probability p.

def Fprob (df1, df2, x)
Returns the F-distribution integral to the left of x with df1 and df2 degrees of
freedom.

def Fcrit (df1, df2, p)
Returns the critical value for the F-distribution with df1 and df2 degrees of freedom
of the right-tail probability p.

98 Statistics Graphics Toolkit

01/01

Simulated Distributions
This section describes simulated distributions — sets of random numbers created
from True BASIC’s Rnd function that approximate various statistical distributions.
For instance, SimNormal creates a normally-distributed set of random numbers, and
SimPoisson creates a set with Poisson distribution.

Most of these routines are rather slow since it takes a great deal of computation to
simulate the distributions.

In all these routines, y() may have any lower bound. Its upper bound is adjusted as
needed to hold the random sample. The sample size requested must not be negative.

SimNormal (n, mean, sd, y())
Put n normally distributed random numbers, with given mean and sd, into y.

Exceptions:
718 Number of samples must be > 0.
719 SimNormal SD must be >= 0: sd

SimBinomial (k, n, p, y())
Put k random numbers in y, with a binomial distribution of n trials with p
probability of success.

Exceptions:
718 Number of samples must be > 0.
720 SimBinomial sample size must be > 0: n
738 Probability must be in range 0 to 1 inclusive for SimBinomial.

SimNegBinomial (k, nsucc, p, y())
Put k random numbers in y, with a negative binomial distribution of nsucc successful
trials with p probability of success in each trial.

Exceptions:
718 Number of samples must be > 0.
720 SimNegBinomial sample size must be > 0: nsucc

SimPoisson (n, lambda, y())
Put n random numbers in y, with a Poisson distribution about the mean lambda.

Exceptions:
718 Number of samples must be > 0.
720 SimPoisson mean must be > 0: lambda

Simulated Distributions 99

01/01

SimGeom (n, p, y())
Put n random numbers in y, geometrically distributed about the mean (1–p)/p.

Exceptions:
718 Number of samples must be > 0.

SimExp (n, mean, y())
Put n random numbers in y, exponentially distributed about the mean mean.

Exceptions:
718 Number of samples must be > 0.
720 SimExp mean must be > 0: mean

SimErlang (n, k, mean, y())
Put n random numbers in y, with an Erlang distribution of k events about a mean.

Exceptions:
718 Number of samples must be > 0.
719 SimErlang events must be >= 0: k

SimBeta (n, e1, e2, y())
Put n random numbers in y, with beta distribution of e1 events in ratio to e2 events.

Exceptions:
718 Number of samples must be > 0.
719 SimBeta events #i must be >= 0: ei

SimHyperGeom (n, ntri, p, pop, y())
Put n random numbers in y, with a hypergeometric distribution of ntri number of
trials with p probability of success in each trial, drawn from a population of size pop.

Exceptions:
718 Number of samples must be > 0.
719 SimHyperGeom number of trials must be >= 0: ntri
719 SimHyperGeom population size must be >= 0: pop

SimLogNormal (n, mean, sd, y())
Put n log-normally distributed random numbers in y, with given mean and sd.

Exceptions:
718 Number of samples must be > 0.
719 SimLogNormal SD must be >= 0: sd

100 Statistics Graphics Toolkit

01/01

SimUniform (n, a, b, y())
Put n uniform-continuously distributed random numbers in y, drawn from the
interval [a,b].

Exceptions:
718 Number of samples must be > 0.
724 Left endpoint must be < than right in SimUniform.

SimDiscUniform (n, a, b, y())
Put n discrete, uniformly distributed random numbers in y. That is, all the numbers
are integers in the range [a,b].

Exceptions:
718 Number of samples must be > 0.
724 Left endpoint must be < than right in SimDiscUniform.

SimSequence (n, from, step, y())
Generate in y() an ordered sequence of n numbers evenly spaced, starting at from
with a step of step.

Exceptions:
718 Number of samples must be > 0.

SimLinear (x(), slope, intercept, sd, y())
Given a dataset x() with a slope and intercept, create y() values that are normally
distributed along the regression line with a standard deviation of sd.

Exceptions:
719 Simlinear SD must be >= 0: sd

Simulated Distributions 101

01/01

Simulated Frequency Datasets
The following routines create simulated frequency datasets. These have the same
format as those created from raw data by DataToFreq, etc. See the “Frequency
Distributions” section for more information.

SimFreqNormal (mean, sd, from, to, step, y(,))
Create a normally-distributed frequency distribution in y(,).

Exceptions:
719 SD in SimFreqNormal must be >= 0: sd
722 Can’t have 0 step size in sequence.
723 Can’t have zero values in sequence.

SimFreqBinomial (n, p, from, to, step, y(,))
Create a binomially-distributed frequency distribution in y(,).

Exceptions:
721 p in SimFreqBinomial must be inside (0,1): p
722 Can’t have 0 step size in sequence.
723 Can’t have zero values in sequence.

SimFreqExp (emean, from, to, step, y(,))
Create an exponentially-distributed frequency distribution in y(,).

Exceptions:
719 Mean in SimFreqExp must be >= 0: emean
722 Can’t have 0 step size in sequence.
723 Can’t have zero values in sequence.

SimFreqPoisson (pmean, from, to, step, y(,))
Create a Poisson frequency distribution in y(,).

Exceptions:
719 Mean in SimFreqPoisson must be >= 0: pmean
722 Can’t have 0 step size in sequence.
723 Can’t have zero values in sequence.

SimFreqUniform (left, right, from, to, step, y(,))
Create a uniformly-distributed frequency distribution in y(,).

Exceptions:
722 Can’t have 0 step size in sequence.
723 Can’t have zero values in sequence.
724 Left endpoint must be < than right in SimFreqUniform.

102 Statistics Graphics Toolkit

01/01

Sampling

This section describes how to sample existing datasets (either real or simulated) to
create new datasets. You can sample with or without replacement.

SampleRep (n, x(), y())
Create a new dataset y() consisting of n elements randomly drawn from the x()
dataset. This routine samples with replacement; that is, the same x item may be
placed into the y() dataset repeatedly.

The x() and y() arrays may have any bounds. The lower bound of y() will remain
unchanged, and the upper bound will be adjusted to hold n elements.

SampleNoRep (n, x(), y())
Create a new dataset y() consisting of n elements randomly drawn from the x()
dataset. This routine samples without replacement; that is, a given x item may be
placed into the y() dataset only once.

The x() and y() arrays may have any bounds. The lower bound of y() will remain
unchanged, and the upper bound will be adjusted to hold n elements.

Exception:
725 Sample size > population size in SampleNoRep: n

Sampling 103

01/01

Subscript Functions

This section describes how to use the functions that work as subscripts for statistics
arrays like those returned by Stats.

Using Subscript Functions
If you’ve used the load command to bring STAT1LIB through STAT4LIB into
memory, you don’t have to do anything special to use the subscript functions. Just
use them like as if they were built into True BASIC:

dim d(0), s(0)
mat input d(?)
call Stats (d, s)
print “Mean: “; s(ls_mean)
end

Binding Programs — A Warning!
Before you bind your programs with the Runtime Package, however, you must add
declare def statements that declare every subscript function that you use.

Otherwise True BASIC will treat these functions as if they are variables. Since they
will have 0 as values, you will get “Subscript out of bounds” errors in your bound
programs.

For example, the program above will run correctly in the True BASIC environment
but will fail with a subscript error if you bind it and run it!

If you pre-load the libraries STAT1LIB through STAT4LIB, you can bind your
program using the BIND command without having to use declare def.

104 Statistics Graphics Toolkit

01/01

Complete List of Subscript Functions
Below is a complete list of subscript functions. Consult the appropriate section for
further information about how to use any of these functions.

Simple Statistics Subscript Functions
st_n number of elements
st_nm number of missing elements
st_nnm number of non-missing elements
st_sum sum of items
st_mean mean (average)
st_ssq sum of squares
st_var variance
st_sd standard deviation
st_sem standard error of the mean
st_med median
st_low lowest value
st_hi highest value
st_range range
st_rms root mean square (quadratic mean)
st_md mean absolute deviation
st_cvar coefficient of variance
st_wmean Winsorized mean

Subscript Functions 105

01/01

Letter Values Subscript Functions
lv_nnm number of non-missing elements
lv_med median
lv_lhin left hinge (roughly 1st quartile)
lv_rhin right hinge
lv_leig left eighth
lv_reig right eighth
lv_linf left inner fence
lv_rinf right inner fence
lv_louf left outer fence
lv_rouf right outer fence
lv_lout number of left outliers (to left of left extreme)
lv_rout number of right outliers (to right of right extreme)
lv_lext leftmost value inside left inner fence
lv_rext rightmost value inside right inner fence
lv_lmax smallest value
lv_rmax largest value
lv_tri Tukey’s trimean

Least-Squares Statistics Subscript Functions
ls_n number of non-missing x/y points
ls_slo slope of fitted line
ls_int intercept of fitted line
ls_xbar mean of x()
ls_ybar mean of y()
ls_ssx sum of squares x
ls_sxy sum of products xy
ls_ssy sum of squares y
ls_sse sum of squares error
ls_se standard error
ls_ts t-statistic for slope
ls_dfs degrees of freedom for slope
ls_p probability for slope’s t-statistic
ls_r Pearson’s product-moment correlation coefficient
ls_r2 r2 (coefficient of determination)
ls_z Fisher’s z-transform of r
ls_f F-statistic (same as ts2)

106 Statistics Graphics Toolkit

01/01

Regression ANOVA Statistics Subscript Functions
ra_ssm sum squares mean
ra_ssr sum squares regression
ra_sse sum squares error (residual)
ra_sst sum squares total
ra_dfm degrees of freedom mean
ra_dfr degrees of freedom regression
ra_dfe degrees of freedom error (residual)
ra_dft degrees of freedom total
ra_msr mean square regression
ra_mse mean square error (residual)
ra_se standard error
ra_f F-statistic
ra_p Prob(f)
ra_r multiple R
ra_r2 R-square
ra_ar2 adjusted R-square
ra_d Durbin-Watson d statistic
ra_press PRESS statistic

ANOVA Statistics Subscript Functions
an_msw mean square within
an_msb mean square between
an_ssw sum of squares within
an_ssb sum of squares between
an_sst sum of squares total
an_dfw degrees of freedom within
an_dfb degrees of freedom between
an_dft degrees of freedom total
an_f F-statistic
an_p Prob(F)

Subscript Functions 107

01/01

Advanced Graph Control

This section describes advanced techniques for creating graphs. By using these
techniques, you can customize your graphs to fit your needs exactly.

Customizing the Toolkit
The Statistics Graphics Toolkit has a number of preset controls. For instance, grid
lines are preset off, frame ticks are preset to “LRBT”, and so forth. These preset
values are listed at the end of this section. Also, by default the Toolkit does not use
Yates’ correction when analyzing contingency tables, and so forth.

It’s easy to customize your own copy of the Toolkit, though. Just create your own
little module that sets the controls in its initialization code. A sample follows:

module MyKit
call SetYates(1)
call SetInTicks(“BL”)
call SetCanvas(“red”)
call SetAxes(0)

end module

Save this module on your disk with the name, say, of MYSTAT. Then change the
LOADSTAT file so it loads MYSTAT as well as the compiled versions of FRAMELIB
and STATLIB:

load FRAMELIB, ..., MYSTAT

Now you’re all set. Just start your sessions by giving the script LOADSTAT
command. It will load the necessary modules into memory and customize the Toolkit
for you.

Using Windows to Draw Multiple Graphs
The sample program CUMFP shows how to use windows to draw multiple graphs on
the screen. Call up the program and read it. First it opens window #1 and draws a
graph in this window. Then it opens window #2 and draws another graph.

You can draw graphs in windows of any size or shape. However, some graphs won’t
fit inside windows that are too narrow or too short. If the title, horizontal label, or
vertical label won’t fit, you’ll have to shorten these labels or use a bigger window. See
the “Trouble-Shooting” section for more help.

108 Statistics Graphics Toolkit

01/01

Implicit X-Coordinates
Many datasets have straightforward x coordinates. The most common coordinates
are 1, 2, 3, Graphing datasets with these coordinates requires a very simple x()
array: x(1) = 1, x(2) = 2, and so forth.

You can skip the chore of setting up such simple x arrays when graphing datasets.
Just pass an x array with no elements, created by a statement such as dim x(0).
Then the x() array will be ignored when plotting data points.

If the graph has a fixed x scale – you’ve called SetXscale or are overlaying an existing
graph – the graphing routines will use that scale. They will evenly space data points
along the graph’s x scale with the first point at the minimum x value and the last
point at the maximum.

If, on the other hand, the graph is auto-scaled, then the graphing routines will base
the data points’ x coordinates on the lower and upper bounds of the y array. When y’s
lower bound is 1, this gives 1, 2, 3, ... as the x coordinates. But if you used dim y(-10
to 10) the x coordinates will reflect these bounds: -10, -9, ..., 9, 10.

You can use null x arrays with any kind of scatter plot.

Horizontal and Vertical Grid Lines
It’s easy to get horizontal and/or vertical grid lines on your graph. Just add this
statement somewhere before you actually draw a graph:

call SetGrid(“hv”)

The string “hv” gives both horizontal and vertical grid lines. You can also use “h” to
get only horizontal grid lines or “v” to get only vertical grid lines.

To get dashed, dotted, or dash-dotted grid lines, give the appropriate symbols after the
h or v. For instance, call SetGrid(“h.v-.”) to get dotted horizontal lines and dot-dashed
vertical lines. See the description of SetGrid in the “Low-Level Control” section.

The grid-line instructions stay in effect until your program stops; if you draw several
graphs in a row, each will have the same kind of grid lines. You can turn off the grid
lines entirely by calling SetGrid(““).

The Graph’s Canvas Color
You can give the canvas its own color to make it stand out from the rest of the
screen. The canvas color is like a background color for the canvas. (In fact, it’s not
really a background color; it’s one of the foreground colors.) You can use any
foreground color as the graph’s canvas color. Thus for a red canvas:

call SetCanvas(“red”)

Advanced Graph Control 109

01/01

You can use any color instead of “red”. You can also use color numbers. Remember to
draw the data in a different color!

If you draw several graphs in a row, each will have the same canvas color. To use the
real background color for the canvas, pass ““ or “background”.

Overlaying Graphs
The Statistics Graphics Toolkit generally “uses a new sheet of paper” for each graph
you draw. The Add functions – AddScatPlot, AddNormalPlot, etc. – let you overlay
one graph with another. These routines will take care of most of your overlaying
needs. But there’s also a more general way to overlay graphs. It lets you overlay any
kind of graph with any other kind.

To do so, call SetOverlay(1) after you’ve drawn a graph. Then draw another graph. It
will be drawn on top of the existing graph. You can overlay as many graphs as you
like – just call SetOverlay(1) before each overlay. The opposite is AskOverlay(n),
which returns n = 1 if the next graph will be overlaid, or 0 if not.

Figure 43.45: Output of the OVERSTAT program.

The new graph inherits the same scale as the existing graph. But you can overlay
graphs with different scales. First, draw the original graph. Then call SetXscale

110 Statistics Graphics Toolkit

01/01

and/or SetYscale to change the graph scale. Finally, call SetOverlay(1) and draw the
second graph. The final graph still has its original frame, so there will be no
indication if overlaid data is drawn to a different scale. You may want to add text to
the graph (by GraphText) to note that different scales are being used.

Drawing in the Canvas
It’s not hard to add your own graphics inside the canvas. This lets you customize
your graphs by adding more labels or special effects which the Statistics Graphics
Toolkit does not provide.

When you call the graph-drawing subroutines, they open the canvas as a True
BASIC window. The frame is not part of this window – only the canvas itself is
inside the window. This window’s coordinates are created to mimic the numbers
shown along the side of the frame. The coordinate system is set up so that your
drawings will align precisely with the tick marks on the frame.

Logarithmic axes are slightly modified. The window coordinate system is based on
the Log10 of the numbers shown along the edge.

To switch to the canvas window, call:
call GotoCanvas

Drawing Points, Lines, and Text
The Statistics Graphics Toolkit includes several routines that make it easy to draw
nice-looking points, lines, and labels on the canvas. The MARKSTAT program, on
your disk, shows how you can use these routines.

GraphText(x, y, text$)
GraphText is like True BASIC’s plot text statement. It places the text$ label on your
graph at (x,y). But unlike plot text, it works for any graph type – normal, log, or
semi-log.

GraphPoint(x, y, style)
GraphPoint draws a point at location (x,y) in the indicated style. It converts from
your graph’s coordinates – normal, log, or semi-log – to canvas coordinates. See the
“Making Graphs” section for a list of supported point styles.

Exceptions:
129 Unknown point style: n

Advanced Graph Control 111

01/01

GraphLine(x1, y1, x2, y2, style)
GraphLine draws a straight line from (x1,y1) to (x2,y2) in the indicated line style. It
converts from your graph’s coordinates – normal, normal, log, or semi-log – to canvas
coordinates. See the “Making Graphs” section for a list of supported line styles.
Exceptions:

130 Unknown line style: n

Figure 43.46: Output of the MARKSTAT program.

Routines Shared with Scientific Graphics
The routines listed in this section are shared with the Scientific Graphics Toolkit.
You can use the same routines, therefore, with either toolkit.
———————————————————————————————————————

x NOTE: To use both Toolkits, follow these instructions. The file named
MSGLIB, is a stripped-down form of the Scientific Graphics file
SGLIB. Change the LOADSTAT file and the library statement in
STAT2LIB to refer to your copy of SGLIB rather than MSGLIB. Then
recompile STAT2LIB and replace its old compiled version.

———————————————————————————————————————

112 Statistics Graphics Toolkit

01/01

SetGraphType (type$)
SetGraphType changes the current graph type to type$. This type stays in effect
until you call SetGraphType again, or your program halts. The supported graph
types are:

"XY" or "" normal
"LOGX" semi-log (X axis is logarithmic)
"LOGY" semi-log (Y axis is logarithmic)
"LOGXY" logarithmic (both axes logarithmic)

After you call SetGraphType, you must call a graphing routine (described in the
previous sections) to draw the graph.

AskGraphType (type$)
AskGraphType returns the current graph type, in uppercase, in type$. This will be
one of the following:

"XY" normal
"LOGX" semi-log (X axis is logarithmic)
"LOGY" semi-log (Y axis is logarithmic)
"LOGXY" logarithmic (both axes logarithmic)

SetAxes (f)
SetAxes turns the axes on or off. Pass f = 0 to remove the axes or any nonzero f to
show the axes. The new setting persists until you call SetAxes again, or until your
program stops. By default, axes are shown.

AskAxes (f)
AskAxes returns f = 1 if the axes are shown or 0 if not.

SortPoints (x(), y())
SortPoints sorts arrays of x and y coordinates by the x values. It’s useful for
arranging data in order before you draw lines connecting data points.

Call up the program SORTSTAT from your disk and run it. It draws a set of data
points, connecting each to its neighbors. The left window shows the result for data in
no particular order – the connecting lines go all over everywhere. The right window
shows the same data points sorted by x coordinates before graphing.

Advanced Graph Control 113

01/01

SortPoints2 (x(,), y(,))
SortPoints2 is like SortPoints except that it sorts 2-dimensional arrays of x and y
values. Each row is treated as a separate dataset. The rows are sorted independently
– no row influences any other.

SetInTicks (where$)
SetInTicks controls where ticks appear on the graph’s frame. By default, ticks are
drawn inside all four edges of the frame. This is easy to change, however. Just call
SetInTicks giving the new edges to tick:

L left edge
R right edge
T top edge
B bottom edge

For example, SetInTicks(“LB”) asks that subsequent graphs be drawn with ticks
inside the left and bottom edges only. You can give the edge letters in upper or lower
case, in any order.

If you pass the null string, ticks will be drawn outside the frame on the left and
bottom edges. (The Business Graphics Toolkit uses this style.)

Use the SetTickSizes routine to control the sizes of ticks. You can eliminate ticks
entirely by calling SetTickSizes(0,0).

AskInTicks (where$)
AskInTicks is the opposite of SetInTicks. It returns an uppercase string that tells
where the tick marks will be drawn for subsequent graphs. For example, it returns
“LB” if ticks will be drawn at the left and bottom.

SetGrain (n)
SetGrain sets the grain with which polynomials and confidence bands are plotted. By
default, the Statistics Graphics Toolkit plots a curved line as a series of 64 short line
segments. Thus the default grain is 64.

You can make the grain larger or smaller. If you make it larger, curves will be slower
but more accurate. If you make it smaller, they will be faster but less accurate.

AskGrain (n)
AskGrain returns the current grain size for polynomials and confidence bands. By
default, this is 64. You can change this by calling SetGrain.

114 Statistics Graphics Toolkit

01/01

SetAxesTick (xp, yp)
SetAxesTicks controls the sizes of ticks drawn on the axes. The x and y axes’ ticks
will be xp and yp pixels long for the next graph you draw. See also SetTickSizes in
the “Low-Level Control” section. It controls the sizes of ticks on the frame.

AskAxesTick (xp, yp)
AskAxesTick returns the current axes’ tick sizes, in pixels.

SetAutoScale (x, y)
SetAutoScale turns the X and Y coordinate auto-scaling on or off. By default, the
Statistics Graphics Toolkit auto-scales both the X and Y coordinates so that your
graph looks good.

Pass x = 0 to turn off X auto-scaling; pass y = 0 to turn off Y auto-scaling. Any
nonzero value will turn auto-scaling back on. These new controls for auto-scaling
stay in effect until you change them again or until your program stops.

To get a series of graphs to the same scale, draw the first one with auto-scaling
turned on, then turn off auto-scaling and draw the remaining graphs. The first scale
will be used for all subsequent graphs. To supply your own scales, use SetXscale and
SetYscale.

AskAutoScale (x, y)
AskAutoScale returns the current values for the X and Y auto-scale controls. These
values are set to 1 if auto-scaling is turned on for that axis, or 0 if turned off.

SetXscale (x1, x2)
SetXscale turns off auto-scaling for the X axis, and forces the Statistics Graphics
Toolkit to use the interval x1 to x2 for subsequent graphs. The Toolkit will continue
to use this interval until you change it again, or use SetAutoScale to restore auto-
scaling for the X axis, or your program stops.

This Toolkit rounds scales to good-looking numbers, so the final x scale may not be
exactly what you asked for.

AskXscale (x1, x2)
AskXscale returns the current x range, running from x1 to x2, where x1 ≤ x2. If
you’ve previously called SetXscale, these values are the ones you supplied.
Otherwise, they’ll be automatically computed from the data you gave.

Advanced Graph Control 115

01/01

SetYscale (y1, y2)
SetYscale turns off auto-scaling for the Y axis, and forces the Statistics Graphics
Toolkit to use the range y1 to y2 for subsequent graphs. The Toolkit will continue to
use this range until you change it again, or use SetAutoScale to restore auto-scaling
for the Y axis, or your program stops.

This Toolkit rounds scales to good-looking numbers, so the final y scale may not be
exactly what you asked for.

AskYscale (y1, y2)
AskYscale returns the current range, running from y1 to y2, where y1 ≤ y2. If you’ve
previously called SetYscale, these values are the ones you supplied. Otherwise they’ll
be automatically computed from the data you gave.

GraphInit
GraphInit resets graph controls to their default values:

graph type xy grain 64
autoscale on spline order 3*

axes on I-beam size 0
grid lines off mesh sizes 20 x 20*

ticks LRBT least squares off
frame ticks ** axes ticks **

*Used by Scientific Graphics Toolkit only.
** The number of pixels used for frame and axes ticks varies between computers and
may change in later versions of the Toolkit.

116 Statistics Graphics Toolkit

01/01

Customized Legends

Complex graphs – which plot multiple datasets – automatically display legends
based on the labels you pass in a legends$() array. These legends identify the
different datasets. By default, they go into a horizontal row just below the graph’s
title.

If you wish, you can control the shape and location of the legend box and also control
what appears in the box.

Opening Your Own Legend Window
To open your own legend window, call the OpenLegend subroutine before you draw a
graph. You must pass the screen coordinates of the new legend window. Remember
that these are screen coordinates, not window coordinates.

call OpenLegend (left,right,bottom,top)

This legend window will then be used in place of the default legend window for the
next graph. If you want to use this window for several graphs, you must call
OpenLegend before you draw each graph.

You can also reserve legend space just below the title, where the default legends go,
by calling ReserveLegend instead of OpenLegend. The DrawFrame routine will then
open a legend window for you when it draws the graph’s frame.

call ReserveLegend

Making Your Own Legends
If you pass a legends$() array to the multi-dataset graph routines, they will
automatically place legends in the legend window. You can, however, control these
legends yourself. Here’s how.

First, call OpenLegend or ReserveLegend to create a legend window. Next, call the
appropriate graph routine – e.g. ManyObsPlot – with a legends$() array having no
elements. Then call the AddLegend routine for each legend you want to display.
Finally, call DrawLegend to display the legends.

You can also call GotoLegend to switch to the legend window. Then you can use True
BASIC statements to draw directly in the window.

Call up the FP program from your disk for an example.

Customized Legends 117

01/01

Figure 43.47: Output of the FP program. Note its custom legend.

AddLegend (text$, type, style, color$)
AddLegend adds a new legend to the legend window. It does not draw the legend,
however. After you’ve added all the legends, call DrawLegend to show the legends.

The text$ string gives the text of a legend. Its type controls the kind of symbol shown
next to the text: 1=box, 2=line, 3=point. If type=0, no symbol is shown.

The style controls the line or point style for a legend’s symbol. Line and point styles
are described in the “Making Graphs” section. This parameter is ignored for type = 1
symbols (boxes).

If you make a mistake with type or style, you won’t get an error until you call
DrawLegend.

The color$ controls the color for this item’s symbol. Its text, however, is always
shown in the frame color.

DrawLegend
DrawLegend draws accumulated legends in the legend window. It will do its best to
fit the legends in the window you’ve created (by OpenLegend), but it’s not perfect.

118 Statistics Graphics Toolkit

01/01

Therefore you may have to juggle the coordinates in OpenLegend to get something
that works and looks good.

When it’s done, it returns to your original window. Call GotoLegend if you want to
add more True BASIC graphics to the legend.

Exceptions:
101 Graph’s legend is too wide.
115 Unknown line style: n
116 Unknown point style: n
119 No legend window yet.

Trouble-Shooting Graphics

This section describes some common problems, and what to do about them.

Colors flicker or are wrong.
Check your computer’s graphics mode. You may be using more colors than that mode
can handle, or a combination of colors that doesn’t work in that mode. For instance,
the color scheme “red white blue” will switch between the red-green-yellow and
magenta-cyan-white palettes in the IBM PC “graphics” mode. It will also cause
problems in the IBM “hires” mode since that mode can handle only one color.

Solution: Change the color scheme or use another mode.

The background color is not appealing.
Solution: Add a set back statement to change the background color of the
entire screen. You may also wish to call SetCanvas to change the background
color for the canvas.

The data display is not visible.
The data and canvas colors are identical, or the data and background colors are
identical.

Solution: Change the data color (in the color scheme), the canvas color, or the
background color.

Trouble-Shooting Graphics 119

01/01

The title is too wide.
If your title is too wide for the graph window, you’ll get an error message.

Solution: Shorten the title. Or use a bigger window for drawing the graph. Or
switch to a mode which allows more characters; for instance, use the “hires”
mode on the IBM PC instead of the default “graphics” mode.

The horizontal or vertical label is too wide.
If your horizontal or vertical label can’t fit, you’ll get an error message.

Solution: Shorten the label. Or use a bigger window for drawing the graph. Or
switch to a mode which allows more characters; for instance, use “hires” on the IBM
PC instead of the default “graphics” mode.

You need more room for the horizontal or vertical marks.
This is like the preceding problem, but for marks rather than labels.

Solution: Read the paragraph above for some ideas. You may also be able to get
more space for horizontal marks by shortening the vertical marks, since they restrict
the space available for horizontal marks.

The ticks should be drawn somewhere else.
The Statistics Graphics Toolkit draws ticks inside all four edges of the graph. You
may wish to omit ticks from some edges, draw ticks outside the frame, or get rid of
ticks entirely.

Solution: Use SetInTicks to control tick placement. For example, SetInTicks(“LB”)
draws ticks on the left and bottom edges only. SetInTicks(““) switches to ticks along
the outside of the frame. Or you can use SetTickSizes(0,0) to eliminate ticks entirely.

The ticks are too short or too long.
This Toolkit draws ticks inside the graph’s frame and along the X and Y axes. These
ticks may be too small or too large for your taste.

Solution: Call SetTickSizes to control the size of the frame’s horizontal and vertical
ticks; see the “Low-Level Control” section. Or call SetAxesTick to control ticks on the
axes; see the “Advanced Graph Control” section.

The graph looks off-center.
Graphs are drawn so they use as much of the current window as possible. Since the

120 Statistics Graphics Toolkit

01/01

left edge contains a label and marks – and the right edge doesn’t – the canvas may
look off-center to the right.

Solution: Use the SetMargins subroutine to increase the number of unused pixels
on the right side of the window. For instance, you might balance the graph by
leaving an 80-pixel margin at the right side of the window. This is done by call
SetMargins(0,80,0,0).

You gave DATA in the wrong order.
Suppose you’re using the PlotManyObs routine and want to give it 3 datasets of 15
points each. You should use dim data(3,15) and have three data statements with 15
values each. But perhaps instead you have 15 data statements, each of which has
values for the three bands. What do you do?

Solution: Don’t retype all the data statements! Instead, change the dim statement
to create an array data(15,3). The mat read will now read this array as 15 bands of
3 points each. After the mat read, add the following True BASIC statement:

MAT data = Trn(data)

This transposes the data array so it becomes a 3 x 15 array from a 15 x 3 array. Now
everything should work. (Aren’t you glad that True BASIC has matrix transposing
built in?)

The axes look ugly.
Sometimes the X and Y axes are convenient but sometimes they’re distracting. How
can you get rid of them?

Solution: Call SetAxes(0) to get rid of the axes. Or you can keep the axes but get rid
of their tick marks by using SetTickSizes(0,0).

You want to control a graph’s scale.
The Statistics Graphics Toolkit automatically picks scales for graphs, but you may
not like the scale it picks. Or you may want to produce a series of graphs with the
same scale.

Solution: Use the SetXscale and SetYscale routines. They’re described in the
“Advanced Graph Control” section.

You want to add text or graphics to a graph.
Once you’ve drawn a graph, you may want to add more text or graphics. For
instance, you may want to label some data points, add a caption, or plot a function on
top of data.

Trouble-Shooting Graphics 121

01/01

Solution: Call GotoCanvas to enter the canvas window. Then use True BASIC
statements such as plot or plot text to add graphics directly to the canvas. The
GraphPoint, GraphLine, and GraphText routines may also be useful. See the
“Advanced Graph Control” section for details.

You want to customize a graph’s legend.
You may want to add a legend to a graph, or to somehow customize where the legend
appears or what goes in the legend.

Solution: Read the section on “Customized Legends.”

You want to show 2 or more graphs on the screen.
Solution: See the “Advanced Graph Control” section for a description of how to
do this.

122 Statistics Graphics Toolkit

01/01

Low-Level Control of the Frame

This section gives complete information on low-level routines that control the frame’s
appearance. These routines are for advanced users only – they are rather hard to use
and not generally useful.

These routines are in the FRAMELIB library. This library is shared by the
Statistics, Scientific, and Business Graphics Toolkits. If you have these other toolkits,
you need only one copy of FRAMELIB.

———————————————————————————————————————

x NOTE: If your copies of FRAMELIB have different version numbers,
use the latest version.

———————————————————————————————————————
Some routines can be used together with the higher-level routines in the Toolkits.
But most of them cannot, since the Toolkit routines override your own settings. Each
routine that can’t be used with the Toolkit routines is noted in its description.

Terminology
Please refer to the following figure. A frame contains a title, a horizontal label, and a
vertical label. (Any of these three may be omitted.) See Figure 43.48.

It also contains marks along the left and bottom edges of the frame. These marks can
be textual, such as “January”, or numeric, such as 120. Statistics graphs usually
have numeric marks along both the left and the bottom edges, but some observation
plots have one edge textual and the other numeric.

The vertical marks run along the left edge. Horizontal marks run along the bottom
edge. They are joined to the inner frame by vertical and horizontal ticks,
respectively. Vertical ticks are thus horizontal lines, and vice versa.

The canvas is the area (inside the frame) where the graph or chart itself is drawn.

The legend window is where the legend goes. It’s a separate window, distinct from
the canvas window. The legend window is optional; it doesn’t exist for many graphs.

GotoCanvas
GotoCanvas acts like True BASIC’s window statement. It switches to the canvas
window for the most recently created chart.

Exception:
118 No canvas window yet.

Low-Level Control of the Frame 123

01/01

Figure 43.48: Parts of a Frame.

GotoLegend
GotoLegend acts like True BASIC’s window statement. It switches to the most
recently created legend window.

Exception:
119 No legend window yet.

SetGrid (style$)
SetGrid turns on/off the horizontal and vertical grid lines. You can pass any of these
values (upper or lower case) in style$:

''" turn off all grid lines
"H" turn on horizontal grids, turn off vertical
"V" turn on vertical grids, turn off horizontal
"HV" turn on both horizontal and vertical grids

If you turn on grid lines, DrawFrame will draw these lines automatically every time
it draws a frame. It draws them at the same places that it puts tick marks on the
frames. The grid lines are drawn in the frame color.

124 Statistics Graphics Toolkit

01/01

Title
Legend

Vertical
Marks

Horizontal Label

Vertical
Label

Horizontal Marks

Canvas

You can also ask for dashed, dotted, or dash-dotted grid lines. To do so, follow the
“H” or “V” with one of the following symbols:

"-" dashed grid
"." dotted grid
"-." dash-dotted grid

For example, “H-.V” asks for a dash-dotted horizontal grid, and a solid vertical grid.

These grid line values will remain unchanged until you call SetGrid again. So you
can set them once, and they will be used repeatedly for a number of different charts
and graphs.

Exception:
113 No such SetGrid direction: xxx

AskGrid (s$)
AskGrid returns the current values of the grid line values. The resulting string s$ is
always in uppercase. It can be:

"" all grid lines off
"H" horizontal grids on, vertical off
"V" vertical grids on, horizontal off
"HV" both horizontal and vertical grids on

Either the “H” or “V” can be followed by “-”, “.”, or “-.” to indicate dashed, dotted, or
dash-dotted grid lines respectively.

DrawGrid (style$)
DrawGrid draws grid lines on the canvas. Usually you ask for grid lines before you
graph data – then the data display is drawn over the grids.

However, you can also draw grids after you’ve drawn your data. These grids will go
over the data. The style$ string is as in SetGrid and becomes your new grid style.
The grid is drawn in your current color.

Here’s a trick for charting areas on a monochrome display. Use SetGrid(“h”) to get
solid grid lines. Then draw your chart. Then switch to the background color and
draw a dotted grid:

call SetGrid(“h”)
call AreaChart(...)
set color “background”
call DrawGrid(“h.”)

Low-Level Control of the Frame 125

01/01

This will give you a dotted grid across the canvas and a dotted grid across the filled
areas.

Exceptions:
113 No such SetGrid direction: xxx
118 No canvas window yet.

The next six routines control the title and the horizontal and vertical labels. They
are alternatives to the more general SetText routine, which controls all three.

SetTitle (text$)
SetTitle changes the current text for the title. This text will be used in every frame
until you call SetTitle again. If you give text$ = ““, then no title is shown, and that
space is added to the room for the data display.

AskTitle (text$)
AskTitle sets text$ to be the current text of the title. If there’s no current title, text$
will be the null string.

SetHlabel (text$)
SetHlabel changes the current text for the horizontal label. This text will be used in
every frame until you call SetHlabel again. If text$ = ““, no horizontal label is shown,
and that space is added to room for the data.

AskHlabel (text$)
AskHlabel sets text$ to be the current text of the horizontal label. If there’s no
current horizontal label, text$ will be the null string.

SetVlabel (text$)
SetVlabel changes the current text for the vertical label. This text will be used in
every frame until you call SetVlabel again. If text$ = ““, no vertical label is shown,
and that space is added to room for the data.

AskVlabel (text$)
AskVlabel sets text$ to be the current text of the vertical label. If there’s no current
vertical label, text$ is the null string.

126 Statistics Graphics Toolkit

01/01

SetTitleColor (c$)
SetTitleColor changes the title’s current color. This color will remain intact until you
call SetTitleColor again, or until you call a high-level routine that takes a color
scheme as an argument.

The color can be any True BASIC color name, or it can be a number such as “1”, “7”,
and so forth. These numbers are converted to the corresponding True BASIC color
number.

———————————————————————————————————————

x NOTE: You cannot use this routine with the higher-level routines in
the Business, Scientific, or Statistics Graphics Toolkits, since they
override your setting.

———————————————————————————————————————

AskTitleColor (c$)
AskTitleColor returns the current title color. It returns the string you used to set the
title color, so it may be a True BASIC color name such as “red” or a color number
such as “1”.

SetFrameColor (c$)
SetFrameColor changes the frame’s current color. This color will remain intact until
you call SetFrameColor again, or until you call a high-level routine that takes a color
scheme as argument. The frame color is used for horizontal and vertical labels but
not for the title.

The color can be any True BASIC color name, or it can be a number such as “1”, “7”,
and so forth. These numbers are converted to the corresponding True BASIC color
number.

———————————————————————————————————————

x NOTE: You cannot use this routine with the higher-level routines in
the Business, Scientific, or Statistics Graphics Toolkits, since they
override your setting.

———————————————————————————————————————

AskFrameColor (c$)
AskFrameColor returns the current frame color. It returns the string you used to set
the frame color, so it may be a True BASIC color name such as “red” or a color
number such as “1”.

Low-Level Control of the Frame 127

01/01

SetCanvas (c$)
SetCanvas changes the canvas color. You may use any foreground color as the new
canvas color, but be careful not to use the same color for both the canvas and the
data! And if you use the same color for the frame and canvas, the axis and grid lines
will not be visible.

This color will remain intact until you call SetCanvas again. The color can be any
True BASIC color name, or it can be a number such as “1”, “7”, and so forth. These
numbers are converted to the corresponding True BASIC color number.

AskCanvas (c$)
AskCanvas returns the current canvas color. It returns the string you used to set
this color, so it may be a True BASIC color name such as “red” or a color number
such as “1”.

SetHmarks (mark$())
SetHmarks changes the current horizontal marks to those given in the mark$()
array. It does not check to make sure that these marks fit in the current window;
that is done when you call DrawFrame.
———————————————————————————————————————

x NOTE: You cannot use this routine with the higher-level routines in
the Business, Scientific or Statistics Graphics Toolkits, since they
override your setting.

———————————————————————————————————————

AskHmarks (mark$())
AskHmarks returns the current horizontal marks, in order, in the mark$() array. If
there are no horizontal marks at present, it returns an array with no elements. The
lower bound of mark$() is always 1.

SetVmarks (mark$())
SetVmarks changes the current vertical marks to those given in the mark$() array.
It does not check to make sure that these marks fit in the current window; that is
done when you call DrawFrame.
———————————————————————————————————————

x NOTE: You cannot use this routine with the higher-level routines in
the Business, Scientific or Statistics Graphics Toolkits, since they
override your setting.

———————————————————————————————————————

128 Statistics Graphics Toolkit

01/01

AskVmarks (mark$())
AskVmarks returns the current vertical marks, in order, in the mark$() array. If
there are no vertical marks at present, it returns an array with no elements. The
lower bound of mark$() is always 1.

SetHRange (low, high)
SetHrange sets the current horizontal range to run from low to high numeric values.
It does not decide how to divide the range into intervals; that is done when you call
DrawFrame.

It does pick a nice interval that encloses your low and high values. If you call
SetHRange(1.1,2.7) for instance, it will use the nicer range 1 to 3. A subsequent call
to AskHrange will return the nice version – not necessarily the range you gave. (And
DrawFrame may tamper with this range a second time in its efforts to get numeric
marks that fit in the space provided!)

———————————————————————————————————————

x NOTE: You cannot use this routine with the higher-level routines in
the Business, Scientific or Statistics Graphics Toolkits, since they
override your setting. Use SetXscale instead.

———————————————————————————————————————

AskHrange (low, high)
AskHrange returns the current horizontal range. The low end is given in low and the
high end in high. If the horizontal marks are textual, instead of a numeric range, it
returns low = 1 and high = the number of marks.

SetVRange (low, high)
SetVrange sets the current vertical range to run from low to high numeric values. It
does not decide how to divide the range into intervals; that is done when you call
DrawFrame. As with SetHRange, the range finally used may not be the same as the
range you passed in low and high.

———————————————————————————————————————

x NOTE: You cannot use this routine with the higher-level routines in
the Business, Scientific or Statistics Graphics Toolkits, since they
override your setting. Use SetYscale instead.

———————————————————————————————————————

Low-Level Control of the Frame 129

01/01

AskVrange (low, high)
AskVrange returns the current vertical range. The low end is given in low and the
high end in high. If the vertical marks are textual, instead of a numeric range, it
returns low = 1 and high = the number of marks.

SetCanvasCoords
SetCanvasCoords sets the canvas’ window coordinates to match the current
horizontal and vertical ranges and mark indentations. (SetHrange and SetVrange
control the ranges, and SetMarkIndent controls the mark indentation.)

SetHmarkLen (n)
SetHmarkLen sets the maximum number of characters used to display a numeric
horizontal mark. (Remember that a mark is a textual label.) By default, this number
is 9. If you set it to less than 1, this routine will cause an error. If you set it to show
more digits than your computer can handle, you will get meaningless results in the
extra digits.

Exception:
120 Can’t use less than 1 character for mark: n

AskHmarkLen (n)
AskHmarkLen returns the current maximum number of characters used when
showing a numeric horizontal tick mark.

SetVmarkLen (n)
SetVmarkLen sets the maximum number of characters used to display a numeric
vertical mark. (Remember that a mark is a textual label.) By default, this number is
9. If you set it to less than 1, this routine will cause an error. If you set it to show
more digits than your computer can handle, you will get meaningless results in the
extra digits.

Exception:
120 Can’t use less than 1 character for mark: n

AskVmarkLen (n)
AskVmarkLen returns the current maximum number of characters used when
showing a numeric vertical tick mark.

130 Statistics Graphics Toolkit

01/01

SetGridStyle (h, v)
SetGridStyle is an alternate form of SetGrid. It controls the appearance of the
horizontal and vertical grid lines. The horizontal and vertical line styles are given by
h and v respectively. Each of these must be a number in the range 0 to 4. (Styles 2 to
4 are significantly slower than style 1.)

Style Meaning
0 no grid line
1 solid line
2 dashed line
3 dotted line
4 dash-dotted line

Exceptions:
116 Grid styles must be in range 0 to 4: h,v

AskGridStyle (h, v)
AskGridStyle returns the current line styles for the horizontal and vertical grid lines
in h and v respectively.

SetAspect (r)
SetAspect changes the number used to compensate for the aspect ratio of your
computer’s screen. As you remember, most monitors don’t show pixels as squares –
they’re usually somewhat taller than they are wide.

The Toolkit, however, tries to compensate for this whenever it draws circles.
Therefore if you’re using a standard monitor, circles should look circular on your
screen.

If not, you can call SetAspect to adjust the internal aspect ratio. Your new ratio, r,
will then control circles. A larger ratio will make circles wider. You will probably
have to use trial and experiment to find the right value for your computer. Ratios
generally lie in the range .4 to .85 or so. To switch back to using the internal
number, pass r = 0.

———————————————————————————————————————

x NOTE: The SetAspect routine has no effect on the Statistics Graphics
Toolkit. Its description is included here only for completeness.

———————————————————————————————————————

Low-Level Control of the Frame 131

01/01

AskAspect (r)
AskAspect returns the current ratio r used to compensate for your computer
monitor’s aspect ratio. This number varies, depending on the kind of computer you’re
using and what mode it’s in.

———————————————————————————————————————

x NOTE: Switch to the right graphics mode before you call AskAspect –
it returns the aspect ratio for your current mode.

———————————————————————————————————————
If you’ve used SetAspect to establish the ratio, AskAspect will return whatever
you’ve said.

SetMargins (left, right, bottom, top)
SetMargins controls the pixel margins around the frame. These margins are the
unused space between the edge of the window and the edge of the frame. You can use
this to change the positioning of graphs within a window.

The parameters control the left, right, bottom and top margins respectively. These
new margins will stay in effect until your program stops, or you call SetMargins
again.

By default, all margins are 0. Therefore the entire current window is used for the
frame. But if you call SetMargins(1,2,3,4), for example, then the frame will be drawn
a little bit smaller. There will be 1 unused pixel on the left side of the window, 2 on
the right side, 3 on the bottom, and 4 on the top.

AskMargins (left, right, bottom, top)
AskMargins returns the current frame pixel margins in left, right, bottom and top.

SetTickSizes (h, v)
SetTickSizes sets the current pixel sizes of the horizontal and vertical ticks. These
sizes are used both for the ticks drawn along the frame and for the ticks drawn on
axes. Tick sizes less than 1 pixel mean that no ticks are drawn.

AskTickSizes (h, v)
AskTickSizes returns the current sizes, in pixels, of the horizontal and vertical ticks.

132 Statistics Graphics Toolkit

01/01

SetTickStrides (h, v)
SetTickStrides sets the distance between ticks (in canvas window coordinates). It
changes the current distances (strides) for both horizontal and vertical tick marks.

———————————————————————————————————————

x NOTE: You cannot use this routine to control the ticks in the
Business, Scientific, and Statistics Graphics Toolkits since these
Toolkits set their own tick strides.

———————————————————————————————————————
This routine does have one use with the Toolkits, however. You can call
SetTickStrides after drawing a chart, but before calling DrawGrid. It will control the
spacing of the grid lines drawn by DrawGrid. Don’t pass zero or negative numbers
for strides, or DrawGrid will go into an infinite loop.

AskTickStrides (h, v)
AskTickStride returns the current distances between horizontal and vertical ticks.
These numbers are measured in canvas window coordinates.

SetMarkIndent (h, v)
SetMarkIndent changes the frame’s current mark indenting for both the horizontal
and vertical ticks along the frame.

A mark indentation of 0 means that the first and last ticks are flush against the edge
of the canvas. A non-zero setting indents these first and last ticks somewhat from
the edge. Some graphs look better one way, and some look better the other!

———————————————————————————————————————

x NOTE: You cannot use this routine with the higher-level routines in
the Business, Scientific or Statistics Graphics Toolkits, since they
override your setting.

———————————————————————————————————————

AskMarkIndent (h, v)
AskMarkIndent returns the current mark indenting for the horizontal and vertical
marks along the frame.

Low-Level Control of the Frame 133

01/01

AskPixel (dx, dy)
AskPixel returns the size of a pixel in the canvas in terms of the canvas window
coordinates.

It’s handy if you’re drawing precise figures in the graphing region. First call
AskPixel to find dx and dy. Then, for example, you can plot a line 10*dx units long
horizontally, to give a line 10 pixels long.

DrawFrame
After you’ve set up all the frame parameters by calling preceding routines, you call
DrawFrame to actually draw the frame.

DrawFrame does a fair amount of computation. It will, for instance, compute all the
numeric tick marks, position ticks, calculate the canvas window coordinates, and so
forth. It will go so far as to change the horizontal and vertical ranges in order to get
marks that fit in the room given.

———————————————————————————————————————

x NOTE: You cannot use DrawFrame with the higher-level routines in
the Business, Scientific, or Statistics Graphics Toolkits, since they
call DrawFrame themselves!

———————————————————————————————————————

134 Statistics Graphics Toolkit

01/01

Error Messages

This section lists the error messages that you can get when using the Statistics
Graphics Toolkit. In general, it should be clear how to fix an error. Please see the
“Trouble-Shooting Graphics” section for help with the trickier problems.

The following errors are given by the FRAMELIB routines, and hence are the same
for the Statistics, Scientific, and Business Graphics Toolkits.

100 Graph’s title is too wide.
101 Graph’s legend is too wide.
102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough–use SetVmarkLen.
109 Horizontal marks aren’t wide enough–use SetHmarkLen.
110 Data arrays have different bounds in routine.
111 Data and unit arrays don’t match for routine.
112 Data and legend arrays don’t match for routine.
113 No such SetGrid direction: xxx
114 Grid styles must be in range 0 to 4: h,v
115 Unknown line style: n
116 Unknown point style: n
117 Can’t handle this graph range: low to high
118 No canvas window yet.
119 No legend window yet.
120 Can’t use less than 1 character for mark: n

11008 No such color: xxx

Errors shared with the Scientific Graphics Toolkit:
150 No such scientific graph type: xxx
152 Grain must be in range 10 to 1000: n
159 Log-X scale can’t have numbers <=0: low to high
160 Log-Y scale can’t have numbers <=0: low to high

Error Messages 135

01/01

Errors specific to the Statistics Graphics Toolkit:
701 Bad line style: n
702 SetLineFit must be LS or MEDIAN: xxx
703 SetHist must be COUNT, REL, or %: xxx
704 SetObsSD can’t be negative: n
705 Data point style out of range: n
706 Can’t take geometric mean of non-positive numbers.
707 Can’t take harmonic mean of data that includes 0.
708 Can’t use Skew1 with SD = 0.
709 Skew1 needs data with exactly one mode.
710 Can’t use Skew2 with SD = 0.
711 Quartiles 1 and 3 equal in SkewQ.
712 Percentiles 10 and 90 equal in SkewP.
713 Can’t use SkewM with SD = 0.
714 Can’t use KurtosisM with SD = 0.
715 Can’t use KurtosisP with percentiles 10 and 90 equal.
716 Moment ‘r’ must be positive integer: r
717 Can’t use LSFit with SSX, SSY, or SE = zero.
718 Number of samples must be > 0.
719 Parameter must be >= 0: n
720 Parameter must be > 0: n
721 p in SimFreqBinomial must be inside (0,1).
722 Can’t have 0 step size in sequence.
723 Can’t have zero values in sequence.
724 Left endpoint must be < than right in routine.
725 Sample size > population size in SampleNoRep: n
726 Interval and count tables don’t match in TableToFreq.
727 Can’t use FreqToRelFreq with no data elements.
728 Need >= 2 observations for a confidence interval.
729 Need >= 2 obs. in each dataset for a two-sample t-test.
730 Need >= 2 observations for a t-test.
731 Need >= 2 obs. in each dataset for a two-sample t-test.
732 Can’t do contingency table with 0 row.
733 Can’t do contingency table with 0 column.
734 xxx transform needs to create missing value.
735 Can’t convert to number or missing value: xxx

136 Statistics Graphics Toolkit

01/01

736 Not enough data for routine.
737 DF must be integer >= 1 for routine.
738 Probability must be in range 0 to 1 inclusive for routine.
739 Probability must be in range 0 to 1 exclusive for routine.
740 Confidence coefficient must be in range 0 to 1 inclusive for routine.
741 Polynomial degree must be positive integer in routine: n
742 New row doesn’t match array’s shape in AppendRow.
743 New column doesn’t match array’s shape in AppendCol.
744 Not enough data for a box plot.
745 PolyLSFit: n coefficients for d data points.
746 Can’t use polar graphs with Statistics Graphics Toolkit.
747 Data and label arrays don’t match in routine.
748 Data and name arrays don’t match in routine.
749 Can’t compute F-test for these datasets.
750 Must have at least 2 observations in Kendall W.
751 Kendall W data must be integers.
752 Kendall W observations must be in range 1 to n.
753 Kendall W undefined for this data.
754 Bad critical value in GetCI.
755 Too many identical values for Kruskal-Wallis H test.
756 Too few observations in MultiLSFit.
757 Dependent variable must be integer between i and j: n
758 Singular matrix in MultiLSFit.
759 routine dataset can’t contain missing values.
760 routine works on 2x2 tables only.
761 Need at least 99 data items for Percentiles.
762 Need at least 3 data items for Quartiles.

Error Messages 137

01/01

138 Statistics Graphics Toolkit

01/01

	Stats_Graph_TK_Cover.pdf
	Statistics_Graphics.pdf

