

D2011: Huge Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 1

Huge Arithmetic
Toolkit

by Thomas E. Kurtz
Co-inventor of BASIC

Introduction

This toolkit allows you to write True BASIC programs in the usual way except
that certain numeric variables and arrays may be declared to be of type HUGE.

A DO program then revises your True BASIC program into one that can be run
directly and that will perform the calculations using huge number arithmetic, if
necessary.

You may use most of the True BASIC statements and structures including
modules, internal and external subroutines, public and shared variables, etc.
There are some restrictions.

1. All variables and arrays that are intended to be huge must be so declared
early on in the main program, subroutine, or module, and before any other
statements, such as LOCAL or PUBLIC, that contain these variables. There
is a special requirement for subroutines.

2. A huge declaration must be included just after the SUB statement in the
definition if some or all of the parameters in the SUB statement are to be
huge. The same is true for multiple-line DEF structures. (Single-line DEFs
cannot be of type huge nor can their arguments be huge. The solution is to
make them into multiple-line DEFs.)

3. Only simple MAT statements may be used.

The toolkit operates as a DO program, revising the contents of the source program
in the current editing window. The subroutines of the toolkit may be pre-loaded,
using
LOAD loadhuge

but this is not necessary. After a successful revision, the resulting modified source
program can be run directly, or saved.

This toolkit combines that portion of the former Mathematician’s Toolkit that
dealt with huge number arithmetic for simple and matrix entities.

∑+x÷∑

HUGE

D2011: Huge Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 2

Example
! Tests an integer by Fermat's Theorem to see whether prime.
! Integer must be positive, greater than 2.
! Checks whether 2^(n-1) is congruent to 1 mod n.

DECLARE HUGE n, n1, power

PRINT "Test for prime numbers"
PRINT "Type '0' to stop"
PRINT
DO

PRINT "Number";
INPUT n
IF n = 0 then STOP ! Type '0' to stop
LET n1 = n - 1 ! n-1
LET power = mod(2^n1,n) ! 2^(n-1) mod n
IF power = 1 then

PRINT "Probably a prime"

ELSE
PRINT "Not a prime"

END IF

LOOP

END

Notice that all you really have to do is to insert a
DECLARE HUGE n, n1, power

into the main program, early on, to notify the toolkit that the variables ‘n’, ‘n1’,
and ‘power’ are going to be huge numbers.

The next step is to revise the program using
do huge

After the revision, this will be your program in the current editing window:

DECLARE DEF h_in$,h_isequal,h_diff2$,h_pwr1$,h_mod$
LIBRARY "HugeLibs.trc"
! Tests an integer by Fermat's Theorem to see whether prime.
! Integer must be positive, greater than 2.
! Checks whether 2^(n-1) is congruent to 1 mod n.

! declare huge n, n1, power

PRINT "Test for prime numbers"
PRINT "Type '0' to stop"
PRINT
DO

PRINT "Number";

D2011: Huge Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 3

INPUT h_N$
LET h_N$ = h_in$(h_N$)
IF h_isequal(h_N$,h_in$(str$(0))) = 1 then STOP
LET h_N1$ = h_diff2$(h_N$,1)! n-1
LET h_POWER$ = h_MOD$(h_pwr1$(2,h_N1$), h_N$)
IF h_isequal(h_POWER$,h_in$(str$(1))) = 1 then

PRINT "Probably a prime"

ELSE
PRINT "Not a prime"

END IF

LOOP

END

Notice these changes:

1. Two statements (DECLARE DEF and LIBRARY) have been added near the
top of the program. If the huge toolkit has been “loaded,” these statements are
not needed. The DECLARE DEF statement names all the defined functions
used by the program. (A defined function is defined by a DEF statement, in
contrast with, for example, the SIN function, which is builtin.) The special
functions used in the main program are: h_in$, h_isequal, h_diff2$,
h_pwr1$, h_mod$.

2. The variables n, n1, and power have been declared to be of type HUGE. The
DO program changes them to h_N$, h_N1$, and h_POWER$, respectively.
All numeric variable names declared to be huge are preceded with “h_” and
followed by “$”.

3. All numeric and relational operations involving huge numbers have been
converted to function invocations.

How it is Done
Huge numbers are stored as strings. The first three bytes of the string contain the
algebraic sign of the number and the number of decimal places. Each subsequent
group of three bytes contains six digits of the number, with the least significant
part coming first. The advantage is that a single huge number can be stored and
manipulated as a single string rather than as a large numeric vector.

You write your program in the usual way. To convert it to huge, type
do huge

This DO program converts the current program in the editing window into a
huge one.

If you are not using the Gold Edition of True BASIC, you should now type
rename _huge_

or something similar, to prevent accidently saving the revised program over your
original saved version.

D2011: Huge Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 4

Now type the command
run

or simply select Run from the Run menu.

The huge number tool kit runs equally well whether set up as a loaded workspace
or not. If a loaded workspace, the startup time for the do program is much shorter.
To load the huge toolkit workspace, enter the huge toolkit directory and type
script loadhuge

If your huge toolkit is not loaded as a workspace, just make sure that the compiled
toolkit file HugeWork.trc is in your current directory, or that there is an ‘alias’ to
allow True BASIC to find it.

The file HugeWork.trc contains the library file HugeLibs.trc, so don’t also load
the latter file.

MAT Operations
The following MAT operations are permitted. (These form a subset of the MAT
operations allowed in True BASIC.)

MAT C = A + B

MAT C = A - B

MAT C = A * B

MAT C = K * A ! k a scalar variable or constant

MAT C = INV(A)

MAT C = TRN(A)

MAT C = CONJ(A)

MAT C = IDN

MAT C = CON

MAT C = ZER

It is a strict requirement that the dimensions and subscript ranges must match.

Adding and subtracting are allowed for vectors and matrices. Products are
allowed for two matrices, a vector and a matrix, a matrix and a vector, and for two
vectors. Again, the subscript ranges must conform! If you multiply a vector times
a matrix, the vector will be interpreted as a row vector. If you multiply a matrix
times a vector, the vector will be interpreted as a column vector. If you multiply
two vectors, the dot product will be assumed.

Scalar multiplication is allowed for both vectors and matrices.

INV, TRN, and IDN are allowed only for matrices.

The PUBLIC variable h_det$ will be the huge determinant of the most recently
successfully inverted matrix.

D2011: Huge Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 5

Input and Printed Output
Input is always in terms of real numbers. Ordinary INPUT and READ statements
can be used. To input a huge number, use something like
DECLARE HUGE n
INPUT prompt “Enter constant: “: n
...

The same approach can be used to READ a huge constant
DECLARE HUGE c
READ c
DATA 17

To build a huge matrix, you can use the READ and DATA statements to create
DECLARE HUGE A
DIM A(3,3)
MAT READ A
DATA 1, 2, 3
DATA 2, 3, 4
DATA 3, 4, 5

You can output numbers in the usual way.
PRINT x, y

If the value is huge, then
DECLARE HUGE z
...
PRINT z

will work. This is converted into PRINT h_out$(z), where h_out$ is a function
that converts a huge number into a string, suitable for printing.

You can control the number of decimals places of accuracy with the DECIMALS
statement.
DECIMALS 4

will cause all subsequent uses of h_out$ to round to four decimals places (actually
six, since decimal places are added in groups of six.)

You can include several DECIMALS statements in your program; see the
demonstration program DemHilb.tru.

In addition, there is another function h_outd$(z,d) that allows you to convert to a
string a huge value rounded to ‘d’ decimal places.

D2011: Huge Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 6

Demonstration Programs

DemE.tru
Computes the mathematical constant e to the number of decimal places
prescribed. Uses the infinite series, not the builtin constant.

DemHilb.tru
Generates a Hilbert matrix, which is known to be extremely ill-conditioned, and
then inverts it. H(i,j) = 1/(i+j-1). Prints the inverse and the determinant. The
computation is done with a large number of decimal places, enough to guarantee
reasonable accuracy.

DemMat.tru
Demonstrates several matrix operations, including converting from strings of
digits to huge, and vice versa

DemPrime.tru
Applies Fermat’s Theorem to determine is the integer inputed is prime or not. If
2^(n-1) MOD n = 1, then n could be a prime; otherwise, n is most certainly not a
prime. This requires raising 2 to a large power. If n > 54 or 55, 2^(n-1) cannot be
done accurately with IEEE eight-byte double precision.

Reference List
Here is a list of all available huge functions.

h_zero$ Zero

h_one$ One

h_two$ Two

h_pi$ πto 126 decimal places

h_twopi$ 2π
h_pi2$ π/2

h_pi4$ π/4

h_e$ e to 126 decimal places

h_eps$ 1 in last place

h_in$(s$) String of digits to huge

h_conv$(n) Converts a real to a huge

h_out$ (n$) Huge to string of digits

h_outd$(n$,d) Huge to string of digits, d decimals

h_sum$(a$,b$) Addition: huge plus huge

h_sum1$(a,b$) Addition: real plus huge

h_sum2$(a$,b) Addition: huge plus real

h_diff$(a$,b$) Subtraction: huge minus huge

D2011: Huge Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 7

h_diff1$(a,b$) Subtraction: real minus huge

h_diff2$(a$,b) Subtraction: huge minus real

h_prod$(a$,b$) Multiply: huge times huge

h_prod1$(b,a$) Multiply: real times huge

h_prod2$(a$,b) Multiply: huge times real

h_quot$(a$,b$) Division: huge divided by huge

h_quot1$(a,b$) Division: real divided by huge

h_quot2$(a$,b) Division: huge divided by real

h_pwr$(n$,p$) Power: huge ^ huge integer

h_pwr1$(n,p$) Power: real ^ huge integer

h_pwr2$(n$,p) Power: huge ^ integer

h_pwrmod$ (n$, p$, m$) Huge ^ huge MOD huge

h_IsZero(n$) Equals 1 if n = 0, 0 otherwise

h_IsAbsGreater(a$,b$) Equals 1 if |a| > |b|, 0 otherwise

h_IsEqual(a$,b$) Equals 1 if a = b, 0 otherwise

h_IsNotEqual(a$,b$) Equals 1 if a ≠ b, 0 otherwise

h_IsGreater(a$,b$) Equals 1 if a > b, 0 otherwise

h_IsLess(a$,b$) Equals 1 if a < b, 0 otherwise

h_gcd$(a$,b$) Euclidean algorithm, gcd

h_mod$(a$,m$) Mod, a MOD m

h_abs$(a$) Absolute value ABS

h_int$(a$) Integer part INT

h_neg$(a$) Negation

h_sqr$(n$) Square root function

h_sin$(x$) Sine function

h_cos$(x$) Cosine function

h_tan$(x$) Tangent function

h_atn$(x$) Arctangent function

h_exp$(x$) Exponential function

h_log$(x$) Natural logarithm function

The following subroutines carry out the huge matrix operations. In all cases, the
last argument is the result matrix or value.

SUB H_MatIn (A$(,)) Convert matrix of string of
digits to matrix of huge

SUB H_MatSum (A$(,), B$(,), C$(,)) MAT C = A + B, matrices

SUB H_MatDiff (A$(,), B$(,), C$(,)) MAT C = A - B, matrices

D2011: Huge Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 8

SUB H_MatProd (A$(,), B$(,), C$(,)) MAT C = A*B, matrices

SUB H_MatPrint (A$(,)) MAT PRINT A, matrix

SUB H_MatPrintd (A$(,), d) MAT PRINT A, d decimals

SUB H_MatIdn (A$(,)) MAT A = IDN

SUB H_MatTrn (A$(,), B$(,)) MAT B = TRN(A)

SUB H_MatScmH (A$(,), h$, B$(,)) MAT B = h*A, matrices

SUB H_MatInv (A$(,), B$(,)) MAT B = INV(A)

SUB H_VecIn (V$()) Convert vector of string of
digits to vector of huge

SUB H_VecSum (V$(), W$(), Z$()) MAT Z = V + W, vectors

SUB H_VecDiff (V$(), W$(), Z$()) MAT Z = V - W, vectors

SUB H_VecPrint (V$()) MAT PRINT V, vector

SUB H_VecPrintd (V$(), d) MAT PRINT V, d decimals

SUB H_MatVecProd (A$(,), W$(), Z$()) MAT Z = A*W

SUB H_VecMatProd (W$(), A$(,), Z$()) MAT Z = V*A

SUB H_VecScmH (V$(), h$, Z$()) MAT Z = h*V, vectors

SUB H_DotProd (V$(), W$(), n$) LET n = DOT(V,W)

The following array relational functions are also available.

h_MatIsEqual (A$(,), B$(,)) Returns 1 if A$ = B$, 0 otherwise

h_VecIsEqual (V$(), W$()) Returns 1 if V$ = W$, 0 otherwise

Error Messages
100, "String is not a number: "
200, "Illegal argument"
210, "Must be positive integer"
220, "Illegal argument for decimals"
230, "Squareroot of a negative number"
240, "Zero or negative argument for h_log$"
250, "h_gcd$ must have integer arguments"
260, "Negative number to non-integer power"
270, "Arguments must be positive integers"
280, "Bad value for h_tan$"
400, "Illegal number for decimals"
500, "Dimensions do not match"
501, "Lower bounds are not equal"
505, "Must be square matrix"
510, "Determinant is 0"PRINT

December 11, 2000

	Huge_Arith_TK_Cover.pdf
	Huge.pdf

