
D2001: Leaving GOTO Behind – ©2000, True BASIC Inc. 03784-5428 USA 1

Leaving GOTO Behind
by Thomas E. Kurtz

Co-inventor of BASIC

Line numbers were part and parcel of the first BASIC developed at Dartmouth in
1964. They were used for two purposes: as targets of GOTO or GOSUB
statements, and for creating and making changes to programs. We had no
WYSIWYG screen editors in those days, and had to use teletypewriters. To change
a line, one had to type the entire line, with changes, but with the same line
number.

Over the next ten or so years, two things happed. First, screen editors came into
being, thus allowing one to change a part of a line without retyping the entire line.
Second, we learned about the perils of undisciplined use of GOTO statements and
structured programming was invented. This was about the time the term
“spaghetti code” came about to describe exceptionally bad examples of GOTO
statements. Around 1975 or so we ceased using line numbers at Dartmouth, and
what a relief.

Other personal computer versions of BASIC made line numbers optional, but
retained their use as targets of GOTO statements.

The purpose of this report is to show how easy it is, most of the time, to toss line
numbers into the dust bin. There are two steps. The first is to eliminate the use of
GOTO and GOSUB statements. When this has been done, the second step is to
remove the line numbers with a simple utility program (such as DO UNNUM,)
since line numbers no longer appear in the program proper.

Although only simple two-way choice structures and general loop structures are
needed for completely structured programming, we shall consider several types of
choice structures, several types of loop structures, and subroutines.

Simple Choice Structures
100 IF x >= 3 THEN 200
110 LET result$ = “less”
200 ...

can be handled as

IF x < 3 then LET result$ = “less”

G O T O

D2001: Leaving GOTO Behind – ©2000, True BASIC Inc. 03784-5428 USA 2

If there are two actions, as in

100 IF x >= 3 THEN 130
110 LET result$ = “less”
120 GO TO 140
130 LET result$ = “more”
140 ...

translates to

IF x < 3 then
LET result$ = “less”

ELSE
LET result$ = “more”

END IF

This has one big advantage – beside getting rid of the GOTO statements and the
line numbers – the action for the “true” condition immediately follows it. That is,
what happens when “x < 3” takes place in the next line!

We learned early on that even using GOTO statements and line numbers, careful
construction of choice structures allowed automatic indenting to reveal the
structure, as with

100 IF x >= 3 THEN 130
110 LET result$ = “less”
120 GO TO 140
130 LET result$ = “more”
140 ...

Structured choice statements allow indentation trivially!

Multiple Choice Structures
The old BASIC ON statement allowed multiple branching.

100 ON case GOTO 200, 300, 400
200 REM Here for the first case
210 GOTO 500
300 REM Here for the second case
310 GOTO 500
400 REM Here for the third case
410 GOTO 500
500 ...

can be written as

SELECT CASE case
CASE 1

REM Here for the first case
CASE 2

REM Here for the second case
CASE 3

REM Here for the third case
END SELECT
...

D2001: Leaving GOTO Behind – ©2000, True BASIC Inc. 03784-5428 USA 3

Loop Structures
The following is common:

100 REM Start of a loop
110 REM More of the loop
200 REM End of the loop
210 IF case <= 10 then 100
220 ...

can be expressed as

DO
REM Start of a loop
REM More of the loop
REM End of the loop

LOOP while case <= 10

If you need to exit from the middle of the loop, as in

100 REM Start of a loop
110 REM More of the loop
150 IF case > 10 then 220
200 REM End of the loop
210 GOTO 100
220 ...

you can use

DO
REM Start of a loop
REM More of the loop
IF case > 10 then EXIT DO
REM End of the loop

LOOP

We need not discuss the FOR-NEXT loop as that was the one structured
programming construct in the original BASIC.

Subroutines
The old original subroutine structure
200 GOSUB 500
210 ...
500 REM Start of the subroutine
510 ...
520 RETURN

can be expressed using the CALL and SUB statements as
CALL TheSubroutine
...
SUB TheSubroutine
...
END SUB

D2001: Leaving GOTO Behind – ©2000, True BASIC Inc. 03784-5428 USA 4

Beside getting rid of the GOSUB statement and the line numbers, there are two
other advantages: first, the subroutine is “invoked” by name rather than by line
number, and it is now possible to add parameters:

CALL TheSubroutine (3, x)
...
CALL TheSubroutine (4, y)
...
SUB TheSubroutine (a, b)
...
END SUB

The subroutine can be invoked from more than one place without having to use
LET statements to give values to the arguments. Using GOSUB statements, one
would have had to to write

180 LET a = 3
190 LET b = x
200 GOSUB 500
205 LET x = b ! This is the result
210 ...
280 LET a = 4
290 LET b = y
300 GOSUB 500
310 LET y = b ! This is the result
320 ...
500 REM Start of the subroutine
510 ...
520 RETURN

More Complicated Cases
More complicated cases arise, a simple example of which might be:
100 IF x < y then 200
110 IF x = y then 300
120 REM ComputationA
130 GOTO 400
200 REM ComputationB
300 REM ComputationC
400 REM Completion

If you try to turn this into a combination of two simple choice structures, you
cannot avoid duplicating the code in Computerion C, which is common to two
different possibilities.

IF x < 100 then
REM ComputationB
REM ComputationC

ELSE if x = 100 then
REM ComputationC

ELSE
REM ComputationA

END IF
REM Completion

D2001: Leaving GOTO Behind – ©2000, True BASIC Inc. 03784-5428 USA 5

Avoiding duplication of code was a virture in the early days of extremely small
memories, but it is not longer a virtue today. If Computation C is just one or two
lines, just duplicate them. If Computation C has many lines, turn it into a
subroutine

IF x < 100 then
REM ComputationB
CALL ComputationC

ELSE if x = 100 then
CALL ComputationC

ELSE
REM ComputationA

END IF
REM Completion
...
SUB ComputationC
...
END SUB

Incidentally the type of code illustrated just above is the most complicated
problem I have ever run into converting thousands of lines of GOTO-code
(whether in BASIC or in Fortran) into structured code.

Thomas E. Kurtz, May 19, 1999

Comments or questions to: tom@truebasic.com

