

Sorting and Searching Libraries
The library file SORTLIB.TRC contains several sorting and searching utilities. Each sorting and searching
subroutine comes in two forms, one for numbers and one for strings. The name of the subroutine ends with an “N”
for numbers, and in “S” for strings.
The two subroutines SORTN and SORTS perform ordinary in-place sorts. The two subroutines PSORTN and
PSORTS perform indexed (or pointer) sorts.
The two subroutines CSORTN and CSORTS perform sorting according to a relation specified by the
programmer. The two subroutines CPSORTN and CPSORTS perform indexed (or pointer) sorts according to a
relation defined by the programmer.
The four subroutines CSEARCHN, CSEARCHS, SEARCHN, and SEARCHS search lists (numeric or string)
for a match. SEARCHN and SEARCHS use the ordinary relational operator “=”. CSEARCHN and CSEARCHS
perform searches according to a relation specified by the programmer.
CSORTN, CPSORTN, and CSEARCHN call a subroutine COMPAREN, which is included in SortLib.tru. It is
currently coded to produce the usual ascending sort. If you require a different sorting relation, you can proceed
in one of two ways. First, you can make the changes in the subroutine COMPAREN in SortLib.tru, and then
recompile SortLib.tru. Second, you can include your own version of COMPAREN following the END statement
in your main program; this definition takes precedence over the one in the library file.

CSORTS, CPSORTS, and CSEARCHS performing sorts and searches using special ordering relations specified by
calling one of several relation-specifying subrouintes before invoking the sort. These special subroutine calls
include:

Sort_Off Sort using ASCII sorting order and entire string
Sort_ObserveCase Treat upper- and lowercase as different (default)
Sort_IgnoreCase Treat upper- and lowercase as equivalent
Sort_NiceNumbers_on See the header of SortLib.tru for definitions
Sort_NiceNumbers_off Ditto (default)
Sort_NoKeys Sort using the entire string
Sort_OneKey Sort on the substring field specified
Sort_TwoKeys Sort on the two substring fields specified

CSEARCHN and CSEARCHS require the list to have been previously sorted using the same relations; i.e., use the
same COMPAREN for CSEARCHN, and the same options for CSEARCHS as for CSORTS.The two subroutines
REVERSEN and REVERSES simply reverse the order of the elements in the numeric or string array. That is,
the first element will become the last, and so on.

CPSORTN Subroutine
Library: SORTLIB.TRC
Syntax: CALL CPSORTN (numarrarg, numarrarg)
numarrarg:: numarr

numarr bowlegs
Usage: CALL CPSORTN (values(), indices())

Summary: Performs a pointer sort on the values stored in values and stores the pointers, or indices, to
the elements in indices in the order specified by a customized comparison routine.

Details: The CPSORTN subroutine performs a “pointer sort” on the values stored in the numeric
array values. Pointer sorts do not actually rearrange the values in the array which they are
sorting, rather they create a second array that contains the first array’s indices arranged in
the order of the sorted values. The CPSORTN subroutine returns this array of indices as
indices.
For a more detailed discussion of pointer sorts, see the PSORTN subroutine later in this chapter.

True BASIC Language System1

The PSORTN subroutine compares elements based upon the standard relational operators in
order to create a list of indices that represent the values sorted into ascending order. While
this is useful for the vast majority of circumstances, you may occasionally need to specify a
different comparison.
The CPSORTN subroutine allows you to specify a particular comparison that will be used to
determine the way in which the items will be ordered.
Note that the CPSORTN subroutine sorts the entire values array. Thus, if you have only
assigned values to the first 100 elements of a 1000-element array, the resulting indices
array will contain the indices of 900 zero-valued elements of values merged into the sorted
result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM name$(6), grade(6), indices(6)
MAT READ name$, grade
DATA Kollwitz, Hu, Starr, Ransom, White, Sankar
DATA 75, 93, 95, 68, 84, 88

CALL CPSortN(grade, indices) ! Sort by grades
FOR i = 1 to 6

LET j = indices(i)
PRINT name$(j); grade(j)

NEXT i

END

SUB CompareN (a, b, compflag)
IF a > b then

LET compflag = -1
ELSEIF a = b then

LET compflag = 0
ELSE

LET compflag = 1
END IF

END SUB

performs a pointer sort on a set of parallel arrays and uses the results to print both arrays
sorted into descending order by grade. The result is the same as that of using PSORTN
followed by CALL ReverseN (indicies).

Exceptions: None
See also: CPSORTS, PSORTN, SORTN

CPSORTS Subroutine
Library: SORTLIB.TRC
Syntax: CALL CPSORTS (strarrarg, numarrarg)

strarrarg:: strarr
strarr bowlegs
numarrarg:: numarr
numarr bowlegs

Usage: CALL CPSORTS (values$(), indices())

Summary: Performs a pointer sort on the values stored in values$ and stores the pointers, or indices,
to the elements in indices in the order specified by the programmer.

Details: The CPSORTS subroutine performs a “pointer sort” on the values stored in the string array
values$. Pointer sorts do not actually rearrange the values in the array which they are
sorting, rather they create a second array which contains the first array’s indices arranged in

Sorting and Searching Libraries 2

the order of the sorted values. The CPSORTS subroutine returns this array of indices as
indices.
For a more detailed discussion of pointer sorts, see the PSORTS subroutine later in this
chapter.
The PSORTS subroutine compares elements based upon the standard relational operators in
order to create a list of indices that represent the values sorted into ascending order. While
this is useful for the vast majority of circumstances, you may occasionally need to specify a
different comparison.
The CPSORTS subroutine allows you to specify the comparison that will be used to determine
the way in which the items will be ordered.
Note that the CPSORTS subroutine sorts the entire values$ array. Thus, if you have only
assigned values to the first 100 elements of a 1000-element array, the resulting indices
array will contain the indices of 900 null-valued elements of values$merged into the sorted
result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM name$(6), grade(6), indices(6)
MAT READ name$, grade
DATA Kollwitz, Hu, Starr, Ransom, White, Sankar
DATA 75, 93, 95, 68, 84, 88

CALL Sort_IgnoreCase
CALL CPSortS(name$, indices) ! Sort by grades
FOR i = 1 to 6

LET j = indices(i)
PRINT name$(j); grade(j)

NEXT i

END

performs a case-blind pointer sort on a set of parallel arrays and uses the results to print both
arrays sorted by name.

Exceptions: None
See also: CPSORTN, PSORTS, SORTS

CSEARCHN Subroutine
Library: SORTLIB.TRC
Syntax: CALL CSEARCHN (numarrarg, numex, numvar, numvar)

numarrarg:: numarr
numarr bowlegs

Usage: CALL CSEARCHN (array(), number, index, found)

Summary: Searches array for the value number utilizing a user-defined comparison and returns
found as a non-zero value if it is found. Index reports the subscript value of numberwithin
array.

Details: The CSEARCHN subroutine searches through the numeric array array for an element with
the value number and returns the subscript of its location in index. This search is performed
using a customized comparison subroutine defined by the programmer.
The SEARCHN subroutine compares elements based upon the standard relational operators
in order to locate the value number within array. While this is useful for the vast majority
of circumstances, you may occasionally need to specify a different comparison.
The CSEARCHN subroutine requires that you have sorted the array using CSORTN, and that
you continue to use the same CompareN subroutine.

True BASIC Language System3

It is your responsibility to ensure that the behavior of the CompareN subroutine is well-
defined and bug-free. If your CompareN subroutine is not well-behaved, the search results
may not be valid.
You may define CompareN in the main program file.
Since the CSEARCHN subroutine uses a binary search algorithm, the array must be sorted
into ascending order (perhaps through an invocation of the CSORTN subroutine) before being
passed to the CSEARCHN subroutine. In general, the CSEARCHN subroutine should
utilize the same form of the CompareN subroutine used by the CSORTN subroutine which
sorted the array.
If the value of number exists in array, the value of found is set to some non-zero value and
the value of index is set equal to the subscript of the element which contains it.
If the value of number cannot be located in array, the value of found is set equal to zero and
the value of index is set equal to the subscript of the element in which the value of number
would have been stored if it had been present. In other words, the value of index is set to one
subscript value past the location of the greatest value which is less than number. If number
is greater than every element in array, the value of indexwill be returned equal to array’s
upper bound plus 1.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(100)
RANDOMIZE
FOR i = 1 to 100

LET array(i) = Int(100*Rnd) + 1
NEXT i
CALL CSortN(array)

DO
INPUT PROMPT “Search value (0 to quit): “: number
IF number <= 0 then EXIT DO
CALL CSearchN(array,number,i,found)
IF found <> 0 then

PRINT “Found: “; array(i)
ELSE

PRINT “Not found.”
END IF

LOOP

END

SUB CompareN (a, b, compflag)
IF a > b then

LET compflag = -1
ELSEIF a = b then

LET compflag = 0
ELSE

LET compflag = 1
END IF

END SUB

sorts a list of 20 random numbers between 1 and 100 into descending order and allows the
user to search the results.

Exceptions: None
See also: CSORTN, SEARCHN, CSEARCHS, CSORTS

Sorting and Searching Libraries 4

CSEARCHS Subroutine
Library: SORTLIB.TRC
Syntax: CALL CSEARCHS (strarrarg, strex, numvar, numvar)
strarrarg:: strarr

strarr bowlegs
Usage: CALL CSEARCHS (array$(), string$, index, found)

Summary: Searches array$ for the value string$ utilizing a user-specified relation and returns
found as a non-zero value if it is found. Index reports the subscript value of string$within
array$.

Details: The CSEARCHS subroutine searches through the string array array$ for an element with
the value string$ and returns the subscript of its location in index. This search is
performed using the relations specified by the programmer.
The SEARCHS subroutine compares elements based upon the standard relational operators
in order to locate the value string$within array$. While this is useful for the vast majority
of circumstances, you may occasionally need to specify a different comparison.
The CSEARCHS subroutine allows you to specify the comparison that will be used to locate
the items.
Since the CSEARCHS subroutine uses a binary search algorithm, the array must be sorted
into ascending order (perhaps through an invocation of the CSORTS subroutine) before being
passed to the CSEARCHS subroutine. In general, the CSEARCHS subroutine should use
the same options used by the CSORTS subroutine which sorted the array.
If the value of string$ exists in array$, the value of found is set to some non-zero value and
the value of index is set equal to the subscript of the element which contains it.
If the value of string$ cannot be located in array$, the value of found is set equal to zero
and the value of index is set equal to the subscript of the element in which the value of
string$ would have been stored if it had been present. In other words, the value of index
is set to one subscript value past the location of the greatest value which is less than string$.
If string$ is greater than every element in array$, the value of index will be returned
equal to array$’s upper bound plus 1.

Example: The following program:
! Sort by last 3 letters, then search for same.
!
DIM array$(10)
MAT READ array$
DATA operculum, partlet, pettifog, grisette, douceur
DATA pollex, sannup, duende, keeshond, maccaboy

CALL Sort_OneKey (4, 6)

CALL CSortS(array$)
DO

INPUT PROMPT “Search string (aaa to quit): “: string$
IF string$ = “aaa” then EXIT DO
CALL CSearchS(array$,string$,i,found)
IF found<>0 then

PRINT “Found: “; array$(i)
ELSE

PRINT “Not found.”
END IF

LOOP
END

sorts a list of string data by characters 4 through 6 in each element and then allows the user
to search the list based on these same characters in an element.

True BASIC Language System5

Exceptions: None
See also: CSORTS, SEARCHS, CSEARCHN, CSORTN

CSORTN Subroutine
Library: SORTLIB.TRC
Syntax: CALL CSORTN (numarrarg)
numarrarg:: numarr

numarr bowlegs
Usage: CALL CSORTN (array())

Summary: Sorts the specified numeric array using the customized comparison routine named
CompareN.

Details: The CSORTN subroutine sorts the elements of the specified numeric array into the order
determined by a customized comparison subroutine.
The SORTN subroutine compares elements based upon the <= relational operator in order to
create a list sorted into ascending order. While this is useful for the vast majority of
circumstances, you may occasionally need to specify a different comparison.
The CSORTN subroutine allows you to define a particular comparison that will be used to
determine the ordering of the items. You do so by defining an external subroutine named
CompareN as in the following example:
The CSORTN subroutine performs an “in-place” sort, which means that it uses very little
memory over and above that already occupied by the array itself.
Although it is of little consequence, you may also be interested to know that the sorting
algorithm used by the CSORTN subroutine is not stable; if you require a stable sort, use the
CPSORTN subroutine instead.
The sorting algorithm used is an optimized quick sort, which makes the CSORTN routine a
very efficient, general-purpose sorting routine. Note, however, that since the CSORTN
subroutine calls the CompareN subroutine for each comparison, it is not as fast as the
SORTN subroutine.
Note that the CSORTN subroutine sorts the entire array. Thus, if you have only assigned
values to the first 100 elements of a 1000-element array, the array will have 900 zeroes merged
into the sorted result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(100)
RANDOMIZE
FOR i = 1 to 100

LET array(i) = Int(100*Rnd) + 1
NEXT i
CALL CSortN(array)
MAT PRINT array

END

SUB CompareN (a, b, compflag)
IF a > b then

LET compflag = -1
ELSEIF a = b then

LET compflag = 0
ELSE

LET compflag = 1
END IF

END SUB

Sorting and Searching Libraries 6

generates an array of 100 random numbers, sorts it into descending order, and prints the
sorted result on the screen.

Exceptions: None
See also: CSORTS, CPSORTN, SORTN, REVERSEN

CSORTS Subroutine
Library: SORTLIB.TRC
Syntax: CALL CSORTS (strarrarg)
strarrarg:: strarr

strarr bowlegs
Usage: CALL CSORTS (array())

Summary: Sorts the specified string array using the customized comparison specified by the
programmer.

Details: The CSORTS subroutine sorts the elements of the specified string array into the order
determined by a customized comparison.
The SORTS subroutine compares elements based upon the <= relational operator in order to
create a list sorted into ascending order. While this is useful for the vast majority of
circumstances, you may occasionally need to specify a different comparison.
The CSORTS subroutine allows you to specify the comparison that will be used to determine
the ordering of the items.
The CSORTS subroutine performs an “in-place” sort, which means that it uses very little
memory over and above that already occupied by the array itself.
Although it is of little consequence, you may also be interested to know that the sorting
algorithm used by the CSORTS subroutine is not stable; if you require a stable sort, use the
CPSORTS subroutine instead.
The sorting algorithm used is an optimized quick sort, which makes the CSORTS routine a
very efficient, general-purpose sorting routine. Note, however, that since the CSORTS
subroutine calls the CompareS subroutine for each comparison, it is not as fast as the SORTS
subroutine.
Note that the CSORTS subroutine sorts the entire array. Thus, if you have only assigned
values to the first 100 elements of a 1000-element array, the array will have 900 null strings
merged into the sorted result.

Example: The following program:
LIBRARY “SortLib.TRC”
LIBRARY “CompNum.TRC”

DIM array$(100)
RANDOMIZE
FOR i = 1 to 100

LET array$(i) = “Item “ & Str$(Int(100*Rnd) + 1)
NEXT i
CALL Sort_NiceNumbers_on
CALL CSortS(array$)
MAT PRINT array$

END

generates an array of 100 strings containing numeric values, sorts it using the version of
CompareS contained in the COMPNUM library file, and prints the sorted result on the
screen.

Exceptions: None
See also: CSORTN, CPSORTS, SORTS, REVERSES

True BASIC Language System7

PSORTN Subroutine
Library: SORTLIB.TRC
Syntax: CALL PSORTN (numarrarg, numarrarg)
numarrarg:: numarr

numarr bowlegs
Usage: CALL PSORTN (values(), indices())

Summary: Performs a pointer sort on the values stored in values and stores the pointers, or indices,
to the elements in indices in sorted order.

Details: The PSORTN subroutine performs a “pointer sort” on the values stored in the numeric
array values. Pointer sorts do not actually rearrange the values in the array which they
are sorting, rather they create a second array which contains the first array’s indices
arranged in the order of the sorted values. The PSORTN subroutine returns this array of
indices as indices.
For example, if values contained the following items:
10 12 23 14 -8 11 6

the resulting indices array would contain the following items:
5 7 1 6 2 4 3

but the items in values will still be in their original order:
10 12 23 14 -8 11 6

Notice that you can therefore print the elements of values in sorted order with code
similar to the following:
FOR i = Lbound(indices) to Ubound(indices)

PRINT values(indices(i))
NEXT i

Because they do not change the ordering of information in the values array, pointer sorts
are particularly useful when working with “parallel arrays.”
Note that the PSORTN subroutine sorts the entire values array. Thus, if you have only
assigned values to the first 100 elements of a 1000-element array, the resulting indices
array will contain the indices of 900 zero-valued elements of values merged into the
sorted result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM name$(6), grade(6), indices(6)
MAT READ name$, grade
DATA Kollwitz, Hu, Starr, Ransom, White, Sankar
DATA 75, 93, 95, 68, 84, 88

CALL PSortN(grade, indices) ! Sort by grades
FOR i = 1 to 6

LET j = indices(i)
PRINT name$(j); grade(j)

NEXT i

END

performs a pointer sort on a set of parallel arrays and uses the results to print both arrays
sorted by grades.

Exceptions: None
See also: PSORTN, CPSORTS, SORTS

Sorting and Searching Libraries 8

PSORTS Subroutine
Library: SORTLIB.TRC
Syntax: CALL PSORTS (strarrarg, numarrarg)
strarrarg:: strarr

strarr bowlegs
numarrarg:: numarr

numarr bowlegs
Usage: CALL PSORTS (values$(), indices())
Summary: Performs a pointer sort on the values stored in values$ and stores the pointers, or indices,

to the elements in indices in sorted order.
Details: The PSORTS subroutine performs a “pointer sort” on the values stored in the string array

values$. Pointer sorts do not actually rearrange the values in the array which they are
sorting, rather they create a second array which contains the first array’s indices arranged
in the order of the sorted values. The PSORTS subroutine returns this array of indices as
indices.
For example, if values$ contained the following items:
bat zoo cat ant dog pig

the resulting indices array would contain the following items:
4 1 3 5 6 2

but the items in values$ will still be in their original order:
bat zoo cat ant dog pig

Notice that you can therefore print the elements of values$ in sorted order with code
similar to the following:
FOR i = Lbound(indices) to Ubound(indices)

PRINT values$(indices(i))
NEXT i

Because they do not change the ordering of information in the values$ array, pointer sorts
are particularly useful when working with “parallel arrays.”
Note that the PSORTS subroutine sorts the entire values$ array. Thus, if you have only
assigned values to the first 100 elements of a 1000-element array, the resulting indices
array will contain the indices of 900 null-valued elements of values$ merged into the
sorted result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM name$(6), grade(6), indices(6)
MAT READ name$, grade
DATA Kollwitz, Hu, Starr, Ransom, White, Sankar
DATA 75, 93, 95, 68, 84, 88

CALL PSortS(grade$, indices) ! Sort by grades
FOR i = 1 to 6

LET j = indices(i)
PRINT name$(j); grade(j)

NEXT i

END

performs a pointer sort on a set of parallel arrays and uses the results to print both arrays
sorted by name.

Exceptions: None
See also: PSORTN, CPSORTS, SORTS

True BASIC Language System9

REVERSEN Subroutine
Library: SORTLIB.TRC
Syntax: CALL REVERSEN (numarrarg)
numarrarg:: numarr

numarr bowlegs
Usage: CALL REVERSEN (array())

Summary: Reverses the order of the elements within array.
Details: The REVERSEN subroutine reverses the order of the elements stored within the specified

numeric array. In other words, it swaps the first and last elements, the second and next-to-
last, and so forth.
Although it can be used on any numeric array, the REVERSEN subroutine is most often used
to reverse the results of the SORTN or CSORTN subroutines to produce a list sorted in
descending order. It can also be used to reverse the pointer list produced by PSORTN,
CPSORTN, PSORTS or CPSORTS.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(20)
FOR i = 1 to 20

LET array(i) = Int(100*Rnd) + 1
NEXT i
CALL SortN(array)
CALL ReverseN(array)
MAT PRINT array

END

generates an array of random values between 1 and 100 and prints it sorted into descending
order.

Exceptions: None
See also: SORTN, CSORTN, REVERSES

REVERSES Subroutine
Library: SORTLIB.TRC
Syntax: CALL REVERSES (strarrarg)
strarrarg:: strarr

strarr bowlegs
Usage: CALL REVERSES (array$())

Summary: Reverses the order of the elements within array$.
Details: The REVERSES subroutine reverses the order of the elements stored within the specified

string array. In other words, it swaps the first and last elements, the second and next-to-last,
and so forth.
Although it can be used on any string array, the REVERSES subroutine is most often used to
reverse the results of the SORTS or CSORTS subroutines to produce a list sorted in
descending order.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array$(20)
FOR i = 1 to 20

LET array$(i) = Chr$(Int(26*Rnd) + 65)
NEXT i
CALL SortS(array$)

Sorting and Searching Libraries 10

CALL ReverseS(array$)
MAT PRINT array$

END

generates an array of random uppercase letters and prints it sorted into descending order.
Exceptions: None
See also: SORTS, CSORTS, REVERSEN

SEARCHN Subroutine
Library: SORTLIB.TRC
Syntax: CALL SEARCHN (numarrarg, numex, numvar, numvar)

numarrarg:: numarr
numarr bowlegs

Usage: CALL SEARCHN (array(), number, index, found)

Summary: Searches array for the value number and returns found as a non-zero value if it is found.
Index reports the subscript value of number within array.

Details: The SEARCHN subroutine searches through the numeric array array for an element with
the value number and returns the subscript of its location in index.
Since the SEARCHN subroutine uses a binary search algorithm, the array must be sorted
into ascending order (perhaps through an invocation of the SORTN subroutine) before being
passed to the SEARCHN subroutine.
If the value of number exists in array, the value of found is set to some non-zero value and
the value of index is set equal to the subscript of the element which contains it.
If the value of number cannot be located in array, the value of found is set equal to zero and
the value of index is set equal to the subscript of the element in which the value of number
would have been stored if it had been present. In other words, the value of index is set to one
subscript value past the location of the greatest value which is less than number. If number
is greater than every element in array, the value of indexwill be returned equal to array’s
upper bound plus 1.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(20)
FOR i = 1 to 20

LET array(i) = Int(100*Rnd) + 1
NEXT i
CALL SortN(array)

DO
INPUT PROMPT “Enter a number 1 to 100 (0 to quit): “: number
IF number <= 0 then EXIT DO
CALL SearchN(array, number, index, found)
IF found <> 0 then

PRINT “Found at”; index
ELSE

PRINT “Not found”
END IF

LOOP

END

generates an array of random values between 1 and 100 and allows the user to search it.
Exceptions: None
See also: SORTN, SEARCHS, CSEARCHN, CSORTN

True BASIC Language System11

SEARCHS Subroutine
Library: SORTLIB.TRC
Syntax: CALL SEARCHS (strarrarg, strex, numvar, numvar)
strarrarg:: strarr

strarr bowlegs
Usage: CALL SEARCHS (array$(), string$, index, found)

Summary: Searches array$ for the value string$ and returns found as a non-zero value if it is found.
Index reports the subscript value of string$ within array.

Details: The SEARCHS subroutine searches through the string array array$ for an element with
the value string$ and returns the subscript of its location in index.
Since the SEARCHS subroutine uses a binary search algorithm, the array must be sorted into
ascending order (perhaps through an invocation of the SORTS subroutine) before being
passed to the SEARCHS subroutine.
If the value of string$ exists in array$, the value of found is set to some non-zero value
and the value of index is set equal to the subscript of the element which contains it.
If the value of string$ cannot be located in array$, the value of found is set equal to zero
and the value of index is set equal to the subscript of the element in which the value of
string$ would have been stored if it had been present. In other words, the value of index
is set to one subscript value past the location of the greatest value which is less than string$.
If string$ is greater than every element in array$, the value of index will be returned
equal to array$’s upper bound plus 1.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array$(20)
FOR i = 1 to 20

LET array$(i) = Chr$(Int(26*Rnd) + 65)
NEXT i
CALL SortS(array$)

DO
INPUT PROMPT “Enter an uppercase letter (a to quit): “: string$
IF string$ = “a” then EXIT DO
CALL SearchS(array$, string$, index, found)
IF found <> 0 then

PRINT “Found at”; index
ELSE

PRINT “Not found”
END IF

LOOP

END

generates an array of random uppercase letters and allows the user to search it.
Exceptions: None
See also: SORTS, SEARCHN, CSEARCHS, CSORTS

SORTN Subroutine
Library: SORTLIB.TRC
Syntax: CALL SORTN (numarrarg)

numarrarg:: numarr
numarr bowlegs

Sorting and Searching Libraries 12

Usage: CALL SORTN (array())

Summary: Sorts the specified numeric array using a quick sort.
Details: The SORTN subroutine sorts the elements of the specified numeric array into ascending

order. Thus, the array element with the lowest value will be found in the first element of
array after the sort, and the array element with the highest value will be found in the last
element of array.
The SORTN subroutine performs an “in-place” sort, which means that it uses very little
memory over and above that already occupied by the array itself.
The sorting algorithm used by the SORTN subroutine is not stable; if you require a stable sort,
use the PSORTN subroutine instead.
The sorting algorithm used is an optimized quick sort, which makes the SORTN routine a
very efficient, general-purpose sorting routine.
Note that the SORTN subroutine sorts the entire array. Thus, if you have only assigned
values to the first 100 elements of a 1000-element array, the array will have 900 zeroes merged
into the sorted result.
To sort an array into descending order, use the REVERSEN subroutine to reverse the results
of the SORTN subroutine.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(1000)
RANDOMIZE
FOR i = 1 to 1000

LET array(i) = Rnd
NEXT i
CALL SortN(array)
MAT PRINT array
END

generates an array of 1000 random numbers, sorts it, and prints the sorted result on the
screen.

Exceptions: None
See also: SORTS, CSORTN, PSORTN, CPSORTN, REVERSEN

SORTS Subroutine
Library: SORTLIB.TRC
Syntax: CALL SORTS (strarrarg)

strarrarg:: strarr
strarr bowlegs

Usage: CALL SORTS (array$())

Summary: Sorts the specified string array using a quick sort.
Details: The SORTS subroutine sorts the elements of the specified string array into ascending order.

Thus, the array element with the lowest value will be found in the first element of array after
the sort, and the array element with the highest value will be found in the last element of
array.
The values of the elements will be compared as strings, which means that they are compared
character by character on the basis of each character’s numeric code. Thus, the string value
“Zebra” will be considered less than the string value “apple”. This is particularly
important when sorting strings which represent numeric constants, for the string value
“123”will be considered less than the string value “2”, which can lead to unexpected results.
The SORTS subroutine performs an “in-place” sort, which means that it uses very little
memory over and above that already occupied by the array itself.

True BASIC Language System13

The sorting algorithm used by the SORTS subroutine is not stable; if you require a stable sort,
use the PSORTS subroutine instead.
The sorting algorithm used is an optimized quick sort, which makes the SORTS routine a very
efficient, general-purpose sorting routine.
Note that the SORTS subroutine sorts the entire array. Thus, if you have only assigned values
to the first 100 elements of a 1000-element array, the array will have 900 null strings merged
into the sorted result.
To sort an array into descending order, use the REVERSES subroutine to reverse the results
of the SORTS subroutine.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array$(1)
MAT INPUT array$(?)
CALL SortS(array$)
MAT PRINT array$
END

obtains an array of string values from the user, sorts it, and prints the sorted result on the
screen.

Exceptions: None
See also: SORTN, CSORTS, PSORTS, CPSORTS, REVERSES

Sorting and Searching Libraries 14

	Sort_Search_Lib_Cover.pdf
	Sort and Search.pdf

