


D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 1

Complex Arithmetic Toolkit
by Thomas E. Kurtz

Co-inventor of BASICC+X÷∑

Introduction
This toolkit allows you to write True BASIC programs in the usual way except
that certain numeric variables and arrays may be declared to be complex. 

A DO program then revises your True BASIC program into one that can be run
directly and that will perform the calculations using complex arithmetic, if
necessary.

You may use most of the True BASIC statements and structures including
modules, internal and external subroutines, public and shared variables, etc.
There are some restrictions.

1. The numeric variable ‘i’ always stands for the square root of -1. Therefore, ‘i’
may not be used as a looping variable in a FOR NEXT loop.

2. All variables and arrays that are intended to be complex must be so declared
early on in the main program, subroutine, or module, and before any other
statements, such as LOCAL or PUBLIC, that contain these variables. There
is a special requirement for subroutines. A complex declaration must be
included just after the SUB statement in the definition if some or all of the
parameters in the SUB statement are to be complex. The same is true for
multiple-line DEF structures. (Single-line DEFs cannot be of type complex
nor can their arguments be complex. The solution is to make them into
multiple-line DEFs.)

3. Only simple MAT statements may be used.

The toolkit operates as a DO program, revising the contents of the source program
in the current editing window. The subroutines of the toolkit may be pre-loaded,
using

SCRIPT loadcomplex

but this is not necessary. After a successful revision, the resulting modified source
program can be run directly, or saved.

This toolkit combines that portion of the former Mathematician’s Toolkit that
dealt with complex arithmetic for simple and matrix entities.



D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 2

Example:

REM  Quadratic equation solver

DECLARE COMPLEX r1, r2

FOR example = 1 to 3
READ a, b, c         ! Coefficients of equations
CALL quad(a,b,c,r1,r2)    ! Solve
PRINT r1, r2

NEXT example

DATA 1, 4, 3
DATA 1, 4, 4
DATA 1, 4, 5

END

SUB quad(a,b,c,r1,r2)     !  Equation solver, assumes a<>0

DECLARE COMPLEX r1, r2, s

LET discr = b^2 - 4*a*c   ! Discriminant
LET s = sqr(discr)        ! Complex square root

LET r1 = (-b+s)/(2*a)
LET r2 = (-b-s)/(2*a)

END SUB

Notice that all you really have to do is to insert a

DECLARE COMPLEX r1, r2

into the main program, early on, to notify the toolkit that the variables ‘r1’ and ‘r2’
are going to be complex-valued.

A similar complex declaration must appear in the external subroutine. It must
appear right after the SUB statement as it applies to two of the parameters in
that statement.

The next step is to revise the program using

do complex

After the revision, this will be your program in the current editing window:

DECLARE DEF c_out$
LIBRARY "CompLibs.trc"
REM  Quadratic equation solver

! declare complex r1, r2



D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 3

FOR example = 1 to 3
READ a, b, c         ! Coefficients of equations
CALL QUAD (A, B, C, c_R1$, c_R2$)  ! Solve
PRINT c_out$(c_R1$), c_out$(c_R2$)

NEXT example

DATA 1, 4, 3
DATA 1, 4, 4
DATA 1, 4, 5

END

SUB QUAD (A, B, C, c_R1$, c_R2$)
DECLARE DEF c_sqr1$,c_sum1$,c_quot2$,c_diff1$

! declare complex r1, r2, s

LET discr = b^2 - 4*a*c     ! Discriminant
LET c_S$ = c_sqr1$(DISCR)   ! Complex square root

LET c_R1$ = c_quot2$(c_sum1$(-B,c_S$),2 * A)
LET c_R2$ = c_quot2$(c_diff1$(-B,c_S$),2 * A)

END SUB

Notice these changes:

1. Two statements (DECLARE DEF and LIBRARY) have been added near the
top of the program. If the complex toolkit has been “loaded,” these statements
are not needed. The DECLARE DEF statement names all the defined
functions used by the program. (A defined function is defined by a DEF
statement, in contrast with, for example, the SIN function, which is builtin.)
The only special function used in the main program is the output formatting
function “c_out$”

2. The variables r1 and r2 have been declared to be of type COMPLEX. The DO
program changes them to c_R1$ and c_R2$, respectively. All numeric variable
names declared to be complex are preceded with “c_”  and followed by “$”.

3. In the subroutine the DECLARE COMPLEX statement converts several of
the parameters in the immediately preceding SUB statement.

4. The DECLARE DEF statement in the subroutine names a number of
functions. For example, c_sum1$ is used to add a real number and a complex
number,  in that order. There are two other adding functions:  c_sum2$ is
used to add a complex number and a real number, while c_sum$ is used to
add two complex numbers.

5. Since the square root of a real number could be complex, all occurrences of
SQR are replaced by c_SQR1$. There is also c_SQR$ which is used to take
the (principal) square root of a complex number.



D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 4

How it is Done
Complex numbers have a real and an imaginary part. Thus, each complex number
really consists of two numbers. A complex number is stored in a 16-byte string.
The first 8 bytes contain the real part  and the second 8 bytes contain the
imaginary part. The advantage is that a single complex number can be stored and
manipulated as a single string rather than as a vector having two elements.

The True BASIC functions num and num$ can be used to go back and forth.
Suppose real and imag are the real and imaginary parts of a complex number
com$. Creating the complex number com$ can be done by:

LET com$ = num$(real) & num$(imag)

The reverse operation can be done with two statements:

LET real = num(com$[1:8])
LET imag = num(com$[9:16])

You write your program in the usual way. To convert it to complex, type

do complex

This ‘do program’ converts the current program in the editing window into a
complex one.

If you are not using the Gold Edition, you should now type

rename _complx_

or something similar, to prevent accidently saving the revised program over your
original saved version.

Now type the command

run

or simply select Run from the Run menu.

The complex tool kit runs equally well whether set up as a loaded workspace or
not. If a loaded workspace, the startup time for the do program is much shorter.
To load the complex toolkit workspace, enter the complex toolkit directory and
type

script loadcomplex

If your complex toolkit is not loaded as a workspace, just make sure that the
compiled toolkit file CompWork.trc is in your current directory, or that there is
an ‘alias’ to allow True BASIC to find it.



D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 5

If you load the file CompWork.trc, do not also load the library file
CompLibs.trc, as the latter file is included. Also, you cannot pre-load the
conformal mapping library ConfLib.trc.

MAT Operations

The following MAT operations are permitted. (These form a subset of the MAT
operations allowed in True BASIC.)

MAT C = A + B
MAT C = A - B
MAT C = A * B
MAT C = K * A         ! k a scalar variable or constant
MAT C = INV(A)
MAT C = TRN(A)
MAT C = CONJ(A)
MAT C = IDN
MAT C = CON
MAT C = ZER

It is a strict requirement that the dimensions and subscript ranges must match.

Adding and subtracting are allowed for vectors and matrices. Products are
allowed for two matrices, a vector and a matrix, a matrix and a vector, and for two
vectors. Again, the subscript ranges must conform! If you multiply a vector times
a matrix, the vector will be interpreted as a row vector. If you multiply a matrix
times a vector, the vector will be interpreted as a column vector. If you multiply
two vectors, the dot product will be assumed.

Scalar multiplication is allowed for both vectors and matrices. The complex
conjugate (CONJ) is also allowed for both vectors and matrices.

INV, TRN, and IDN are allowed only for matrices.

The PUBLIC variable c_det$ will be the complex determinant of the most
recently successfully inverted matrix.

Input and Printed Output
Input is always in terms of real numbers. Ordinary INPUT and READ statements
can be used. To construct a complex number, such as “1 + i”, simply do so in an
ordinary LET statement, as in

DECLARE COMPLEX c
...
LET c = 1 + i

To input a complex number, use something like

DECLARE COMPLEX c
INPUT prompt “Enter constant: “: re, im
LET c = re + i*im
...



D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 6

The same approach can be used to READ a complex constant

DECLARE COMPLEX c
READ re, im
DATA 1, 2
LET c = re + i*im

To build a complex matrix, you can use the READ and DATA statements to
create the real and imaginary parts, and then use the subroutine c_MatComp (or
c_VecComp.) For example,

DECLARE COMPLEX C
DIM A(3,3), B(3,3), C(3,3)
MAT READ A, B
DATA 1, 2, 3    ! A is the real part
DATA 2, 3, 4
DATA 3, 4, 5
DATA 2, -1, 4   ! B is the imaginary part
DATA 0, 5, 1
DATA 3, 0, -4
CALL c_MatComp (A, B, C) ! C is the complex composition

You can output real numbers in the usual way.

PRINT x, y

If the value is complex, then

DECLARE COMPLEX z
...
PRINT z

will work. This is converted into PRINT c_out$(z), where c_out$ is a function
that converts a complex number into a string, suitable for printing, of the form a +
i*b.

You can control the number of decimals places of accuracy with the DECIMALS
statement.

DECIMALS 4

will cause all subsequent uses of c_out$ to round the real and imaginary parts to
four decimals places.

You can have any number of DECIMALS statements in your program.

If you want to revert to the default (eight significant figures, more or less,) use

DECIMALS 999

In addition, there is another function c_outd$(z,d) that allows you to convert to a
string a complex value with both real and imaginary parts rounded to ‘d’ decimal
places.



D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 7

Plotted Output
If the expressions in a PLOT statement are complex, they will be plotted on the
complex plane. That is,

PLOT z

will plot a point (real(z),imag(z)) in the x-y plane. You must, of course, declare z
to be of type complex.

Conformal Mapping
The subroutine ConformalMap is found in the file ConfLib.trc (source in
ConfLib.tru). The function to be mapped must be named f (as in f(x)), and must
be included as an external, multiple-line defined function after the END
statement. The calling sequence is

CALL ConformalMap (ll, ur, dx)

where ll is the lower-left corner of the domain rectangle in the complex plane, ur
is the upper-right corner, and dx is the incremental spacing for both the real and
imaginary parts of the argument.

The file ConfLib.trc cannot be loaded ahead of time. Thus, the program must
contain a library statement

LIBRARY “ConfLib.trc”

The defined function f must include, in its definition, a DECLARE COMPLEX
statement that names both the function name f and all its complex arguments.

See the demontration program DemConf.tru.

Demonstration Programs
DemSines.tru
Verifies that sin^2 + cos^2 = 1 for random complex arguments.

DemQuad.tru
Solves the general quadratic equation with real coefficients, yielding possibly
complex roots.

DemRoot.tru
Finds a root of a polynomial equation with possibly complex coefficients using the
Newton Raphson method. The user supplies the initial point.

DemConf.tru
Demonstrates conformal mapping for an arbitrary complex function of a complex
variable.



D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 8

DemInv.tru
Finds the inverse and determinant of a square matrix with complex coefficients.

DemMat1.tru
Illustrates certain MAT operations (constructing a matrix of complex coefficients,
multiplication, addition, subtractions.)

DemMat2.tru
Illustrates other MAT operations (vectors with complex coefficients, matrix
transpose, vector-matrix and matrix-vector multiplication, complex conjugate, dot
product.)

Reference List
Here is a list of all available complex functions.

c_abs(z$) Absolute value of a complex value

c_chs$(z$) Changes the sign of its complex argument

c_sum$(z1$,z2$) Adds two complex numbers

c_sum1$(x,z$) Adds a real and a complex

c_sum2$(z$,x) Adds a complex and a real

c_diff$(z1$,z2$) Subtracts two complex numbers

c_diff1$(x,z$) Subtracts a complex from a real

c_diff2$(z$,x) Subtracts a real from a complex

c_prod$(z1$,z2$) Multiplies two complex numbers

c_prod1$(x,z$) Multiplies a real and a complex

c_prod2$(z$,x) Multiplies a complex and a real

c_quot$(z1$,z2$) Divides two complex numbers

c_quot1$(x,z$) Divides a real by a complex

c_quot2$(z$,x) Divides a complex by a real

c_pwr$(z1$,z2$) Raises a complex to a complex power

c_pwr1$(x,z$) Raises a real to a complex power

c_pwr2$(z$,x) Raises a complex to a real power

c_sqr$(z$) Square root of a complex number

c_sqr1$(x) Square root of a real

c_exp$(z$) e to a complex power



D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 9

c_log$(z$) Natural logarithm of a complex number

c_log2$(z$) Log base 2 of a complex number

c_log10$(z$) Log base 10 of a complex number

c_sin$(z$) Sine of a complex number

c_cos$(z$) Cosine of a complex number

c_tan$(z$) Tangent of a complex number

c_conj$(z$) Complex conjugate

The following subroutines carry out the complex matrix operations. In all cases,
the last argument is the result matrix or value.

SUB c_MatComp (A(,), B(,), C$(,)) Complex composition, A is the 
real part, B the imaginary part

SUB c_MatSum (A$(,), B$(,), C$(,)) Add matrices

SUB c_MatDiff (A$(,), B$(,), C$(,)) Subtract matrices

SUB c_MatProd (A$(,), B$(,), C$(,)) Multiply matrices

SUB c_MatPrint (A$(,)) Print matrix

SUB c_MatIdn (A$(,)) Make identity square matrix

SUB c_MatCon (A$(,)) Set entries to one

SUB c_MatZer (A$(,)) Set entries to zero

SUB c_VecCon (A$()) Set entries to one

SUB c_VecZer (A$()) Set entries to zero

SUB c_VecConj (V$(), W$()) Complex conjugate of elements

SUB c_MatConj (V$(,), W$(,)) Complex conjugate of elements

SUB c_MatTRN (A$(,), B$(,)) Transpose

SUB c_MatScmC (k$, A$(,), B$(,)) Scalar multiply by k$, complex

SUB c_MatScmR (k, A$(,), B$(,)) Scalar multiply by k, real

SUB c_MatInv (A$(,), B$(,)) Invert square matrix

SUB c_VecComp (V(), W(), V$()) Convert vector

SUB c_VecSum (V$(), W$(), Z$()) Add vectors

SUB c_VecDiff (V$(), W$(), Z$()) Subtract vectors

SUB c_VecScmC (k$, V$(), Z$()) Scalar multiply by k$, complex

SUB c_VecScmR (k, V$(), Z$()) Scalar multiply by k, real



D2010: Complex Arithmetic Toolkit – ©2001, True BASIC Inc. 05047-0501 USA 10

SUB c_VecPrint (V$()) Print vector

SUB c_MatVecProd (A$(,),W$(),Z$()) Multiply matrix times vector

SUB c_VecMatProd (W$(),A$(,),Z$()) Multiply vector times matrix

SUB c_DotProd (V$(), W$(), n$) Dot product

The following array functions are also available.

c_MatIsEqual (A$(,), B$(,)) Returns 1 if A$ = B$, 0 otherwise

c_VecIsEqual (V$(), W$()) Returns 1 if V$ = W$, 0 otherwise

Error Messages
210, "Division by 0."

220, "0 to a complex power."

230, "0 to negative power"

240, "Can't get Angle from (0,0)."

400, "Illegal number for decimals."

500, "Dimensions do not match for matrix arithmetic."

501, "Lower bounds not equal for vector operation."

505, "Must be square matrix"

510, "Determinant is 0"

December 11, 2000


	Com_Arit_TK_Cover.pdf
	Complex.pdf

