

Graphics Libraries
This section describes subroutines for generating complicated graphical displays of data. The subroutines are
contained in three library files:

BGLIB.TRC for drawing pie charts, bar charts, and histograms; including the routines BARCHART,
HISTOGRAM, IBEAM, MULTIBAR, MULTIHIST, PIECHART, and several ASK... and
SET... routines for finding out about or setting attributes of graphs.

SGLIB.TRC for plotting data and function values; including the routines ADDDATAGRAPH,
ADDFGRAPH, ADDLSGRAPH, DATAGRAPH, FGRAPH, MANYDATAGRAPH,
MANYFGRAPH, SORTSPOINTS, and many ASK... and SET... routines for finding out
about or setting attributes of graphs

SGFUNC.TRC for plotting values of functions that you define:
ADDFGRAPH, FGRAPH, MANYFGRAPH

The graphics subroutines are described below, in alphabetical order.

ADDDATAGRAPH Subroutine
Library: SGLIB.TRC
Syntax: CALL ADDDATAGRAPH (numarrarg,, numarrarg, numex, numex, strex)

numarrarg:: numarr
numarr bowlegs

Usage: CALL ADDDATAGRAPH (x(), y(), pstyle, lstyle, colors$)

Summary: Draws another line graph of a set of data points over the current graph.
Details: The ADDDATAGRAPH subroutine draws a line graph of the set of data points whose

coordinates are represented by the values of the x and y arrays over the current graph; it
simply adds the new graph to the existing graph. Therefore, portions of the added data graph
may lie off the graph.
The x array contains the points’ x-coordinates, and the y array contains their y-coordinates.
The coordinates in the two arrays are matched according to their subscripts; that is, the
elements with subscripts of 1 within both arrays are interpreted as the coordinates of a single
point, as are the elements with subscripts of 2, and so on. Thus, the x and y arrays must have
the same upper and lower bounds, or an error will be generated.
The value of pstyle determines the point style that will be used to draw the data points
which comprise the graph. The allowable values for pstyle are summarized in the following
table:

Available Point Styles
Value of pstyle Resulting Point

0 No point (display line only)
1 Dot
2 Plus sign
3 Asterisk
4 Circle
5 X
6 Box
7 Up triangle
8 Down triangle
9 Diamond
10 Solid Box
11 Solid up triangle
12 Solid down triangle
13 Solid diamond

True BASIC Language System1

The value of lstyle determines the line style that will be used to connect the data points which
comprise the graph. The allowable values for lstyle are summarized in the following table:

Available Line Styles
Value of lstyle Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The graph is actually composed of a series of line segments connecting the data points. You can
suppress the display of the data points by passing a value of 0 in pstyle, or you can suppress
the display of the connecting line segments by passing a value of 0 in lstyle.
Note that the ADDDATAGRAPH subroutine draws and connects the points in the order in
which they are stored in the x and y arrays. If your points are not stored in left to right order,
you may wish to use the SORTPOINTS subroutine to order the points before passing them
to the ADDDATAGRAPH subroutine.
The value of colors$ determines the color that will be used to draw the new graph. It
generally consists of a single color name (in any combination of uppercase or lowercase
letters). The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
Note: the color “BACKGROUND” refers to the current background color.
The value of colors$ may also contain a color number instead of a color name, allowing you
to access any of the colors supported by the current computer system.
Note that the ADDDATAGRAPH subroutine assumes that a graph currently exists which
has been created by an invocation of the FGRAPH or DATAGRAPH subroutine. The
ADDDATAGRAPH subroutine simply adds the line representing the specified data points to
the existing graph; it does not rescale the graph or redraw the labels or title. If you attempt to
invoke the ADDDATAGRAPH subroutine when a suitable graph has not already been
displayed, an error will be generated.

Example: The following program, SGData2.TRU, can be found in the directory TBDEMOS:
! SGData2 Chris’ & Dave’s cars’ mileage.

! Both drove the same kind of car. Notice that one car’s mileage
! goes up and down depending on the season (winter is low).
! The other is less affected. Also, notice a few erroneous
! data points!

LIBRARY “..\TBLibs\SGLib.trc”

DIM cmiles(0 to 200), cgallons(200), cmpg(200)
DIM dmiles(0 to 200), dgallons(200), dmpg(200)

CALL ReadData (cmiles, cgallons, cmpg)
CALL ReadData (dmiles, dgallons, dmpg)

CALL SetText (“Gas Mileage”, “Miles Driven (Thousands)”, “MPG”)
CALL DataGraph (cmiles, cmpg, 0, 3, “red green yellow”)
CALL AddDataGraph (dmiles, dmpg, 0, 1, “green”)

Graphics Libraries 2

GET KEY key

SUB ReadData (miles(), gallons(), mpg())

READ miles(0)
LET n = 0
DO

LET n = n + 1
READ miles(n), gallons(n)

LOOP until miles(n) = 0
LET n = n - 1

FOR i = 1 to n
LET mpg(i) = (miles(i) - miles(i-1)) / gallons(i)

NEXT i
MAT redim mpg(n), miles(1:n)
MAT miles = (1/1000) * miles

END SUB

! Chris’s car

DATA 677.3 ! first recorded

DATA 1104.9,9.5, 1567.6,9.3, 1869.7,6.7, 2179.5,6.0
DATA 2564.2,8.0, 2812.3,4.7, 3192.0,7.8, 3540.4,7.4
DATA 4044.4,10.2, 4317.5,5.8, 4747.8,8.7, 4946.2,3.7
DATA 5406.7,9.6, 5870.0,10.1, 6344.2,10.0, 6789.3,9.6
DATA 7208.1,9.1, 7624.8,9.6, 7786.6,3.2, 8244.3,9.4
DATA 8614.1,8.6, 9050.0,9.5, 9584,13.2, 9991.6,9.3
DATA 10389,9.4, 10804.4,9.1, 11216.1,10.3,11623.4,10.1
DATA 11970.4,9.54,12215.5,6.6, 12599.8,9.6, 12921.9,8.84
DATA 13238.1,7.7
DATA 13815.0,14.3,14170.0,8.8, 14531.0,8.3, 14880.9,9.0
DATA 15671,8.95, 16065,8.2, 16453,8.47, 16696,5.4
DATA 17144,8.8, 17568,9.1, 17997,8.65, 18450,9.3
DATA 18934,9.9, 19356,8.7, 19787,8.4, 20162,7.4
DATA 20572,8.25, 21025,8.8, 21345,9.0 ! did I read this right?
DATA 21713,5.0, 22043,6.6, 22514,9.2, 22968,9.6
DATA 23450,9.1, 23923,9.5, 24302,7.2, 24814,9.9
DATA 25272,9.1, 25738,9.0, 26128,7.7, 26603,8.9
DATA 26975,7.45, 27145,3.772
DATA 27523,7.36, 27834,6.4, 28266,8.4, 28652,8.3
DATA 29091,8.7, 29510,8.8, 29818,6.4, 30223,8.48
DATA 30626,8.9, 31056,8.24 ! ?
DATA 31410,8.16, 31786,8.6, 32161,8.9 ! ?
DATA 32550,9.2, 32941,9.045, 33302,9.3
DATA 0,0

! Dave’s car

DATA 0 ! full tank on delivery
DATA 272,6.35, 599,6.56, 924,7.44, 1281,7.56
DATA 1462,4.47, 1705,4.32, 2099,8.02, 2673,12.03
DATA 3090,8.76, 3537,8.6, 3991,9.28, 4419,8.73
DATA 4779,7.86, 5022,5.4, 5407,7.88, 5731,7.3
DATA 6049,7.04, 6388,7.61, 6836,8.56, 7204,7.87
DATA 7633,9.21, 8000,7.93, 8455,9.52, 8765,7.17
DATA 9188,9.2, 9578,9.21, 10111,13.7, 10551,10.13
DATA 10884,6.16, 11261,8.16, 11550,7.01, 11888,8.43
DATA 12255,6.79, 12690,8.11, 13237,10.8, 13563,6.47
DATA 14036,8.89, 14418,8.91, 14758,7.28, 15183,9.16
DATA 15757,11, 16394,12.75, 16752,7.95, 17108,6.83

True BASIC Language System3

DATA 17543,9.01, 17943,9.48, 18362,8.88, 18781,9.07
DATA 19179,8.83, 19361,4.63, 19600,6.07, 19898,6.57
DATA 0,0

END

produces a graph comparing the fuel economy of two cars.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
110 Data arrays have different bounds in DataGraph
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: DATAGRAPH, MANYDATAGRAPH, FGRAPH

ADDFGRAPH Subroutine
Library: SGFUNC.TRC, SGLIB.TRC
Syntax: CALL ADDFGRAPH (numex, strex)
Usage: CALL ADDFGRAPH (style, color$)

Summary: Draws another line graph of an externally defined function over the current graph.
Details: The ADDFGRAPH subroutine draws a line graph of the function F(x) over the current graph.

The ADDFGRAPH subroutine does not change the scale of the current graph; it simply adds
the new graph to the existing graph. Therefore, parts of the new function may be off the graph.
The function F(x) must be defined external to your main program. That is, it must be defined
using a DEF statement or a DEF structure which appears after the END statement. The
function you define must be defined over the entire domain specified. If it is not, the
ADDFGRAPH subroutine may generate an error or draw the graph incorrectly.
Note that both the ADDFGRAPH subroutine and the FGRAPH subroutine utilize an
externally defined function named F. Since a program may not contain two defined functions
with the same name, it is your responsibility to ensure that the function F(x) is defined to
calculate two different functions if you plan to use the ADDFGRAPH subroutine after calling
the FGRAPH subroutine. (See the following example for one method of accomplishing this.)
The value of style determines the line style that will be used to connect the data points which
comprise the graph. The allowable values for style are summarized in the following table:

Available Line Styles
Value of style Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The graph is actually composed of a series of short line segments. You can control the
number of line segments used to display a graph with the SETGRAIN subroutine. Using
more line segments creates a smoother graph, but takes longer to draw.
The value of color$ determines the color that will be used to draw the new graph. It
generally consists of a single color name (in any combination of uppercase or lowercase
letters). The valid color names are:

Graphics Libraries 4

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of color$ may also contain a color number instead of a color name, allowing you
to access any color supported by the current computer system.
If the value of color$ contains more than one color, only the last color in the list will be
used.
Note that the ADDFGRAPH subroutine assumes that a graph currently exists which has
been created by an invocation of the FGRAPH or DATAGRAPH subroutine. The
ADDFGRAPH subroutine simply adds the line representing the current function F(x) to
the existing graph; it does not rescale the graph or redraw the labels or title. If you attempt
to invoke the ADDFGRAPH subroutine when a suitable graph has not already been
displayed, an error will be generated.

Example: The following program, SGFunc2.TRU, can be found in the directory TBDEMOS:
! SGFunc2 Graph sine and cosine functions.

LIBRARY “..\TBLibs\SGFunc.trc”, “..\TBLibs\SGLib.trc”

PUBLIC flag

CALL SetText (“Sine and Cosine Waves”, “X Values”, “Y Values”)

CALL Fgraph (-2*pi, 2*pi, 1, “white white magenta”)

LET flag = 1
CALL AddFgraph (2, “cyan”)

GET KEY key

END

DEF F(x)
DECLARE PUBLIC flag
IF flag = 0 then LET F = Sin(x) else LET F = Cos(x)

END DEF

produces a graph of the functions Sin(x) and Cos(x). Notice the use of the public variable
flag to change the behavior of the defined function being graphed.

Exceptions: 118 No canvas window yet.
11008 No such color: color.

See also: SETGRAIN, FGRAPH, MANYFGRAPH

ADDLSGRAPH Subroutine
Library: SGLIB.TRC
Syntax: CALL ADDLSGRAPH (numarrarg, numarrarg, numex, strex)

numarrarg:: numarr
numarr bowlegs

Usage: CALL ADDLSGRAPH (x(), y(), style, color$)

Summary: Computes and draws the least-squares linear fit for the specified points.
Details: The ADDLSGRAPH subroutine calculates and draws the least-squares linear fit of a set of

data points.

True BASIC Language System5

The least-squares linear fit of a set of data points is the straight line which best fits the
locations of those data points. That is, the least-squares linear fit of a set of data points is the
straight line which minimizes the vertical distance between itself and each of the data points.
Such a line may be used to help predict where data points might lie in areas for which data is
unavailable.
The set of data points is specified as pairs of coordinates passed as the contents of the x and y
arrays. The x array contains the points’ x-coordinates, and the y array contains their y-
coordinates. The coordinates in the two arrays are matched according to their subscripts; that
is, the elements with subscripts of 1 within both arrays are interpreted as the coordinates of
a single point, as are the elements with subscripts of 2, and so on. Thus, the x and y arrays
must have the same upper and lower bounds, or an error will be generated.
The value of style determines the line style that will be used to draw the linear fit. The
allowable values for style are summarized in the following table:

Available Line Styles
Value of lstyle Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The value of color$ determines the color that will be used to draw the linear fit. It
generally consists of a single color name (in any combination of uppercase or lowercase
letters). The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
Note: the color “BACKGROUND” refers to the current background color.
The value of color$ may also contain a color number instead of a color name, allowing you
to access any of the colors supported by the current computer system.
Note that the ADDLSGRAPH subroutine assumes that a graph currently exists which has
been created by an invocation of one of the various graphing subroutines. The
ADDLSGRAPH subroutine simply adds the line representing the specified data points to
the existing graph; it does not rescale the graph or redraw the labels or title. If you attempt
to invoke the ADDLSGRAPH subroutine when a suitable graph has not already been
displayed, an error will be generated.

Example: The following program, SGLSquar.TRU, can be found in the directory TBDEMOS:
! SGLSquar Add a least-squares line to data points.

! Data taken from “The Shortwave Propagation Handbook” (2nd ed)
! by George Jacobs and Theodore J. Cohen. Page 111.

LIBRARY “..\TBLibs\SGLib.trc”

DIM x(120), y(120)

MAT READ x, y ! Data later

CALL SetYscale (70, 170)

CALL SetText (“Sunspots vs. Solar Flux”, “Daily Sunspot Number”,
“Daily Solar Flux”)
CALL DataGraph (x, y, 6, 0, “red green yellow”)
CALL AddLSgraph (x, y, 1, “red”)

Graphics Libraries 6

DATA 16, 17, 5, 4, 18, 19, 21, 24, 22, 25
DATA 28, 30, 32, 33, 31, 35, 21, 25, 26, 30
DATA 28, 31, 37, 37, 39, 38, 34, 25, 40, 41
DATA 43, 44, 42, 45, 47, 48, 50, 50, 52, 56
DATA 57, 59, 46, 42, 41, 45, 48, 52, 44, 45
DATA 49, 55, 58, 59, 53, 55, 55, 59, 57, 65
DATA 64, 61, 63, 64, 66, 65, 67, 69, 71, 76
DATA 75, 81, 80, 80, 81, 82, 87, 90, 84, 84
DATA 64, 65, 78, 78, 73, 80, 77, 74, 70, 70
DATA 61, 63, 73, 74, 73, 77, 79, 78, 79, 63
DATA 81, 94, 97, 93, 93, 86, 79, 98, 93, 116
DATA 116, 115, 116, 104, 127, 125, 130, 131, 123, 139

DATA 81, 84, 84, 88, 89, 87, 90, 89, 87, 87
DATA 85, 82, 91, 90, 87, 85, 96, 95, 95, 99
DATA 93, 94, 95, 98, 96, 103, 105, 111, 100, 94
DATA 99, 97, 97, 94, 97, 98, 100, 95, 97, 102
DATA 104, 104, 104, 105, 107, 109, 108, 108, 112, 115
DATA 115, 115, 116, 117, 120, 119, 127, 125, 133, 103
DATA 106, 110, 108, 111, 108, 107, 108, 107, 108, 105
DATA 110, 102, 107, 108, 108, 106, 110, 114, 118, 119
DATA 116, 115, 119, 118, 116, 114, 115, 114, 121, 122
DATA 126, 127, 125, 128, 131, 126, 127, 131, 130, 133
DATA 131, 129, 131, 123, 135, 138, 140, 144, 146, 148
DATA 158, 157, 156, 157, 154, 159, 159, 163, 162, 166

GET KEY key

END

produces a graph with a least-squares linear fit superimposed over it.
Exceptions: None
See also: SETLS, ASKLS, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH

ASKANGLE Subroutine
Library: SGLIB.TRC
Syntax: CALL ASKANGLE (strex)
Usage: CALL ASKANGLE (measure$)

Summary: Reports the manner in which subsequent polar graphs drawn by the various data and function
plotting subroutines will interpret angle measurements.

Details: The ASKANGLE subroutine is used to report the manner in which subsequent data and
function polar plots produced by the DATAGRAPH, ADDDATAGRAPH,
MANYDATAGRAPH, FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines will
interpret angle measurements.
If the value of measure$ is returned equal to “DEG” these subroutines will interpret angular
coordinates for polar graphs as degrees. If the value of measure$ is returned equal to “RAD”
these subroutines will interpret angular coordinates for polar graphs as radians.
Note that the ASKANGLE subroutine only reports the interpretation of angular coordinates
by polar graphs. Use the ASKGRAPHTYPE subroutine to report whether or not subsequent
graphs will be drawn as polar graphs.
You can use the SETANGLE subroutine to control the manner in which the next data or
function polar plot will interpret angular coordinates.

Example: None
Exceptions: None
See also: SETANGLE, SETGRAPHTYPE, DATAGRAPH, ADDDATAGRAPH,

MANYDATAGRAPH, FGRAPH, ADDFGRAPH, MANYFGRAPH

True BASIC Language System7

ASKBARTYPE Subroutine
Library: BGLIB.TRC
Syntax: CALL ASKBARTYPE (strvar)
Usage: CALL ASKBARTYPE (type$)

Summary: Reports the arrangement of the bars within each group of subsequently drawn multiple bar
chart or histogram.

Details: The ASKBARTYPE subroutine is used to report the arrangement of the bars within each
group of a bar chart or histogram that will produced by a subsequent invocation of the
MULTIBAR or MULTIHIST subroutine.
Both the MULTIBAR and MULTIHIST subroutines draw multiple bar-based graphs in a single
frame. In such a graph, bars associated with a particular unit are grouped together.
The ASKBARTYPE subroutine allows you to report how the bars in each group will be
arranged by returning one of the following values in type$:

Types of Bar Groupings
Type$ value Description
“SIDE” Bars arranged side by side with space between them
“STACK” Bars stacked one above the other
“OVER” Bars arranged side by side but overlapped slightly

By default, the bar type is set to a value of “SIDE”. You can use the SETBARTYPE
subroutine to change the current bar type setting.

Example: None
Exceptions: None
See also: SETBARTYPE, MULTIBAR, MULTIHIST

ASKGRAIN Subroutine
Library: SGLIB.TRC
Syntax: CALL ASKGRAIN (numvar)
Usage: CALL ASKGRAIN (grain)

Summary: Reports the grain with which subsequent invocations of the various function plotting
subroutines will draw the line graph.

Details: The ASKGRAIN subroutine reports the grain with which subsequent invocations of the
FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines will draw the line
representing the function.
These subroutines actually graph the curve of the function which they are plotting as a
series of line segments. The grain controls the number of line segments used to form each
graphed curve. The higher the value of the grain, the more line segments are used and the
smoother the resulting curve appears. However, higher grains also mean more work for the
computer, and this means that each curve takes longer to draw.
By default, the FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines use a grain
value of 64, which means that each line graph is composed of 64 individual line segments.
This value strikes a generally acceptable balance of smoothness and speed, but this value
can be changed using the SETGRAIN subroutine.

Example: None
Exceptions: None
See also: SETGRAIN, FGRAPH, ADDFGRAPH, MANYFGRAPH

Graphics Libraries 8

ASKGRAPHTYPE Subroutine
Library: SGLIB.TRC
Syntax: CALL ASKGRAPHTYPE (strvar)
Usage: CALL ASKGRAPHTYPE (type$)

Summary: Reports the type of graph that will be drawn by subsequent data and function plotting
subroutines.

Details: The ASKGRAPHTYPE subroutine is used to report the type of graph that will be produced for
subsequent data and function plots produced by the DATAGRAPH, ADDDATAGRAPH,
MANYDATAGRAPH, FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines.
The type of subsequent graphs is reported as the value of type$. The possible values of
type$ are:

Types of Graphs
Type$ value Description

“XY” Normal graph
“LOGX” Semi-logarithmic graph with x-axis logarithmically scaled
“LOGY” Semi-logarithmic graph with y-axis logarithmically scaled
“LOGXY” Logarithmic graph with both x- and y-axes logarithmically scaled
“POLAR” Polar graph

You can use the SETGRAPHTYPE subroutine to control the type of graph that will be used
for the next data or function plot.

Example: None
Exceptions: None
See also: SETGRAPHTYPE, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH,

FGRAPH, ADDFGRAPH, MANYFGRAPH

ASKGRID Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKGRID (strvar)
Usage: CALL ASKGRID (style$)

Summary: Reports the presence, direction, and type of the grid that will be used in subsequently drawn
charts and graphs.

Details: The ASKGRID subroutine is used to report on the presence, direction, and type of the grid
that will be drawn within the frame of graphs or charts produced by subsequent invocations
of the BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH,
MANYFGRAPH, DATAGRAPH, MANYDATAGRAPH subroutines.
The ASKGRID subroutine reports the presence and direction of the grid lines by returning
one of the following values in style$:

Available Grid Directions
Style$ value Description

“” No grid lines
“H” Horizontal grid lines only
“V” Vertical grid lines only
“HV” Both horizontal and vertical grid lines

The returned value of style$ may also include instructions that indicate the type of grid
lines that will be drawn. These instructions take the form of special characters appended to
the letter (or letters) in the returned value of style$. If no such modifiers are present, grid
lines will be drawn as solid lines. The following modifiers are possible:

True BASIC Language System9

Available Grid Type Modifiers
Modifier Description

- Dashed grid lines
. Dotted grid lines
-. Dash-dotted grid lines

For example, a value of “H-.V”would indicate that dash-dotted grid lines will be used in the
horizontal direction and solid grid lines will be used in the vertical direction.
By default, the grid lines are turned off. You can use the SETGRID subroutine to change the
current grid setting.

Example: None
Exceptions: None
See also: SETGRID, BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM,

FGRAPH, MANYFGRAPH, DATAGRAPH, MANYDATAGRAPH

ASKHLABEL Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKHLABEL (strvar)
Usage: CALL ASKHLABEL (hlabel$)

Summary: Reports the value of the horizontal label which will be displayed for subsequently drawn
charts and graphs.

Details: The ASKHLABEL subroutine is used to report the value of the horizontal label that will be
used to label the frame of graphs or charts drawn by subsequent invocations of the
BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH,
MANYFGRAPH, DATAGRAPH, and MANYDATAGRAPH subroutines.
The ASKHLABEL subroutine returns the value of the horizontal label as hlabel$.
You may report the current values for the title, the horizontal label, and the vertical label
simultaneously using the ASKTEXT subroutine. Use the ASKVLABEL and ASKTITLE
subroutines to report the values of the vertical label and the title, respectively.
You may use the SETHLABEL subroutine to set the current value of the horizontal label.

Example: None
Exceptions: None
See also: SETHLABEL, ASKTEXT, ASKVLABEL, ASKTITLE, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

ASKLAYOUT Subroutine
Library: BGLIB.TRC
Syntax: CALL ASKLAYOUT (strvar)
Usage: CALL ASKLAYOUT (direction$)

Summary: Reports the direction of the bars within subsequently drawn bar charts and histograms.
Details: The ASKLAYOUT subroutine is used to report the direction of the bars within each bar chart

or histogram produced by a subsequent invocation of the MULTIBAR or MULTIHIST
subroutine.
The ASKLAYOUT subroutine allows you to report the direction in which the bars will be
drawn by returning one of the following values in direction$:

Graphics Libraries 10

Types of Bar Layouts
Type$ value Description

“HORIZONTAL” Bars oriented horizontally
“VERTICAL” Bars oriented vertically

By default, the bar direction is set to a value of “VERTICAL”. You can use the
SETLAYOUT subroutine to change the current bar layout setting.

Example: None
Exceptions: None
See also: SETLAYOUT, BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST

ASKLS Subroutine
Library: SGLIB.TRC
Syntax: CALL ASKLS (numvar)
Usage: CALL ASKLS (flag)

Summary: Reports whether least-squares linear fits will be drawn automatically for subsequent data
plots.

Details: The ASKLS subroutine is used to report whether or not least-squares linear fits will be drawn
automatically for subsequent data plots produced by the DATAGRAPH,
ADDDATAGRAPH, and MANYDATAGRAPH subroutines.
If the ASKLS subroutine returns flag with a value of 1, subsequent calls to the
DATAGRAPH, ADDDATAGRAPH, and MANYDATAGRAPH subroutines will
automatically display the graph’s least-squares linear fit. If it returns flagwith a value of 0,
they won’t.
You can use the SETLS subroutine to control whether least-squares linear fitting is currently
active or inactive.

Example: None
Exceptions: None
See also: SETLS, ADDLSGRAPH, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH

ASKTEXT Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKTEXT (strvar, strvar, strvar)
Usage: CALL ASKTEXT (title$, hlabel$, vlabel$)

Summary: Reports the values of the title, horizontal label, and vertical label that will be displayed for
subsequently drawn charts and graphs.

Details: The ASKTEXT subroutine is used to report the values of the title, horizontal label, and vertical
label that will be used to label the frame of graphs or charts drawn by subsequent invocations of
the BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH,
MANYFGRAPH, DATAGRAPH, and MANYDATAGRAPH subroutines. (These values also
apply to the PIECHART subroutine, but only the value of the title is used.)
The ASKTEXT subroutine returns the value of the title as title$, the value of the
horizontal label as hlabel$, and the value of the vertical label as vlabel$.
You may report the value of the title, the horizontal label, or the vertical label individually
using the ASKTITLE, ASKHLABEL, or ASKVLABEL subroutines, respectively.
You may use the SETTEXT subroutine to set the current values of the title, the horizontal
label, and the vertical label.

Example: None
Exceptions: None

True BASIC Language System11

See also: SETTEXT, ASKTITLE, ASKHLABEL, ASKVLABEL, BARCHART, MULTIBAR,
HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

ASKTITLE Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKTITLE (strvar)
Usage: CALL ASKTITLE (title$)

Summary: Reports the value of the title which will be displayed for subsequently drawn charts and
graphs.

Details: The ASKTITLE subroutine is used to report the value of the title that will be used to label the
frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH, and PIECHART subroutines.
The ASKTITLE subroutine returns the value of the title as title$.
You may report the current values for the title, the horizontal label, and the vertical label
simultaneously using the ASKTEXT subroutine. Use the ASKHLABEL and ASKVLABEL
subroutines to report the values of the horizontal label and the vertical label, respectively.
You may use the SETTITLE subroutine to set the current value of the title.

Example: None
Exceptions: None
See also: SETTITLE, ASKTEXT, ASKHLABEL, ASKVLABEL, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

ASKVLABEL Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKVLABEL (strvar)
Usage: CALL ASKVLABEL (vlabel$)

Summary: Reports the value of the vertical label which will be displayed for subsequently drawn charts
and graphs.

Details: The ASKVLABEL subroutine is used to report the value of the vertical label that will be used
to label the frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, and MANYDATAGRAPH subroutines.
The ASKVLABEL subroutine returns the value of the vertical label as vlabel$.
You may report the current values for the title, the horizontal label, and the vertical label
simultaneously using the ASKTEXT subroutine. Use the ASKHLABEL and ASKTITLE
subroutines to report the values of the horizontal label and the title, respectively.
You may use the SETVLABEL subroutine to set the current value of the vertical label.

Example: None
Exceptions: None
See also: SETVLABEL, ASKTEXT, ASKHLABEL, ASKTITLE, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

Graphics Libraries 12

BALANCEBARS Subroutine
Library: BGLIB.TRC
Syntax: CALL BALANCEBARS (numarrarg, numarrarg, strarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL BARCHART (d1(,), d2(,), units$(), legends$(), colors$)

Summary: Draws a balanced bar chart, setting off d1(,) values on one side of the axis versus d2(,) values
on the other.

Details: The BALANCEBARS subroutine draws a balanced bar chart in the current logical window,
setting off d1(,) values on one side of the axis versus d2(,) values on the other. This is not a
particularly common kind of bar chart, but is useful for comparing income versus expenses,
etc.
Simply put, it draws a multi-bar chart of d1(,) on the top or right side of the axis, and the same
style chart of d2(,) on the bottom or left side of the axis. Neither array may contain any
negative values.
The data arrays d1 and d2 are as in the MULTIBAR subroutine, and the units$ and legends$
arrays label both sets of data.
The units$ array must contain the same number of items as the data array. Each element
of the units$ array will be used as a label for the bar associated with the corresponding
element of the data array.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data.
If colors$ contains four colors, the third color will be used for drawing bars representing
positive values, and the fourth color will be used for drawing bars representing negative
values. If colors$ contains more than four colors, the extra colors will not be used. If
colors$ contains fewer than four colors, the last color specified will be used to fill out the
remaining colors. If the value of colors$ is the null string, then the current foreground color
is used for the entire graph.
By default, the BALANCEBARS subroutine draws the graph with the bars oriented
vertically. The y-axis is automatically scaled to fit the data, and the bars are evenly spaced
along the x-axis. The labels will appear beneath each bar.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the bars will be evenly spaced along
the y-axis. The labels will appear to the left of each bar.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

True BASIC Language System13

Example: The following program, BGBar3.TRU, can be found in the directory TBDEMOS:
! BGBar3 Show a simple balanced bar chart of products,
! with income/expense for last year and this year.

LIBRARY “..\TBLibs\BGLib.trc”

DIM income(4,2), expense(4,2), units$(4), legend$(2)

MAT READ income, expense, units$, legend$
DATA 43,34, 54,63, 33,12, 62,92 ! Incomes
DATA 39,24, 49,52, 17,13, 43,57 ! Expenses
DATA Faucets, Swings, Hoses, Flamingos ! Units
DATA Last Year, This Year ! Legend

CALL SetBarType (“over”)
CALL SetText (“Income/Expense: Last 2 Years”, “”, “Thousands”)
LET colors$ = “yellow yellow red green”
CALL BalanceBars (income, expense, units$, legend$, colors$)

GET KEY key

END

produces a bar chart representing quarterly profits.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for BarChart.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also SETBARTYPE, SETTEXT

BARCHART Subroutine
Library: BGLIB.TRC
Syntax: CALL BARCHART (numarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL BARCHART (data(), units$(), colors$)

Summary: Draws a simple bar chart of the specified data values, labeled with the specified units and
drawn in the specified color scheme.

Details: The BARCHART subroutine draws a bar chart in the current logical window.
The bar chart will contain one bar for each element of the data array, and the height of each
bar will be determined by the value of its corresponding element in the data array.
The units$ array must contain the same number of items as the data array. Each element
of the units$ array will be used as a label for the bar associated with the corresponding
element of the data array.
The value of colors$ determines the color scheme that will be used to draw the graph. It

Graphics Libraries 14

generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data.
If colors$ contains four colors, the third color will be used for drawing bars representing
positive values, and the fourth color will be used for drawing bars representing negative
values. If colors$ contains more than four colors, the extra colors will not be used. If
colors$ contains fewer than four colors, the last color specified will be used to fill out the
remaining colors. If the value of colors$ is the null string, then the current foreground color
is used for the entire graph.
By default, the BARCHART subroutine draws the graph with the bars oriented vertically.
The y-axis is automatically scaled to fit the data, and the bars are evenly spaced along the x-
axis. The labels will appear beneath each bar.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the bars will be evenly spaced along
the y-axis. The labels will appear to the left of each bar.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGBar1.TRU, can be found in the directory TBDEMOS:
! BGBar1 Draw a simple bar chart.

LIBRARY “..\TBLibs\BGLib.trc”

DIM units$(4), data(4)

MAT READ units$, data
DATA Q-1, Q-2, Q-3, Q-4
DATA 498, 322, 395, 430

CALL SetText (“Quarterly Profits”, “Quarter”, “Thousands”)
CALL BarChart (data, units$, “white cyan magenta”)

GET KEY key

END

produces a bar chart representing quarterly profits.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for BarChart.
117 Can’t handle this graph range: low to high.

True BASIC Language System15

11008 No such color: color.
See also: SETTEXT, SETLAYOUT, MULTIBAR, HISTOGRAM

DATAGRAPH Subroutine
Library: SGLIB.TRC
Syntax: CALL DATAGRAPH (numarrarg,, numarrarg, numex, numex, strex)

numarrarg:: numarr
numarr bowlegs

Usage: CALL DATAGRAPH (x(), y(), pstyle, lstyle, colors$)

Summary: Draws a simple line graph of a set of data points.
Details: The DATAGRAPH subroutine draws a line graph of the set of data points whose coordinates

are represented by the values of the x and y arrays.
The x array contains the points’ x-coordinates, and the y array contains their y-coordinates.
The coordinates in the two arrays are matched according to their subscripts; that is, the
elements with subscripts of 1 within both arrays are interpreted as the coordinates of a single
point, as are the elements with subscripts of 2, and so on. Thus, the x and y arrays must have
the same upper and lower bounds, or an error will be generated.
Both the x- and y-axes will be scaled automatically by the DATAGRAPH subroutine.
The value of pstyle determines the point style that will be used to draw the data points
which comprise the graph. The allowable values for pstyle are summarized in the following
table:

Available Point Styles
Value of pstyle Resulting Point

0 No point (display line only)
1 Dot
2 Plus sign
3 Asterisk
4 Circle
5 X
6 Box
7 Up triangle
8 Down triangle
9 Diamond
10 Solid Box
11 Solid up triangle
12 Solid down triangle
13 Solid diamond

The value of lstyle determines the line style that will be used to connect the data points
which comprise the graph. The allowable values for lstyle are summarized in the following
table:

Available Line Styles
Value of lstyle Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The graph is actually composed of a series of line segments connecting the data points. You can
suppress the display of the data points by passing a value of 0 in pstyle, or you can suppress

Graphics Libraries 16

the display of the connecting line segments by passing a value of 0 in lstyle.
Note that the DATAGRAPH subroutine draws and connects the points in the order in which
they are stored in the x and y arrays. If your points are not stored in left to right order, you
may wish to use the SORTPOINTS subroutine to order the points before passing them to the
DATAGRAPH subroutine.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of three color names (in any combination of uppercase or lowercase letters)
separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$ will be used for the graph’s title. The
second color will be used for the graph’s frame, including the horizontal and vertical labels.
And the third color will be used for the graph’s data.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, SGData1.TRU, can be found in the directory TBDEMOS:
! SGData1 Average fuel economy for all cars in USA. Source: EPA.

LIBRARY “..\TBLibs\SGLib.trc”

DIM year(36), mpg(36)

MAT READ year, mpg

DATA 1940, 1945, 1950, 1951, 1952, 1953, 1954, 1955
DATA 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965
DATA 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975
DATA 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983
DATA 15.29,15.03,14.95,14.99,14.67,14.70,14.58,14.53
DATA 14.36,14.40,14.30,14.30,14.28,14.38,14.37,14.26,14.25,14.07
DATA 14.00,13.93,13.79,13.63,13.57,13.57,13.49,13.10,13.43,13.53
DATA 13.72,13.94,14.06,14.29,15.15,15.54,16.25,16.70

CALL SetText (“Fuel Economy - All Cars”, “”, “MPG”)
CALL DataGraph (year, mpg, 9, 1, “red green yellow”)

GET KEY key

END

produces a graph of the average fuel economy of all new cars produced in each year from
1940 through 1983.

Exceptions: 100 Graph’s title is too wide.
102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
110 Data arrays have different bounds in DataGraph

True BASIC Language System17

117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, ADDDATAGRAPH, MANYDATAGRAPH, FGRAPH

FGRAPH Subroutine
Library: SGFUNC.TRC, SGLIB.TRC
Syntax: CALL FGRAPH (numex, numex, numex, strex)
Usage: CALL FGRAPH (startx, endx, style, colors$)

Summary: Draws a simple line graph of an externally defined function.
Details: The FGRAPH subroutine draws a line graph of the function F(x) over the domain startx

to endx.
The function F(x) must be defined external to your main program. That is, it must be defined
using a DEF statement or a DEF structure which appears after the END statement. The
function you define must be defined over the entire domain specified. If it is not, the FGRAPH
subroutine may generate an error or draw the graph incorrectly.
The y-axis will be scaled automatically by the FGRAPH subroutine.
The value of style determines the line style that will be used to connect the data points
which comprise the graph. The allowable values for style are summarized in the following
table:

Available Line Styles
Value of style Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The graph is actually composed of a series of short line segments. You can control the number
of line segments used to display a graph with the SETGRAIN subroutine. Using more line
segments creates a smoother graph, but takes longer to draw.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of three color names (in any combination of uppercase or lowercase letters)
separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, SGFunc1.TRU, can be found in the directory TBDEMOS:
! SGFunc1 Graph the function “Sin(x*x)”.

LIBRARY “..\TBLibs\SGFunc.trc”, “..\TBLibs\SGLib.trc”

CALL SetText (“Sin(x*x)”, “X Values”, “Y Values”)
CALL Fgraph (-pi, pi, 2, “white white magenta”)

Graphics Libraries 18

GET KEY key

END

DEF F(x) = Sin(x*x)

produces a graph of the function Sin(x2).
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETGRAIN, ADDFGRAPH, MANYFGRAPH

HISTOGRAM Subroutine
Library: BGLIB.TRC
Syntax: CALL HISTOGRAM (numarrarg, strex)
numarrarg:: numarr

numarr bowlegs
Usage: CALL HISTOGRAM (data(), colors$)

Summary: Draws a simple histogram of the specified data values in the specified color scheme.
Details: The HISTOGRAM subroutine draws a simple histogram in the current logical window.

The histogram automatically “groups” similar values from the data array and draws one bar
per group. The height of each bar reflects the number of members in the associated group.
For instance, if you use the HISTOGRAM subroutine to chart students’ grades, it might
group all those students with grades in the range 80 through 84 and draw a single bar to
represent this group of students. The bars will be labeled “75>”, “80>”, “85>”, and so forth. This
means that the first bar represents the group of students whose grades are greater than or
equal to 75 but less than 80. The second bar represents the group with grades greater than or
equal to 80 but less than 85, and so forth.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data.
If colors$ contains more than three colors, the extra colors will not be used. If colors$
contains fewer than three colors, the last color specified will be used to fill out the remaining
colors. If the value of colors$ is the null string, then the current foreground color is used for
the entire graph.

True BASIC Language System19

By default, the HISTOGRAM subroutine draws the graph with the bars oriented vertically.
The y-axis is automatically scaled to fit the data, and the bars are evenly spaced along the x-
axis. The labels will appear beneath each bar.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the bars will be evenly spaced along
the y-axis. The labels will appear to the left of each bar.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGHisto1.TRU, can be found in the directory TBDEMOS:
! BGHisto1 Draw a simple histogram.

LIBRARY “..\TBLibs\BGLib.trc”

DIM data(30)

MAT READ data
DATA 65, 70, 93, 85, 83, 68, 77, 92, 83, 85
DATA 89, 72, 75, 81, 80, 84, 73, 79, 78, 84
DATA 80, 79, 72, 91, 85, 82, 79, 76, 74, 79

CALL SetText (“Final Grades”, “”, “# of Students”)
CALL Histogram (data, “white cyan magenta”)

GET KEY key

END

produces a histogram of student grades.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for Histogram.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETLAYOUT, BARCHART, MULTIHIST

IBEAM Subroutine
Library: BGLIB.TRC
Syntax: CALL IBEAM (numarrarg, numarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL IBEAM (high(), low(), units$(), colors$)

Summary: Draws an “I-beam” chart of the specified data values, labeled with the specified units and
drawn in the specified color scheme.

Graphics Libraries 20

Details: The IBEAM subroutine draws an “I-beam” chart in the current logical window.
The I-beam chart displays ranges of values and will contain one I-beam for each element of the
high array. The height and position of each I-beam will be determined by the difference
between corresponding elements of the high and low arrays. For this reason, the high and
low arrays must contain the same number of elements.
The units$ array must contain the same number of items as the high and low arrays. Each
element of the units$ array will be used as a label for the I-beam associated with the
corresponding elements of the high and low arrays.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data.
If colors$ contains more than three colors, the extra colors will not be used. If colors$
contains fewer than three colors, the last color specified will be used to fill out the remaining
colors. If the value of colors$ is the null string, then the current foreground color is used for
the entire graph.
By default, the IBEAM subroutine draws the graph with the I-beams oriented vertically. The
y-axis is automatically scaled to fit the data, and the I-beams are evenly spaced along the x-
axis. The labels will appear beneath each I-beam.
You can change the graph’s orientation so that the I-beams are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the I-beams will be evenly spaced
along the y-axis. The labels will appear to the left of each I-beam.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGIBeam.TRU, can be found in the directory TBDEMOS:
! BGIBeam Show I-beam chart of stock values.

LIBRARY “..\TBLibs\BGLib.trc”

DIM low(5), high(5), units$(5)

MAT READ low, high, units$
DATA 33.1, 33.2, 34.1, 34.1, 33.1
DATA 34.5, 33.9, 36.2, 34.7, 33.9
DATA Mon, Tues, Wed, Thurs, Fri

CALL SetText (“Stock Values”, “Day”, “Price”)
CALL Ibeam (low, high, units$, “magenta white white”)

GET KEY key

END

produces an I-beam chart representing the daily ranges of a stock’s value over a one week
period.

Exceptions: 100 Graph’s title is too wide.

True BASIC Language System21

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for IBeam.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETLAYOUT

MANYDATAGRAPH Subroutine
Library: SGLIB.TRC
Syntax: CALL MANYDATAGRAPH (numarrarg,, numarrarg, numex, strarrarg, strex)
strarrarg:: strarr

strarr bowlegs
numarrarg:: numarr

numarr bowlegs
Usage: CALL MANYDATAGRAPH (x(,), y(,), connect, legends$(), colors$)

Summary: Draws multiple line graphs of a set of data points.
Details: The MANYDATAGRAPH subroutine draws several line graphs within a single frame. Each

graph is based upon a set of data points whose coordinates are represented by the values of
corresponding rows of the x and y arrays. For example, the statement:
DIM x(3,15), y(3,15)

would create the x and y matrices for a graph with three lines, each composed of fifteen data
points.
Each row of the xmatrix contains the x-coordinates for the points of a single line graph, and the
corresponding row of the y matrix contains their y-coordinates. The coordinates in the separate
rows of the two matrices are matched according to their second subscripts, or column numbers;
that is, the elements with second subscripts of 1 within corresponding rows of both matrices are
interpreted as the coordinates of a single point, as are the elements with second subscripts of 2,
and so on. Thus, the x and y matrices must have the same upper and lower bounds in both
dimensions, or an error will be generated.
Both the x- and y-axes will be scaled automatically by the MANYDATAGRAPH subroutine.
Each graph will use a different point style. These point styles will be drawn in order from the
available point styles (with point styles 0 and 1 excepted). When the possible point styles are
exhausted, they will be reused from the beginning of the list. For an ordered list of the
available point styles, see the discussion of the DATAGRAPH subroutine.
If the value of connect is not equal to 0, the data points of each line graph will be connected
by a line segment.
Note that the MANYDATAGRAPH subroutine draws and connects the points in the order
in which they are stored in the x and y matrices. If your points are not stored in left to right
order, you may wish to use the SORTPOINTS2 subroutine to order the points before
passing them to the MANYDATAGRAPH subroutine.
The MANYDATAGRAPH subroutine creates a legend just below the graph’s title to assist
the user in identifying the various lines. Each label for the legend will be taken from the
corresponding element of the legends$ array. Thus, the number of rows in the x and y
arrays must be equal to the number of elements in the legends$ array.

Graphics Libraries 22

If you would like to omit the legend entirely, then pass a legends$ array which contains no
elements.
The value of colors$ determines the color scheme that will be used to draw the graphs. It
generally consists of at least three color names (in any combination of uppercase or
lowercase letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
remaining colors will be used for the graphs’ data.
If the number of graphs exceeds the number of colors provided for the graphs’ data, the
MANYDATAGRAPH subroutine uses line styles to help distinguish the lines of the graphs.
First, it draws solid lines in the colors specified. Then it switches to dashed, dotted, and finally
dash-dotted lines. Thus, if you graph five functions with the MANYFGRAPH subroutine
using the color scheme “red yellow green blue” you will get (in order): a solid green
line, a solid blue line, a dashed green line, a dashed blue line, and a dotted green line.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, SGData3.TRU, can be found in the directory TBDEMOS:
! SGData3 Display multiple sets of data points.

LIBRARY “..\TBLibs\SGLib.trc”

DIM x(5,10), y(5,10), legends$(5)

MAT READ legends$
DATA A, B, C, D, E

FOR i = 1 to 5
FOR j = 1 to 10

LET x(i,j) = j
LET y(i,j) = (i*i*j) ^ 2

NEXT j
NEXT i

CALL SetText (“Multiple Sets of Data”, “Signal”, “Reflection”)
CALL SetGraphType (“logy”)
LET colors$ = “white white magenta cyan”
CALL ManyDataGraph (x, y, 1, legends$, colors$)

GET KEY key

END

produces a graph several related data sets.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.

True BASIC Language System23

109 Horizontal marks aren’t wide enough—use SetHMarkLen.
110 Data arrays have different bounds in DataGraph
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, ADDDATAGRAPH, MANYDATAGRAPH, FGRAPH

MANYFGRAPH Subroutine
Library: SGFUNC.TRC, SGLIB.TRC
Syntax: CALL MANYFGRAPH (numex, numex, numex, strarr, strex)
Usage: CALL MANYFGRAPH (startx, endx, n, legends$(), colors$)

Summary: Draws multiple line graphs based upon an externally defined function.
Details: The MANYFGRAPH subroutine draws several line graphs within a single frame. All of the

functions drawn are based upon the definition of the function F(x) over the domain startx to
endx. The number of graphs which are to be drawn is indicated by the value of n.
The function F(x) must be defined external to your main program. That is, it must be defined
using a DEF statement or a DEF structure which appears after the END statement. The
functions you define must be defined over the entire domain specified. If they are not, the
MANYFGRAPH subroutine may generate an error or draw one or more of the graphs
incorrectly.
The MANYFGRAPH subroutine uses the public variable fnum to inform your defined function
F(x) which value to compute. The MANYFGRAPH subroutine sets the value of fnum to 1 when
plotting the first function, 2 when plotting the second function, and so on until the number of
functions specified by n have been plotted. Your defined function F(x) should contain a PUBLIC
statement listing fnum so that the MANYFGRAPH subroutine can communicate with it
properly. (See the following example for an illustration.)
The y-axis will be scaled automatically by the MANYFGRAPH subroutine.
The MANYFGRAPH subroutine creates a legend just below the graph’s title to assist the
user in identifying the various lines. Each label for the legend will be taken from the
corresponding element of the legends$ array. Thus, the value of n must be equal to the
number of elements in the legends$ array.
If you would like to omit the legend entirely, then pass a legends$ array which contains no
elements.
The value of colors$ determines the color scheme that will be used to draw the graphs. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$ will be used for the graph’s title. The
second color will be used for the graph’s frame, including the horizontal and vertical labels.
And the remaining colors will be used for the graphs’ data.
If the number of graphs (represented by the value of n) exceeds the number of colors
provided for the graphs’ data, the MANYFGRAPH subroutine uses line styles to help
distinguish the lines of the graphs. First, it draws solid lines in the colors specified. Then it
switches to dashed, dotted, and finally dash-dotted lines. Thus, if you graph five functions
with the MANYFGRAPH subroutine using the color scheme “red yellow green
blue” you will get (in order): a solid green line, a solid blue line, a dashed green line, a
dashed blue line, and a dotted green line.

Graphics Libraries 24

Each graph is actually composed of a series of short line segments. You can control the
number of line segments used to display the graphs with the SETGRAIN subroutine. Using
more line segments creates smoother graphs, but they take longer to draw.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, SGFunc3.TRU, can be found in the directory TBDEMOS:
! SGFunc3 Graph many functions.

LIBRARY “..\TBLibs\SGFunc.trc”, “..\TBLibs\SGLib.trc”

DIM legend$(3)

MAT READ legend$
DATA #1, #2, #3

CALL SetText (“Various Waves”, “X Values”, “Y Values”)
LET colors$ = “white white cyan magenta white”
CALL ManyFgraph (-pi, 2*pi, 3, legend$, colors$)

GET KEY key

END

DEF F(x)
PUBLIC fnum
SELECT CASE fnum
CASE 1

LET F = Sin(x)
CASE 2

LET F = 1.5 * Cos(x*2)
CASE 3

LET F = .5 * Cos(x+pi/2)
END SELECT

END DEF

produces a single graph of three different functions. Notice the use of the public variable
fnum to define three distinct behaviors for the single function F(x).

Exceptions: 100 Graph’s title is too wide.
102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
112 Data and legend arrays don’t match for ManyFGraph.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETGRAIN, FGRAPH, ADDFGRAPH

True BASIC Language System25

MULTIBAR Subroutine
Library: BGLIB.TRC
Syntax: CALL MULTIBAR (numarrarg, strarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL MULTIBAR (data(), units$(), legends$(), colors$)

Summary: Draws a multi-bar chart of the specified data values, labeled with the specified units and
legend and drawn in the specified color scheme.

Details: The MULTIBAR subroutine draws a multi-bar chart in the current logical window. In a
multi-bar chart, each unit is represented by a cluster of bars. To produce simple bar charts
with only one bar per unit, use the BARCHART subroutine.
The multi-bar chart will contain one cluster of bars for each row of the data array, and each
cluster will contain one bar for each column of the data array. The height of each bar will be
determined by the value of the appropriate element in the data array.
For example, if the data array contains five rows and three columns, the multi-bar chart will
consist of five clusters, and each cluster will contain three bars.
The units$ array must contain the same number of items as the first dimension of the data
array. Each element of the units$ array will be used as a label for the cluster of bars
associated with the corresponding row of the data array.
The legends$ array generally must contain the same number of items as the second
dimension of the data array. The legends$ array will be used to add a legend to the graph
(positioned between the title and the graph itself) which will allow the user to identify the
individual bars within the clusters. Each element of the legends$ array provides the label
for the corresponding column of the data array. To suppress the appearance of such a legend,
pass a legends$ array which contains zero elements.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels and the
legend text. And the third color will be used for the graph’s data.
If colors$ contains more than three colors, the third and following colors will be used in
repeating sequence for drawing the bars in each cluster. If colors$ contains fewer than
three colors, the last color specified will be used to fill out the remaining colors. If the value of
colors$ is the null string, then the current foreground color is used for the entire graph.
By default, the MULTIBAR subroutine draws the graph with the bars oriented vertically. The
y-axis is automatically scaled to fit the data, and the clusters are evenly spaced along the x-axis.
The labels stored in the units$ array will appear beneath each cluster.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the clusters will be evenly spaced
along the y-axis. The labels stored in the units$ array will appear to the left of each cluster.
By default, the MULTIBAR subroutine draws the bars in each cluster side-by-side; however,

Graphics Libraries 26

they can also be drawn stacked or overlapped. Invoke the SETBARTYPE subroutine with an
appropriate argument prior to invoking the MULTIBAR subroutine in order to determine the
arrangement of the bars.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGBar2.TRU, can be found in the directory TBDEMOS:
! BGBar2 Draw a simple multi-bar graph.

! Last year’s sales in yellow; this year’s in green.

LIBRARY “..\TBLibs\BGLib.trc”

DIM data(4,2), units$(4), legend$(2)

MAT READ data, units$, legend$
DATA 103,106, 47,68, 112,115, 87,94
DATA Books, Software, Cards, Candy
DATA Last Year, This Year

CALL SetBarType (“side”)
CALL SetLayout (“h”)
CALL SetGrid (“v”)
CALL SetText (“Sales: Last Year and Current”,
“Thousands”,”Category”)

CALL MultiBar (data, units$, legend$, “red red yellow green”)

GET KEY key

END

produces a horizontal multi-bar chart representing a comparison of annual sales.
Exceptions: 100 Graph’s title is too wide.

101 Graph’s legend is too wide.
102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for MultiBar.
112 Data and legend arrays don’t match for MultiBar.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETLAYOUT, SETBARTYPE, BARCHART, HISTOGRAM

MULTIHIST Subroutine
Library: BGLIB.TRC
Syntax: CALL MULTIHIST (numarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL MULTIHIST (data(), legends$(), colors$)

True BASIC Language System27

Summary: Draws multiple histograms of the specified data values in a single frame in the specified
color scheme.

Details: The MULTIHIST subroutine draws multiple histograms in the current logical window. All
histograms drawn by the MULTIHIST subroutine are overlaid in the same frame, with the
bars for similar data values forming “clusters.” To produce a simple histogram with only one
bar per unit, use the HISTOGRAM subroutine.
Each histogram automatically “groups” similar values from a single row of the data array
and draws one bar per group. Thus, each cluster will contain one bar for each row of the data
array. The height of each bar reflects the number of members in the associated group.
For instance, if you use the HISTOGRAM subroutine to chart students’ grades for two
different classes, it might group all those students in the first class with grades in the range
80 through 84 and draw a single bar to represent this group of students. When the histogram
for the second class was compiled, a bar representing the number of students in that class with
grades in the range 80 through 84 would be added to the cluster containing the previous bar.
The resulting clusters will be labeled “75>”, “80>”, “85>”, and so forth. This means that the
first cluster will contain one bar representing the group of students in the first class whose
grades are greater than or equal to 75 but less than 80 and another bar representing students
from the second class whose grades fall in the same range. The second cluster will contain bars
representing the groups with grades greater than or equal to 80 but less than 85, and so forth.
The legends$ array generally must contain the same number of items as the second
dimension of the data array. The legends$ array will be used to add a legend to the graph
(positioned between the title and the graph itself) which will allow the user to identify the
individual bars within the clusters. Each element of the legends$ array provides a label for
one of the histograms produced from the data array. To suppress the appearance of such a
legend, pass a legends$ array which contains zero elements.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels and the
legend text. And the third color will be used for the graph’s data.
If colors$ contains more than three colors, the third and following colors will be used in
repeating sequence for drawing the bars in each cluster. If colors$ contains fewer than
three colors, the last color specified will be used to fill out the remaining colors. If the value of
colors$ is the null string, then the current foreground color is used for the entire graph.
By default, the MULTIHIST subroutine draws the graph with the bars oriented vertically.
The y-axis is automatically scaled to fit the data, and the clusters are evenly spaced along the
x-axis. The cluster labels will appear beneath each cluster.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the clusters will be evenly spaced
along the y-axis. The cluster labels will appear to the left of each cluster.
By default, the MULTIHIST subroutine draws the bars in each cluster side-by-side; however,
they can also be drawn stacked or overlapped. Invoke the SETBARTYPE subroutine with an
appropriate argument prior to invoking the MULTIHIST subroutine in order to determine
the arrangement of the bars.

Graphics Libraries 28

The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGHisto2.TRU, can be found in the directory TBDEMOS:
! BGHisto2 Draw a multiple histogram.

LIBRARY “..\TBLibs\BGLib.trc”

DIM data(2,30), legend$(2)

MAT READ data, legend$
DATA 65, 70, 93, 85, 83, 68, 77, 92, 83, 85
DATA 89, 72, 75, 81, 80, 84, 73, 79, 78, 84
DATA 80, 79, 72, 91, 85, 82, 79, 76, 74, 79
DATA 75, 60, 83, 75, 73, 88, 67, 82, 73, 75
DATA 79, 62, 65, 71, 70, 74, 63, 69, 68, 74
DATA 70, 69, 62, 81, 75, 72, 69, 66, 64, 69

DATA Day, Evening

CALL SetBarType (“over”)
CALL SetText (“Final Grades”, “”, “# of Students”)
CALL MultiHist (data, legend$, “white cyan magenta cyan”)

GET KEY key

END

produces a horizontal multi-bar chart representing a comparison of annual sales.
Exceptions: 100 Graph’s title is too wide.

101 Graph’s legend is too wide.
102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for MultiHist.
112 Data and legend arrays don’t match for MultiHist.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETLAYOUT, SETBARTYPE, HISTOGRAM, BARCHART

PIECHART Subroutine
Library: BGLIB.TRC
Syntax: CALL PIECHART (numarrarg, strarrarg, strex, numex, numex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL PIECHART (data(), units$(), colors$, wedge, percent)

Summary: Draws a pie chart of the specified data values, labeled with the specified units and drawn in
the specified color scheme.

Details: The PIECHART subroutine draws a pie chart in the current logical window.

True BASIC Language System29

A pie chart is displayed as a circle divided into wedges. The pie chart will contain one wedge
for each element of the data array, and the proportion of the circle’s area allocated to each
wedge will be determined by the proportional relationship of the value of its corresponding
element in the data array to the sum of the elements of the data array.
The wedge associated with the first element of the data array is placed at the top of the pie,
and the remaining items of the data array are arranged in order clockwise around the
remaining portion of the pie.
The units$ array must contain the same number of items as the data array. Each element
of the units$ array will be used as a label for the wedge of the pie associated with the
corresponding element of the data array. Each label will be connected to its associated wedge
by a line. If an element of the units$ array has a value of the null string, the associated
wedge will have neither a label nor a connecting line.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least four color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame. And the remaining colors will be used repeatedly for
the wedges of the pie.
If the value of wedge fall between the lower and upper bounds of the data array, inclusive,
the wedge of the pie associated with the element of data whose index is represented by the
value of wedgewill be exploded out of the pie. That is, it will be drawn slightly separated from
the rest of the pie in order to draw the user’s attention. If the value of wedge falls outside this
range, no wedge will be exploded out of the pie.
If the value of percent is non-zero, each wedge will be labeled not only with the
corresponding element of the units$ array, but also with the percentage of the total which it
represents. If the value of percent is 0, the wedges will be labeled only with the elements of
the units$ array. Note that the percentages are rounded before being displayed. Therefore,
it is not guaranteed that they will add up to exactly 100%.

Example: The following program, BGPie.TRU, can be found in the directory TBDEMOS:
! BGPie Draw a simple pie chart.

! Highlight hammers, and show percentages.

LIBRARY “..\TBLibs\BGLib.trc”

DIM data(5), units$(5)

MAT READ data, units$
DATA 120, 34, 87, 65, 21
DATA Nails, Hammers, Saws, Pliers, Awls

CALL SetTitle (“Honest Boy (tm) Product Income”)
CALL PieChart (data, units$, “yellow green red”, 2, 1)

GET KEY key

END

produces a pie chart representing income by product, highlighting hammers and displaying
percentages with each label.

Graphics Libraries 30

Exceptions: 100 Graph’s title is too wide.
106 Need greater width for graph.
107 Need greater height for graph.
111 Data and unit arrays don’t match for PieChart.
11008 No such color: color.

See also: SETTITLE

SETANGLE Subroutine
Library: SGLIB.TRC
Syntax: CALL SETANGLE (strex)
Usage: CALL SETANGLE (measure$)

Summary: Controls the manner in which subsequent polar graphs drawn by the various data and
function plotting subroutines will interpret angle measurements.

Details: The SETANGLE subroutine is used to control the manner in which subsequent data and
function polar plots produced by the DATAGRAPH, ADDDATAGRAPH,
MANYDATAGRAPH, FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines will
interpret angle measurements.
When these subroutines interpret angle measurements, they interpret them as radians by
default. However, by passing a value of “DEG” as measure$, you can instruct them to
interpret angles in degrees. Passing a value of “RAD” to the SETANGLE subroutine will reset
the default interpretation.
Note that the SETANGLE subroutine only controls the interpretation of angular coordinates
by polar graphs. Use the SETGRAPHTYPE subroutine to cause subsequent graphs to be
drawn as polar graphs.
You can use the ASKANGLE subroutine to determine the manner in which the next data or
function polar plot will interpret angular coordinates.

Example: None
Exceptions: None
See also: ASKANGLE, SETGRAPHTYPE, DATAGRAPH, ADDDATAGRAPH,

MANYDATAGRAPH, FGRAPH, ADDFGRAPH, MANYFGRAPH

SETBARTYPE Subroutine
Library: BGLIB.TRC
Syntax: CALL SETBARTYPE (strex)
Usage: CALL SETBARTYPE (type$)

Summary: Controls the arrangement of the bars within each group of a multiple bar chart or histogram.
Details: The SETBARTYPE subroutine is used to control the arrangement of the bars within each

group of a bar chart or histogram produced by a subsequent invocation of the MULTIBAR or
MULTIHIST subroutine.
Both the MULTIBAR and MULTIHIST subroutines draw multiple bar-based graphs in a
single frame. In such a graph, bars associated with a particular unit are grouped together.
The SETBARTYPE subroutine allows you to control how the bars in each group will be
arranged by passing one of the following values in type$:

Types of Bar Groupings
Type$ value Description
“SIDE” Bars arranged side by side with space between them
“STACK” Bars stacked one above the other
“OVER” Bars arranged side by side but overlapped slightly

The value of type$ may be specified in any combination of uppercase and lowercase letters.

True BASIC Language System31

If the value of type$ does not represent one of these values, an error will be generated.
By default, the bar type is set to a value of “SIDE”. You can use the ASKBARTYPE
subroutine to report the current bar type setting.

Example: See the example programs in the desciptions of BALANCEBARS (BGBar3.TRU,) MULTIBAR
(BGBar2.TRU,) and MULTIHIST (BGHisto2.TRU) for examples of the use of this subroutine.

Exceptions: 130 No such barchart type: xxx
See also: ASKBARTYPE, MULTIBAR, MULTIHIST

SETGRAIN Subroutine
Library: SGLIB.TRC
Syntax: CALL SETGRAIN (numex)
Usage: CALL SETGRAIN (grain)

Summary: Controls the grain with which subsequent invocations of the various function plotting
subroutines will draw the line graph.

Details: The SETGRAIN subroutine controls the grain with which subsequent invocations of the
FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines will draw the line
representing the function.
These subroutines actually graph the curve of the function which they are plotting as a series
of line segments. The grain controls the number of line segments used to form each graphed
curve. The higher the value of the grain, the more line segments are used and the smoother
the resulting curve appears. However, higher grains also mean more work for the computer,
and this means that each curve takes longer to draw.
By default, the FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines use a grain
value of 64, which means that each line graph is composed of 64 individual line segments. This
value strikes a generally acceptable balance of smoothness and speed, but you can change this
value by passing the new grain value in the grain argument to the SETGRAIN subroutine.
You can use the ASKGRAIN subroutine to report the current grain value.

Example: The following program, SGGrain.TRU, can be found in the directory TBDEMOS:
! SGGrain Demonstrate SetGrain.

LIBRARY “..\TBLibs\SGFunc.trc”, “..\TBLibs\SGLib.trc”

OPEN #1: screen 0, .49, 0, 1

CALL SetGrain (10)
CALL SetTitle (“Grain = 10”)
CALL Fgraph (-pi, pi, 1, “white white magenta”)

OPEN #2: screen .5, 1, 0, 1

CALL SetGrain (100)
CALL SetTitle (“Grain = 100”)
CALL Fgraph (-pi, pi, 1, “white white magenta”)

GET KEY key

END

DEF F(x) = Sin(3*x)

demonstrates the use of the SETGRAIN subroutine by displaying two graphs of the same
function side by side — one with a grain of 10 and the other with a grain of 100.

Exceptions: None
See also: ASKGRAIN, FGRAPH, ADDFGRAPH, MANYFGRAPH

Graphics Libraries 32

SETGRAPHTYPE Subroutine
Library: SGLIB.TRC
Syntax: CALL SETGRAPHTYPE (strex)
Usage: CALL SETGRAPHTYPE (type$)

Summary: Controls the type of graph that will be drawn by subsequent data and function plotting
subroutines.

Details: The SETGRAPHTYPE subroutine is used to control the type of graph that will be produced
for subsequent data and function plots produced by the DATAGRAPH, ADDDATAGRAPH,
MANYDATAGRAPH, FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines.
The type of subsequent graphs is determined by the value passed as type$. The possible
values of type$ are:

Types of Graphs
Type$ value Description

“XY” Normal graph
“LOGX” Semi-logarithmic graph with x-axis logarithmically scaled
“LOGY” Semi-logarithmic graph with y-axis logarithmically scaled
“LOGXY” Logarithmic graph with both x- and y-axes logarithmically scaled
“POLAR” Polar graph

Logarithmic and semi-logarithmic graphs look very similar to normal graphs, but one or both
of the axes is scaled logarithmically.
Polar graphs, however, look quite different from normal graphs in that they are circular. For
this reason, the horizontal and vertical labels are ignored for polar graphs; only the title is
shown.
When a graphing routine is used to draw a polar graph, what would normally be the x- and y-
coordinates are interpreted as r and theta (or distance and angle) coordinates, respectively.
Therefore, as you might expect, the function plotting subroutines expect to find an externally
defined function in the form r = F(theta).
Polar graphs interpret angle measures as radians by default, but you can change this
interpretation using the SETANGLE subroutine.
You can use the ASKGRAPHTYPE subroutine to determine the type of graph that will be
used for the next data or function plot.

Example: See the example program in the description of MANYDATAGRAPH (SGData3.TRU) for an
example of the use of this subroutine.

Exceptions: None
See also: ASKGRAPHTYPE, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH,

FGRAPH, ADDFGRAPH, MANYFGRAPH

SETGRID Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETGRID (strex)
Usage: CALL SETGRID (style$)

Summary: Controls the presence, direction, and type of the grid within subsequently drawn charts and
graphs.

Details: The SETGRID subroutine is used to control the presence, direction, and type of the grid
within the frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH subroutines.
The SETGRID subroutine allows you to control the presence and direction of the grid lines by
passing one of the following values in style$:

True BASIC Language System33

Available Grid Directions
Style$ value Description

“” No grid lines
“H” Horizontal grid lines only
“V” Vertical grid lines only
“HV” Both horizontal and vertical grid lines

The value of style$ may be specified in any combination of uppercase and lowercase
letters. In addition, the value of style$ may include instructions that indicate the type of
grid lines that you would like drawn. By default, grid lines are drawn as solid lines.
However, you can append one of the following modifiers to a letter in the value of style$ to
specify a different line type for grid lines traveling in that direction:

Available Grid Type Modifiers
Modifier Description

- Dashed grid lines
. Dotted grid lines
-. Dash-dotted grid lines

For example, passing a value of “H-.V” for style$would result in dash-dotted grid lines in
the horizontal direction and solid grid lines in the vertical direction.
If the value of type$ does not represent a valid value, however, an error will be generated.
By default, the grid lines are turned off. You can use the ASKGRID subroutine to report the
current grid setting.

Example: See the example program in the description of MULTIBAR (BGBar2.TRU) for an example of
the use of this subroutine.

Exceptions: 113 No such SetGrid direction: xxx
See also: ASKGRID, BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM,

FGRAPH, MANYFGRAPH, DATAGRAPH, MANYDATAGRAPH

SETHLABEL Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETHLABEL (strex)
Usage: CALL SETHLABEL (hlabel$)

Summary: Sets the value of the horizontal label which will be displayed for subsequently drawn charts
and graphs.

Details: The SETHLABEL subroutine is used to set the value of the horizontal label that will be used
to label the frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, and MANYDATAGRAPH subroutines.
The SETHLABEL subroutine expects the value of the horizontal label to be passed as
hlabel$. Passing a null string effectively eliminates the horizontal label.
If the value you set for the horizontal label exceeds the available room, the graphing
subroutine which draws the next graph will generate an error.
There is no default value for the horizontal label. Therefore, if you want it to appear, you will
need to specify its values before drawing the graph.
You may specify new values for the title, the horizontal label, and the vertical label simultaneously
using the SETTEXT subroutine. Use the SETVLABEL and SETTITLE subroutines to set the
values of the vertical label and the title, respectively.
You may use the ASKHLABEL subroutine to report the current value of the horizontal label.

Example: None

Graphics Libraries 34

Exceptions: None
See also: ASKHLABEL, SETTEXT, SETVLABEL, SETTITLE, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

SETLAYOUT Subroutine
Library: BGLIB.TRC
Syntax: CALL SETLAYOUT (strex)
Usage: CALL SETLAYOUT (direction$)

Summary: Controls the direction of the bars within subsequently drawn bar charts and histograms.
Details: The SETLAYOUT subroutine is used to control the direction of the bars within each bar chart

or histogram produced by a subsequent invocation of the MULTIBAR or MULTIHIST
subroutine.
The SETLAYOUT subroutine allows you to control the direction in which the bars will be
drawn by passing one of the following values in direction$:

Types of Bar Groupings
Direction$ value Description
“HORIZONTAL” Bars oriented horizontally
“VERTICAL” Bars oriented vertically

The value of type$ may be specified in any combination of uppercase and lowercase letters.
In addition, the value of type$ may be truncated to any number of letters. That is, values of
“H” and “V” will suffice. If the value of type$ does not represent a valid value, however, an
error will be generated.
By default, the bar direction is set to a value of “VERTICAL”. You can use the ASKLAYOUT
subroutine to report the current bar layout setting.

Example: See the example program in the description of MULTIBAR (BGBar2.TRU) for an example of
the use of this subroutine.

Exceptions: 131 No such barchart direction: xxx
See also: ASKLAYOUT, BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST

SETLS Subroutine
Library: SGLIB.TRC
Syntax: CALL SETLS (numex)
Usage: CALL SETLS (flag)

Summary: Controls whether least-squares linear fits will be drawn automatically for subsequent data
plots.

Details: The SETLS subroutine is used to control whether or not least-squares linear fits will be drawn
automatically for subsequent data plots produced by the DATAGRAPH,
ADDDATAGRAPH, and MANYDATAGRAPH subroutines.
The least-squares linear fit of a data plot is the straight line which best fits the locations of the
data points. That is, the least-squares linear fit of a data plot is the straight line which
minimizes the vertical distance between itself and each of the data points which form the plot.
Such a line may be used to help predict where data points might lie in areas of the graph for
which data is unavailable.
By default, the DATAGRAPH, ADDDATAGRAPH, and MANYDATAGRAPH subroutines
draw the data plots without displaying the least-squares linear fit of the data points. However,
invoking the SETLS subroutine with the value of flag equal to 1 will instruct subsequent
invocations of these routines to add such a linear fit to each graph they draw. You may then turn
off this line fitting by invoking the SETLS subroutine again with the value of flag equal to 0.

True BASIC Language System35

When the DATAGRAPH and ADDDATAGRAPH subroutines draw a linear fit, they draw
a solid line in the data color. The MANYDATAGRAPH subroutine draws each graph’s linear
fit in the same color and line style as the lines connecting that graph’s data points.
You can use the ASKLS subroutine to determine whether least-squares linear fitting is
currently active or inactive.

Example: None
Exceptions: None
See also: ASKLS, ADDLSGRAPH, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH

SETTEXT Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETTEXT (strex, strex, strex)
Usage: CALL SETTEXT (title$, hlabel$, vlabel$)

Summary: Sets the values of the title, horizontal label, and vertical label which will be displayed for
subsequently drawn charts and graphs.

Details: The SETTEXT subroutine is used to set the values of the title, horizontal label, and vertical label
that will be used to label the frame of graphs or charts drawn by subsequent invocations of the
BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH,
MANYFGRAPH, DATAGRAPH, and MANYDATAGRAPH subroutines. (These values also
apply to the PIECHART subroutine, but only the value of the title is used.)
The SETTEXT subroutine expects the value of the title to be passed as title$, the value of
the horizontal label to be passed as hlabel$, and the value of the vertical label to be passed
as vlabel$. Passing a null string for any of these values effectively eliminates that label.
If the values you set for one or more of these labels exceeds the available room, the graphing
subroutine which draws the next graph will generate an error.
There are no default values for the title, the horizontal label, or the vertical label. Therefore,
if you want any of them to appear, you will need to specify their values before drawing the
graph.
You may specify a new value for the title, the horizontal label, or the vertical label individually
using the SETTITLE, SETHLABEL, or SETVLABEL subroutines, respectively.
You may use the ASKTEXT subroutine to report the current values of the title, the horizontal
label, and the vertical label.

Example: See almost all the example programs described in this section for examples of the use of this
subroutine.

Exceptions: None
See also: ASKTEXT, SETTITLE, SETHLABEL, SETVLABEL, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

SETTITLE Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETTITLE (strex)
Usage: CALL SETTITLE (title$)

Summary: Sets the value of the title which will be displayed for subsequently drawn charts and graphs.
Details: The SETTITLE subroutine is used to set the value of the title that will be used to label the

frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH, and PIECHART subroutines.

Graphics Libraries 36

The SETTITLE subroutine expects the value of the title to be passed as title$. Passing a
null string effectively eliminates the title.
If the value you set for the title exceeds the available room, the graphing subroutine which
draws the next graph will generate an error.
There is no default value for the title. Therefore, if you want it to appear, you will need to
specify its values before drawing the graph.
You may specify new values for the title, the horizontal label, and the vertical label
simultaneously using the SETTEXT subroutine. Use the SETHLABEL and SETVLABEL
subroutines to set the values of the horizontal label and the vertical label, respectively.
You may use the ASKTITLE subroutine to report the current value of the title.

Example: See the examples programs in the descriptions of SETGRAIN (SGGrain.TRU) and
SORTPOINTS (SGSortPt.TRU) for examples of the use of this subroutine.

Exceptions: None
See also: ASKTITLE, SETTEXT, SETHLABEL, SETVLABEL, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

SETVLABEL Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETVLABEL (strex)
Usage: CALL SETVLABEL (vlabel$)

Summary: Sets the value of the vertical label which will be displayed for subsequently drawn charts and
graphs.

Details: The SETVLABEL subroutine is used to set the value of the vertical label that will be used to
label the frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, and MANYDATAGRAPH subroutines.
The SETVLABEL subroutine expects the value of the vertical label to be passed as vlabel$.
Passing a null string effectively eliminates the vertical label.
If the value you set for the vertical label exceeds the available room, the graphing subroutine
which draws the next graph will generate an error.
There is no default value for the vertical label. Therefore, if you want it to appear, you will need
to specify its values before drawing the graph.
You may specify new values for the title, the horizontal label, and the vertical label
simultaneously using the SETTEXT subroutine. Use the SETHLABEL and SETTITLE
subroutines to set the values of the horizontal label and the title, respectively.
You may use the ASKVLABEL subroutine to report the current value of the vertical label.

Example: None
Exceptions: None
See also: ASKVLABEL, SETTEXT, SETHLABEL, SETTITLE, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

SETXSCALE Subroutine
Library: SGLIB.TRC
Syntax: CALL SETXSCALE (numex, numex)
Usage: CALL SETXSCALE (70, 170)

Summary: Turns off auto-scaling and sets the x-range for subsequent graphs.

True BASIC Language System37

Details: The SETXSCALE subroutine is used to set the value of the x-scale for subsequent graphs. It
turns off auto-scaling. The actual x-range may be slightly different as this subroutine may
round to “good-looking” numbers.

Example: None.
Exceptions: None
See also: SETYSCALE

SETYSCALE Subroutine
Library: SGLIB.TRC
Syntax: CALL SETYSCALE (numex, numex)
Usage: CALL SETYSCALE (70, 170)

Summary: Turns off auto-scaling and sets the y-range for subsequent graphs.
Details: The SETYSCALE subroutine is used to set the value of the y-scale for subsequent graphs. It

turns off auto-scaling. The actual y-range may be slightly different as this subroutine may
round to “good-looking” numbers.

Example: See the example in the description of ADDLSGRAPH (SLSquar.TRU) for an example of the
use of this subroutine.

Exceptions: None
See also: ADDLSGRAPH, SETXSCALE

SORTPOINTS Subroutine
Library: SGLIB.TRC
Syntax: CALL SORTPOINTS (numarrarg, numarrarg)

numarrarg:: numarr
numarr bowlegs

Usage: CALL SORTPOINTS (x(), y())

Summary: Sorts the one-dimensional parallel arrays x and y into ascending order by the values of stored
in the x array.

Details: The SORTPOINTS subroutine sorts the parallel, one-dimensional arrays x and y into
ascending order by the values stored in the x array.
Parallel arrays are simply arrays in which elements with identical subscripts are related.
For instance, the x and y arrays are considered to be parallel if the first element of the x array
is related to the first element of the y array, the second to the second, and so forth for each
element in both arrays. When parallel arrays are sorted, the elements in both arrays are
rearranged in an identical manner so as to maintain these relationships.
The SORTPOINTS subroutine is useful for sorting the arrays of coordinates passed into the
DATAGRAPH and ADDDATAGRAPH subroutines, but it can be used to sort any pair of
one-dimensional parallel arrays.
To sort two-dimensional arrays in a similar fashion, use the SORTPOINTS2 subroutine. To
sort a single one-dimensional array, use the SORTN subroutine.

Example: The following program, SGSortPt.TRU, can be found in the directory TBDEMOS:
! SGSortPt Display unsorted vs. sorted data points.

LIBRARY “..\TBLibs\SGLib.trc”

DIM x(10), y(10)

FOR i = 1 to 10 ! Get some unsorted data points
LET x(i) = rnd
LET y(i) = rnd

Graphics Libraries 38

NEXT i

OPEN #1: screen 0, .49, 0, 1 ! Left: unsorted points
CALL SetTitle (“Unsorted”)
CALL DataGraph (x, y, 10, 3, “”)

OPEN #2: screen .5, 1, 0, 1 ! Right: sorted points
CALL SetTitle (“Sorted”)
CALL SortPoints (x, y)
CALL DataGraph (x, y, 10, 3, “”)

GET KEY key

END

demonstrates the usefulness of using the SORTPOINTS subroutine with the
DATAGRAPH subroutine.

Exceptions: None
See also: SORTPOINTS2, DATAGRAPH, ADDDATAGRAPH, SORTN

SORTPOINTS2 Subroutine
Library: SGLIB.TRC
Syntax: CALL SORTPOINTS2 (numarrarg, numarrarg)

numarrarg:: numarr
numarr bowlegs

Usage: CALL SORTPOINTS2 (x(,), y(,))

Summary: Sorts the parallel rows of the two-dimensional arrays x and y into ascending order by the
values of stored in rows of the x array.

Details: The SORTPOINTS2 subroutine sorts the elements of the parallel rows of the two-
dimensional arrays x and y into ascending order by the values stored in the rows of the x
array.
Parallel arrays are simply arrays in which elements with identical subscripts are related.
For instance, the x and y arrays are considered to be parallel if the first element of the x array
is related to the first element of the y array, the second to the second, and so forth for each
element in both arrays. When parallel arrays are sorted, the elements in both arrays are
rearranged in an identical manner so as to maintain these relationships.
The SORTPOINTS2 subroutine treats corresponding rows of the x and y arrays as
individually parallel one-dimensional arrays. That is, the elements of each pair of
corresponding rows are rearranged independently of the other rows.
The SORTPOINTS2 subroutine is useful for sorting the arrays of coordinates passed into the
MANYDATAGRAPH subroutine, but it can be used to sort any pair of two-dimensional
arrays with parallel rows.
To sort one-dimensional arrays in a similar fashion, use the SORTPOINTS subroutine. To
sort a single one-dimensional array, use the SORTN subroutine.

Example: None
Exceptions: None
See also: SORTPOINTS, MANYDATAGRAPH, SORTN

True BASIC Language System39

	Bus_Sci_TK_Cover.pdf
	Scientific_Business_Graphics.pdf
	Graphics LIbraries

