


for the True BASIC Language System

ISBN: 0-939553-39-2 

All rights reserved. No part of this manual may be reproduced by any means, electronic,
mechanical, or photocopying, without the prior written permission of True BASIC, Inc.
Address any request for reprinting portions of any material contained in this documentation,
listing the purpose of the reprint or citation, and the expected edition size of the publication to
True BASIC as the address listed below.

Trademarks and their owners:  True BASIC: True BASIC, Inc.; IBM: International Business Machines; Apple

Published by:

MANUAL NUMBER: 7222/M

support@truebasic.com Customer Support

Printed in the United States of America.  01/2002

BRONZE Edition Reference Manual

Copyright © 2002-2010 by True BASIC Incorporated

True BASIC
PO Box 204
Gaysville, VT 05746-0204 USA

1-888 282-9873 Sales Department

1-888 282-9873 Fax (24-hour availability)

http://www.truebasic.com Website

John G. Kemeny
Thomas E. Kurtz

Bronze Edition Guide
Edited by John Arscott & Anne Taggart

Macintosh, MacOS: Apple Computer; MS-DOS, Windows, Windows95, Windows98, Windows Vista, Windows 7: Microsoft.



3

Contents

2. Why True BASIC? .............................................................................................. 11

3. Installing True BASIC and Running Demo Programs . ............................ 13
Installing the BRONZE Edition on Windows . ................................................ 13
Using True BASIC BRONZE 6.0 Editor . ......................................................... 15
The Editor Menus . .............................................................................................xiv
Help for True BASIC ...........................................................................................xx
Running a Demonstration Program ................................................................. xxi

1. An Introduction to Programming .................................................................... 9

Creating a Program............................................................................................. 23
The LET Statement  ........................................................................................... 25
The PRINT Statement........................................................................................ 26

Saving Your Program .......................................................................................  26
How True BASIC Runs a Program ..................................................................  26
The END Statement........................................................................................... 26

4. Writing and Running Your First Program.................................................... 23

5. Modifying and Saving Programs.....................................................................  27
Using Source and Output Windows..................................................................  27
Making Simple Changes ...................................................................................  28
Adding Comments to Your Program.................................................................  28
Saving Your Changes ........................................................................................  29
The INPUT Statement ......................................................................................  29
Saving Your Program With A Different Name ................................................  29
Opening or Quitting without Saving ................................................................  31

6. Constants, Variables, and Expressions..........................................................  33
Constants ...........................................................................................................  33
Variables ............................................................................................................  34
Expressions and Formulas.................................................................................  35
Changing Values of Variables............................................................................  37
An Introduction to Strings ................................................................................  38
Using String Constants and Variables..............................................................  39
A Brief Look at String Expressions ..................................................................  40



7. More on INPUT and OUTPUT ......................................................................... 41
Printing Zones and the PRINT Statement....................................................... 41
More about Controlling Output ........................................................................ 43
More about the INPUT Statement ................................................................... 43
The LINE INPUT Statement............................................................................ 44
The TD_LineInput Subroutine ......................................................................... 45

8. Loop Structures.................................................................................................. 47
How a FOR-NEXT Loop Works ........................................................................ 47
Step Size in a Loop ............................................................................................ 48
Nested Loops...................................................................................................... 50
An Introduction to Conditions .......................................................................... 52
An Introduction to DO Loops and Counters..................................................... 53
Variations on DO Loops, and Combining Conditions ...................................... 55

9. Decision Structures ........................................................................................... 57
Simple IF-THEN Decisions............................................................................... 58
Single-line IF-THEN-ELSE Decisions ............................................................. 58
Multiple-line Decisions...................................................................................... 58
More About Counters ........................................................................................ 60
The RANDOMIZE Statement ........................................................................... 61
The STOP Statement......................................................................................... 61
Generating Random Whole Numbers............................................................... 62
Other Decision Structures................................................................................. 63

10. Formatting and Printing Your Program ...................................................... 65
Guidelines for Good Programming ................................................................... 65
Indenting with DO Format ............................................................................... 66
Indenting Blocks with > and <.......................................................................... 67
Listing Your Programs on a Printer ................................................................. 68
Listing Output from your Programs................................................................. 68
Using Line Numbers ......................................................................................... 69
Using the Command Window ........................................................................... 69

11. Editing Hints and Shortcuts............................................................................ 71
Undoing.............................................................................................................. 71
Selecting, Deleting, Moving, and Copying........................................................ 77
Find and Change ............................................................................................... 73
Keep and Include ............................................................................................... 75
Select All and Move To... ................................................................................. 76

4 BRONZE Edition Reference Manual



12. Using and Storing Data ................................................................................... 77
The DATA and READ Statements.................................................................... 77
Checking for More Data .................................................................................... 79
Reusing Data Values ......................................................................................... 81
Storing Data in Files ......................................................................................... 82
Reading Data from Text Files ........................................................................... 83
Creating Text Files ............................................................................................ 85
Printing String Data to Text Files.................................................................... 86
Reusing Stored Data for Input.......................................................................... 88
Printing Numeric Data to Text Files................................................................ 89
More about File Input and Output ................................................................... 91

13. Arrays and Matrices .......................................................................................... 93
One-dimensional Arrays ................................................................................... 93
Array Subscripts................................................................................................ 95
Array Bounds ..................................................................................................... 96
Arrays of Two or More Dimensions .................................................................. 97
The MAT Statements ........................................................................................ 99
Advanced Work with Arrays and Matrices .................................................... 101

14. Functions and Subroutines .......................................................................... 103
Subroutines...................................................................................................... 103
Subroutines with Parameters ......................................................................... 105
Built-in Functions............................................................................................ 106
One-line Functions .......................................................................................... 107
Multi-line Functions........................................................................................ 108
Global Variables .............................................................................................. 109
External Subroutines and Functions.............................................................. 111
The LOCAL Statement.................................................................................... 112

15. Libraries............................................................................................................. 113
Libraries........................................................................................................... 113
Aliases .............................................................................................................. 116
Compiling ......................................................................................................... 116

16. Graphics ............................................................................................................. 117
Drawing Points ................................................................................................ 117
Drawing Lines.................................................................................................. 118
Changing the Coordinates............................................................................... 119
Drawing Shapes............................................................................................... 120
Using Colors..................................................................................................... 122
Animation ........................................................................................................ 124

Contents 5



6

Pictures ............................................................................................................ 125
Transformations .............................................................................................. 126
Creating Complex Pictures ............................................................................. 128
The GraphLib Library ..................................................................................... 128
Other Graphics Features................................................................................. 129
Text in Graphics Output ................................................................................. 129
Graphics Input................................................................................................. 129
MAT PLOT Statements................................................................................... 129
Printing A Graphic Image............................................................................... 130
Working with Sensitive Graphical Objects .................................................... 130
Graphical Objects Demo Programs................................................................. 132

17. Sound and Music .............................................................................................. 135
The PLAY Statement ...................................................................................... 135
The SOUND Statement................................................................................... 137

18. Correcting Errors and Debugging ............................................................... 139
Illegal Statements ........................................................................................... 139
Errors During Program Runs – Exceptions ................................................... 140
Correcting Bugs in Your Programs................................................................. 140

Appendix A. ASCII Character Set......................................................................... 145

Appendix B. Summary of True BASIC Statements........................................... 147

Appendix C. True BASIC Built-in Functions ...................................................... 167

Appendix D. Explanations of Error Messages ................................................... 185

BRONZE Edition Reference Manual

Appendix E. Making Your Own DO Programs .................................................. 211

Appendix F. PRINT USING Statement   ............................................................ 215

 Appendix G. True BASIC File Types ................................................................... 223

Appendix H. Basic to True BASIC Converter ................................................... 239

Index ......................................................................................................................... 249



Using This Guide
The BRONZE Edition of the True BASIC Language System is an ideal way to start using
this unique and powerful programming language created by the original inventors of
BASIC. You are able to write or run programs of any size, use libraries and modules, and

in this inexpensive starter edition.

The functionality to create independent free-standing double-click applications is not
included in the BRONZE Edition. For this the SILVER Edition of True BASIC is required.
A GOLD Edition of True BASIC will be of special interest to advanced developers, corpo-
rate or academic multi-user sites. Specifications and prices of all True BASIC books and

This BRONZE EDITION has been enhanced with an expanded HELP utility. Be sure to
read Appendix F (page 207) for an introduction on how to use this powerful tool. The con-
tents of an extensive reference manual are included in the HELP utility. Sample code for
many routines are also included. You can copy and paste code from HELP to your program.
Appendix B gives you a quick overview of the primary True BASIC statements and func-
tions. The HELP utility provides more information about each statement and function.

Many of the concepts and operations described in this manual will be new to you. To make
it easier for you to understand, we use the following style conventions to make clear the
many new concepts you will encounter:

Important new terms: words in bold type

Variable names: words in italic

True BASIC keywords: ALL CAPS

Program listings: Code font

Items to be typed by user: Code font

Important concepts: x Bold type within lines

Menus & menu commands: MENU font
Names of programs: ALL CAPS

Names of built-in functions: ALL CAPS

7

products can be found at the True BASIC website: http://www.truebasic.com . 

invoke DO programs. All the powerful True BASIC statements and functions are included



CHAPTER

An Introduction to Programming 1

What is a computer program?  What is a programming language?  Why should you want
to learn to write programs?

A computer program contains the instructions that tell the computer to do a certain
task, such as play a game of football, format and print a letter, or predict the survival
of lemmings over several generations.  People who used the earliest computers had to
know how to write their own programs.  There were no stores down the block where
they could buy a ready-to-use package that would track cash flow for their company.

Today, most people who use computers are not programmers.  Instead, they use appli-
cation packages such as word processors, spreadsheets, address organizers, or flight
simulators.  You can become a very sophisticated computer user and know nothing
about writing programs.

Yet even if you have no intention of becoming a software developer or writing complex
applications packages, you can still learn to program and enjoy solving your own prob-
lems in your own way.  Why should people learn to program and why would you want
to write your own programs?

There are several personal and practical reasons for learning to program:

• Acquire training and practice in logical thinking.  Many business schools continued
to teach programming to their students even after spreadsheets and database pack-
ages became widely available.

• Get a better understanding of how computers work.  Everything a computer does
boils down to programmed instructions.

9



• Create your own solutions to those little tasks that aren’t easily handled by general-
purpose applications.  Calculate the results of a multi-race sailing regatta.  Or com-
bine judges’ scores and distances for a ski jumping meet.

• Explore a new career field.  Computer specialists have to start somewhere.  And the
computer industry needs “new blood” if we are to avoid becoming “hostage” again to
those few who know how to program.  

• Just have fun!  Write a program to simulate a baseball game, or analyze a bridge
hand, or solve a puzzle.

The True BASIC BRONZE Edition package introduces you to programming using
statements and structures common to today’s structured programming languages.  The
best way to learn is to sit down at a computer and do all the examples as you go through
this book.  This book does not cover all features in-depth, but it will give you a good
start and hint at some of the additional power available with the True BASIC language.
If you wish to explore beyond the scope of this Bronze Edition, we suggest the follow-
ing books:

Avery Catlin, Let’s Program It... in True BASIC, True BASIC Press, 416 pp.
Third Edition 1996. (ISBN 0-939553-34-1)

Stewart M. Venit & Sandra Schleiffers, Programming in True BASIC: Problem
Solving with Structure and Style. PWS Publishing Co., 2nd Edition: 544 pp
1998. (ISBN 0-534-95351-4)

Brian D. Hahn, True BASIC by Problem Solving, VCH Publishers, 337 pp.
1988 (ISBN 3-527-26863-4)

The above books are available directly from True BASIC (where all the listed titles
are carried in stock) or from the individual publishers. 

10 BRONZE Edition Reference Manual

Visit our Web Site at http://www.truebasic.com for more information.



CHAPTER

Why True BASIC? 2

True BASIC is the ideal language for the beginning student and for the sophisticated
programmer who wants to solve complex problems on several different computers.  Two
key phrases sum up the benefits of True BASIC over other languages:  powerful sim-
plicity and portability.

Simply Powerful!

grams right from the start.  True BASIC’s screen editor makes it easy to read, write,
and modify programs.  New programmers can use the simpler features without
knowing anything about the full complexity of the language.

• The same True BASIC language contains a full range of modern programming struc-
tures.  The advanced programmer has access to such tools as graphics, sound, exter-
nal libraries, modules, and full matrix algebra.

• You will never have to unlearn the logic and structures you learn in True BASIC.
Because of its power, True BASIC may be the only language you ever need, but the
skills learned here will also apply to object oriented or other modern languages.

11

True BASIC conforms to American and international programming standards.  BASIC
is the most widely used programming language in the world and is not limited by
national boundaries. Spanish and Japanese versions of True BASIC exist, and the lan-
guage system has been designed so that it can be localized as required.

• True BASIC is simple enough to let the beginner write useful and interesting pro-



12 BRONZE Edition Reference Manual

You’ll also learn how to use functions and subroutines to break your programs into
small, manageable units.  These units simplify your programming task.  They let you
concentrate on one problem at a time.  They also let you create programs that are easy
for humans to read and understand!  (Users of other versions of BASIC may notice this
book uses no line numbers or potentially confusing GOTO statements.  True BASIC
allows these holdovers from an older style of programming, but we do not recommend
them.)

Dartmouth College Professors John G. Kemeny and Thomas E. Kurtz invented BASIC
in the 1960s.  The modern True BASIC language maintains their original philosophy.
They designed a language that was easy for beginners, but provided power for advanced
programmers.  In the 1970s, graphics devices appeared and the concept of structured
programming was widely accepted.  At Dartmouth, BASIC continued to grow with these
developments.  Unfortunately, some of the earlier versions on the first personal com-
puters were limited and did not benefit from new developments.  Since 1985, True
BASIC has provided an easy-to-use yet powerful, fully structured language for users of
personal computers. Dr. Kurtz remains active in True BASIC affairs and has taken a
leading role in insuring that this latest BRONZE Edition combines the traditional sim-
plicity of BASIC with a wealth of powerful new features.

As a structured language, True BASIC promotes good programming skills.  True
BASIC programs are easy to read.  From the beginning, you’ll learn modern looping
and decision structures.  You’ll learn about using blank lines, comments, and indent-
ing to make your programs easy to follow and modify later on.



Installing True BASIC
and Using the TB Editor

This chapter takes you from turning on your computer to running a program with the

True BASIC BRONZE Edition and then quitting the application.  If you are an

experienced user, you may want to skim or skip the first two sections and begin with

“Running a Demonstration Program.”  Wherever you start, we recommend that you

work at a computer and try all the sample programs as you go through this book. 

1. Locate the setup file (TBbronze6001setup.exe, for example) wherever it was

saved during the download process or copied from the CD. By default, in

Windows Vista downloaded files are saved in the Downloads folder in the main

user directory. 

2. Double-click the setup file to begin installation. The setup program will begin

to run and you will see this initial screen. You can use the default destination

directory or browse to select a different one; then click Start to begin setup.

CHAPTER

3

13

True BASIC runs on Windows 95, 98, 2000, ME, XP, Vista & Windows 7. The following

instructions are based on a standard Windows Vista installation and should apply to

most situations, but if further information is needed visit www.truebasic.com for more

detail. Information on using True BASIC with other operating systems is also

available at the website. Vista and Windows 7 users are advised to set the Properties to 
"Run as Administrator."



3. The installer will run, unpack all the True BASIC files and save them onto

your computer in the destination folder you selected. You will then see this

screen:

Installation is now complete! At this screen you can also choose to open the Read Me

file to learn more about the software, launch the application, or neither. Click OK to

get started. 

14



Using the True BASIC 6.0 Editor                                      
Even if you are familiar with word or text processors you are still advised to read these 
notes because the new True BASIC editor contains a number of unique features that 
are not available in previous TB editors or other text editors.

START UP
When you start True BASIC for the first time the screen will show an empty window 
labelled “Untitled 1” in the top left corner of the screen. In earlier versions at start up, 
True BASIC displayed a small file selector dialog box where you can click on the NEW 
button to start with an empty, untitled window. 

There are several ways of starting the editor:
(1) Double click on the editor desk top icon.
(2) Set up a file association between TRU files and the editor.
(3) Drag file icons onto the editor icon
(4) Chain to the editor from another application

File associations can be set up from Windows control panel:
Select Folder Options.
Click the File types tab.
Scroll down the list of extensions and click TRU
Click the CHANGE button.
Click the BROWSE button and then navigate to TBeditor.exe in the folder where you 
installed the editor.
 

DEFAULT SETTINGS (settings menu)
The following settings have been pre-set, but you can customize them at any time. Any 
change in settings will remain in force until you next change them.

15-i



Save on close
The default setting is OFF, meaning that source code will NOT be saved automatically 
when you close or exit  the editor. Setting this feature ON means that when you close 
the editor, then all currently open programs will be saved. 

Back-up on save

be automatically created whenever you save your program code. Setting this feature 
ON means that a back-up copy of your source program will be saved with the same 
program name, but with the extension BAK.
 
Confirm quit
The default setting is ON, meaning that whenever you attempt to close or exit the 
editor you will be asked if you are sure this is what you want to do. If this feature is 
switched OFF then you will not be asked if you are sure. The editor will shut down as 
requested.

Hotstart
The default setting is ON, meaning that when you start up the editor it will return to 
exactly the same conditions as it was when you last shut down. The programs you had 
open at the time will be re-opened and the last program you were using will be the 
focus. The position of the cursor will be the same as you left it. If this feature is 
switched OFF then the editor will start up with an empty ‘Untitled’ window.
This feature was incorporated in many earlier versions of the editor but never worked 
consistently.

Binder
The program that runs, compiles and binds source code is called TBsystem.exe. The 
default version is 5.5b19. This means that your executable programs do not need the 3 
DLL files that older versions needed. However, there are certain features of the old 
TBsystem file that you may prefer, in which case 531TBsystem.exe can be used. 

Aliases
Previous versions of the editor allowed programs to use short filenames instead of the 
full pathnames in LIBRARY statements. A list of alias pathnames was used by the 
editor in order to locate the short filename. This principle is incorporated in the new 
editor. The default list contains alias types {library}, {do} and {help}. A maximum of 9 
alias types can be specified by the user. Aliases can only be used with literal filenames, 
e.g. “{library}TrueCTRL.trc”

Function keys
The default setting is OFF. When the switch is on it means that the function keys F2 
to F9 work in a similar way to the DOS version function keys, e.g. F4 marks or 
highlights a block of text, F5 copies and pastes this block, and F6 cuts and pastes this 
block. If this feature is switched OFF then the editor will not respond to the function 
keys. This feature has been enabled in this version.

ii

The default setting is OFF, meaning that a back-up copy of your source code will NOT 



Short cuts
The default setting is ON, meaning that all menu items will be shown with their short 
cut keystrokes. If this option is turned OFF then the menu displays will only show the 
menu item and not the equivalent short cut keystroke.

RECENT PROGRAMS
When you close a program it gets deleted from the list of open programs but at the 
same time it gets added to the list of the 10 most recently used programs, which you 
can see under the WINDOW menu. If you click the mouse on any program in the 
recently used list, then this program will be opened and will become the focus.

iii

SINGLE WINDOW
Unlike earlier versions of the editor, this version only has one window, whereas 
previous versions had one window for each open program. However, in the single 
window you can open up to 10 programs simultaneously. The two green arrow buttons 
allow you to switch between any of the open programs, just like the forwards and 
backwards buttons on a browser. The window title bar shows the name of the current 
program. You can also switch to a specific program by clicking your mouse on the 
program name in the list under the WINDOW menu. Note that the current program is 
ticked in this list. You can close any individual program by clicking the mouse on 
the close program button at the right hand end of the toolbar (black cross on a 
gray background). If you wish to compare two programs side by side, start two instances
 of the program. The number of open windows is limited only by your computer's memory.

COMMAND LINE
The command line in earlier versions appeared in its own window, called the command 
window, but in every other respect the new command line works the same way, i.e. you 
can type instructions on this line and the computer will execute them immediately 
without the need to select RUN. For example, you can type the word FORMAT and 
True BASIC will format (indent) your code. Similarly, if you type RUN then True 
BASIC will run the current program. If you type VER (version) then your will see the 
version number and date. Note that not all of the original commands will work in this 
version, in particular the PRINT variablename  which allowed the user to stop the 
program and inspect the values of variables. This important feature has now been 
added to the BREAKPOINT feature instead. The command line also allows the user to 
specify alias names, e.g. ALIAS {myfolder} c:\Tbsilver. Aliases specified at the command line 
are only valid for the current session. When you shut down the editor, these aliases will not be 
remembered. The command line can also be used to specify a SCRIPT file, e.g.
SCRIPT myscript.txt.

SCRIPT FILES
When the editor first starts up it looks for a SCRIPT file called STARTUP.TRU. You can only use 
this script file to LOAD libraries and to specify ALIAS commands. All the other commands in a 
script file will be ignored. If STARTUP.TRU is not present in the same directory as the executable 
editor, the editor will carry on as normal. You can also use the SCRIPT command on the command 
line to specify a script file with another name, e.g. SCRIPT myscript.txt. Unlike the LIBRARY 
statement, there are no quote marks around the file names.



A feature of the new editor is that if you highlight a block of text by dragging your 
mouse across the text, then you can comment all the lines in the text by typing the 
exclamation mark just once. This is a toggle action feature in that you also un-
comment a block of lines by doing the same operation. The toggle action works on the 
basis that if any line does not have a comment mark then it will add one, whereas if 
the line already has a comment mark, it will be removed.

AUTO EXTENSIONS (TRU)
NEW or blank programs can be selected in the same way. By default the name of the 
blank program is shown on the window title bar as ‘UNTITLED’. You can define an 
appropriate name for the program when you save it. It is a feature of the new editor 
that program names automatically have the extension TRU added to the name if no 
other extension exists. This was a feature of the old DOS editor.

SWITCHING FILES
Existing programs can be opened by selecting OPEN from the FILE menu or by 
selecting the OPEN button on the toolbar. In either case the new program will become 
the focus in the window and the blue title bar will show the program name. Any 
existing program previously displayed in the window will still remain open in a queue 
behind the focus program. You can move easily between the queue of programs just by 
clicking the green arrow buttons on the toolbar, or by selecting the program by name 
from the list under the WINDOW menu.

iv

COMMENTS
An exclamation mark at the beginning of a line tells the computer to ignore the line 
because it is NOT a program instruction. These reminder notes are called “comments” 
and they can be used anywhere in your program. Indeed it is good practice to make 
comments after certain lines of code to remind yourself what that line of code is 
actually doing, because it is not always blindingly obvious. As an alternative to the 
exclamation mark (!) you may type the word REM, short for reminder. 

LOADING LIBRARIES
Loading libraries is an alternative to using the LIBRARY statement. You an use a script file to load
 one or more libraries into the editor, or you can specify the library on the command line, e.g.
LOAD mylib.tru, yourlib.tru. 
Unlike the LIBRARY statement, there are no quote marks around the file names. Loaded libraries 
work as if the library routines have been incorporated into the main True BASIC language system. 
Any routine in the loaded libraries is therefore available to your program, in fact the loaded 
libraries are available to all your programs in the current session. When you shut down the editor 
the loaded libraries are cleared from memory and forgotten. You can also clear all loaded libraries 
by using the FORGET command on the command line. 
CAUTION: if you are using line numbers in your program, remember to leave plenty of spaces 
between line numbers because the editor inserts extra code into your program to achieve the LOAD
feature. 

The editor keeps track of each program in the queue, so that when you switch from one 
to another, the cursor position is in the same place as it was when you last used the 

program. A maximum of ten programs can be open at the same time.



UNDO and REDO
UNDO can be applied to:
CUT
COPY
PASTE
FUNCTION F4 (select text block)
FUNCTION F5 (copy and paste)
FUNCTION F6 (cut and paste)
DELETE
TYPING
KEEP
INCLUDE
DO….
FORMAT
UPPER
LOWER
FORMS
TBILT
The UNDO menu item shows the current action, e.g. UNDO delete.

In the case of typing, UNDO will restore the original text before CONTINUOUS typing 
began. For example, suppose you type ABC anywhere on an existing line, then UNDO 
will remove ABC. You can still use the back-space key to remove individual letters. You 
might have typed say 20 lines of code, and when you press UNDO then all 20 lines will 
be removed. To limit the amount of text in a single “UNDO typing” group, you can break 
up the groups by highlighting a letter or word and then clear the highlight before carrying 
on with your typing. By selecting a highlight you are effectively creating a new activity, 
so the editor closes the current typing activity and opens a new activity called “Select” 
and waits for you to decide what you are going to do next. If you carry on typing, then 
the editor renames “Select” as “Typing”.

Each time you begin an activity such as typing, cut, copy, paste, DO FORMAT etc., the 
editor takes a “photocopy” of the current program and keeps it in an internal array so that 
you can return to this copy if you want to UNDO the activity. There are ten elements in 
the internal array so you can use UNDO to backtrack ten times. It is unlikely that any 
program will exceed 2MB so all 10 “photocopies” will only take up 20MB of memory. 
Obviously you will perform more than just ten activities, so on the eleventh activity, the 
first internal array is re-used. This first-in-first-out process continues indefinitely.

For example; suppose you have already done 9 different activities and you are now 
typing, i.e. the tenth item in the undo list is typing. You now want to do a cut and paste 
operation so your undo list will now have two more items – “cut” and “paste” as the 
eleventh and twelfth activities. The internal array is limited to 10 elements so the whole 
list moves up two places to allow cut and paste to occupy elements 9 and 10. Your 
previous typing activity now occupies element 8. The two old elements at the top of the 
list are discarded. You now decide to back track 5 places up the list with the UNDO 
feature. Now you realize this is too far so you move down the list with the REDO feature 
by two places, i.e. element 7. Ahead of you there are still typing, cut and paste, but you 
decide that element 7 is where you want to be, so you begin typing your program again. 
This typing operation will now OVER-WRITE element 8 and subsequent activities will 
over-write elements 9 and 10. However, all the elements prior to element 7 will still be 
preserved.



When you use the UNDO feature the internal arrays are restored in reverse order. 
Likewise, when you use REDO, the internal arrays are used in forward order. The penalty 
for having this extensive feature is a slight delay when switching from one program to 
another as the internal arrays are downloaded to the hard drive. There are no significant 
delays when editing individual programs.

When you change the current program, these internal arrays are downloaded onto your 
hard drive, so that if you go back to this program, the undo features are still operational 
by uploading these internal arrays. This applies to all ten possible open programs. All the 
hard drive files associated with open programs are deleted when you EXIT the editor. 
Only the relevant hard drive arrays are deleted when you CLOSE a program.

PRINTING HARDCOPY
The editor offers you two strategies for listing hardcopies of your programs. The first is a 
legacy method sometimes referred to LTPR or line printer. The second method treats the 
printer as a virtual window, which allows both PRINT and PLOT instructions. Some 
commercial printer (HP) drivers have difficulty responding to both these print methods. 
In version 6.007 an extra print method has been added, which uses a thirty party freeware 
program called “prfile32.exe” to execute hard copy printing. The editor automatically 
searches for this program. If it has been installed on your computer, then the editor will 
use it.

There is another third party freeware program called “hardcopy.exe” which installs an 
extra green printer icon in the top right corner of all windows. Clicking this button 
produces a hardcopy graphics picture of the current window. This can be used to 
hardcopy print the output window, for example, as well as visible portions of the current 
program in the editor window.   



TOOLBAR
In this version of the editor there is also a toolbar at the top that gives you quick 
access to a number of frequently used features. When the cursor is in the toolbar zone 
it changes shape to a pointer; tooltips also appear identifying the function of each 
button on mouseover.

Back              New                 Cut                   Run                Insert                Home                                    Exit 
editor
    Forwards        Open                Copy                 Format           Find                 End
                                Save                 Paste                 Undo            Replace            Help                     Close 
program

current line                  current character        Information box (and command line)

The central area (you can change this color later) is your working page. Below this 
page are two information boxes that tell you the current position of the cursor. The box 
on the left gives you the line number and the box on the right gives the character 
number counting from the left. On the right at the bottom of the window is an 
information box. This box is also the command line where you can type instructions 

v



UNWRAPPED TEXT
The most important difference between the True BASIC editor and other text editors is 
that when you type your instructions, the lines of text are NOT WRAPPED, i.e. when 
your typing reaches the right hand margin it just carries on and on. The text does not 
automatically drop to the next line down. The only way you can drop to the next line 
down is to press the RETURN key on your keyboard because this signifies the end of a 
line. The reason behind this method of operation is that True BASIC only allows ONE 
instruction per line, but that instruction may be too long to fit the width of the page, so 
the editor will always allow you enough space for your instruction regardless of how 
long it is. There is a scroll bar across the bottom of the editor page so that you can view 
anywhere along very long lines.
If long lines worry you, and you would prefer to see your all of your program without 
having to scroll across the page, then you can use the ampersand sign (&) to terminate 
a line as long as you begin the continuation line with an ampersand too.

WRAPPED TEXT
Under the EDIT menu there is an option that allows you to view wrapped text. For 
example you may wish to consult a text document during the course of writing a 
program. Please note that you cannot use COMPILE, RUN or BIND when you are in 
the WRAP mode. This feature has been enabled in this version.

OVER-TYPING
If you press the INSERT key the editor will change from inserting characters at the 
cursor point to over-typing at the cursor point. If you press the INSERT key again then 
insert typing will resume. Unlike all previous editors, this version indicates which of 
these two modes is operational, by illuminating the over-type icon on the toolbar.

FORMATTING TEXT
The editor is very tolerant of the way you type the program instructions. You can use 
upper case or lower case or both. You can also add spaces as often as you like if they 
make things clearer to read. Indeed there is a utility feature built into True BASIC 
that will “format” your code, i.e. it will indent certain keywords to make the program 
easier to read and easier to understand the way it is structured. In a way it is a bit like 
using paragraphs and bullet points in ordinary text. You will find the format feature 
one of the most useful items on the True BASIC menu. 

ERROR DETECTION
Whilst True BASIC is tolerant of the way you set your program out, like all other 
computer languages it is not so tolerant about the instruction code itself. When you 
type an instruction it has to be word perfect, and if there is any punctuation it has to 
be perfect too. It is not good enough to get it nearly right; it has to be perfect. 
Fortunately, True BASIC is wise enough to know that it is dealing with human beings 

vi

directly to the computer. If you click the mouse inside the information box it will turn 
blue, and you can begin typing your instructions. For example, if you type the word 
“version” in the blue box, the computer will immediately respond with the current 

version number of this edition. Note that after v6.006 there is an additional red STOP 
button on the toolbar, located between the PASTE and RUN icons. Clicking this icon 
opens the dialog box that allows you to stop a running program.



that have a habit of making mistakes, so it has an extensive error detection system 
built in. When you attempt to RUN your program, if you have made any mistakes then 
True BASIC will almost certainly find them. In this version of the editor your source 
code is subjected to the error detection process whether you compile, run or bind your 
code.

Let us suppose that you have loaded the program SIMPLETEST.TRU and that we 
have incorrectly spelled the word PAUSE and we have used the word PAWS instead. If 
we attempt to RUN the program then we would expect the compiler to detect this error 
and report it. This will give you an opportunity to see how the error detection system 
works. Select RUN from the RUN menu.

   
If the error detection process picks up an error or a series of errors, then these will be 
presented on screen in a separate error window in the form of a scrollable list. If you 
click your mouse on any line in the list then the corresponding error line in your code 
will be highlighted.

The information box shows that there was an error while running the program. The 
compiler detected the errors, and these are displayed in the error window in tabular 
form. If you click on any line in the table of errors, then the corresponding line in your 
program will be highlighted. The Preferences box allows the user to change the full 
line highlight to just the first character.

If you correct the error, the program will run successfully and prints the phrase ‘Just a 
test’ ten times in the output window. To exit from the program and return to the editor 
you must press any key or click the window with the mouse.

vii



You are free to use upper or lower case but my advice would be to use lower case for all 
your variables and upper case for keywords. The built-in DO FORMAT option will 
automatically convert keywords to upper case for you, so you can use lower case for 
everything. There is a strong body of evidence that suggests lower case is much easier 
to read.

BREAKPOINTS
Breakpoints mark your program at the line where the cursor is positioned. The 
BREAKPOINT option under the RUN menu is normally disabled (grayed out) and only 
becomes active when you select DEBUG MODE from the SETTINGS menu. The 
breakpoint will appear as the word <<<BREAKPOINT>>> surrounded by angle 
brackets. If you RUN your program with breakpoints marked, the program will stop at 
the first breakpoint. A dialog box will give you the opportunity to continue running 
your program. All breakpoints are cleared when you toggle DEBUG MODE again.
If you add a series of variable names after a breakpoint, e.g.
<<<<BREAKPOINT>>>> a,b, string$
then when the program stops you will see a list of these variables and their current 
value. This is a very useful feature for locating bugs. For example, the breakpoint can 
be inserted inside a FOR…..NEXT loop to check how the value of variables change 
with each increment of the loop. The variables list dialog box will give you the 
opportunity to continue running your program.

FUNCTION KEYS 
If the Function keys option under the SETTINGS menu is ticked then: 
F2 will make the command line active (blue)
F3 will display the FIND window.
F4 will mark (highlight) the first line in a block of text. A second press of F4 will mark 
the end of a block of text. 
F5 will copy and paste the text marked by F4 to the current cursor position.
F6 will cut and paste the text marked by F4 to the current cursor position.
F7 will undo the last operation.
F8 will toggle a breakpoint on the current line.
F9 will run the current program.
(NB. This feature has been enabled in this version.)

viii



EXIT THE EDITOR
If you wish to exit the editor you must select EXIT under the FILE menu or you can 
click on the ‘close window’ button (white cross on a red background). You will be asked 
if you are sure you want to QUIT. You can eliminate this reminder by un-ticking the 
‘Confirm quit’ option under the SETTINGS menu.

If you click on YES (or press the <RETURN> key then you will be asked if you wish to 
save your program if you have made any changes to the program since the last save 
operation. If you have not made any changes you will not be asked if you wish to save. 
Likewise if you have selected ‘Save on exit’ under the settings menu then your 
program will be automatically saved without displaying this dialog box.

The same process will be applied to all currently opened programs before True BASIC 
finally terminates.

ix



PREFERENCES
Under the SETTINGS menu, the user can select Preferences to set up the editor to suit 
the user.

To set the font or background color for the source program window, first click on the 
radio button labelled Program window, and then click on the button for font or 
background color.

If you want the whole line highlighted to indicate a compile error then click on the 
check box. Otherwise only the first character in the line where the error is located will 
be highlighted.

If you want the text cursor to change from a simple vertical black line to a bold red line 
that is easier to see, then click on the check box.

If you want to save a change that you have made then click the APPLY button. This 
will allow you to continue to make other changes. With each change you must click the 
APPLY button to save the change. When you have completed all your changes you 
must click the OK button to execute all your saved changes.

If you want the default settings to be restored then click on the appropriate button. If 
you click on either the APPLY button or the OK button, the defaults will be restored 
immediately.

If you click the CANCEL button at any time, then all saved changes will be ignored 
and the current settings will remain in force.

The printer settings allow you to change the number of print characters across the 
page and the number of lines down the page. The default is 80 characters and 60 lines.

x



RIGHT CLICK /SHORTCUT MENU
By clicking the right hand mouse button you can reveal the shortcut menu.

This menu works like the main menu. It will disappear as soon as you make a 
selection from the menu.

xi

SETTING ALIASES
SET ALIAS under the PREFERENCES menu allows you to create new aliases. There 
are three default alias types, {library}, {do} and {help}.
You may add or edit more in the fields provided.

Note: it is important to used curly brackets around the alias type, followed 
immediately by the directory pathname. Aliases added under SET ALIAS are 
permanent, i.e. the editor will remember the aliases when you shut down so that when you
restart the editor the aliases will still be in effect. Temporary aliases can be added at the 
command line or by means of a SCRIPT file. Temporary aliases are not remembered 
when the editor shuts down. 

Some previous versions of the TBeditor allowed users to ignore the alias group name in 
curly brackets. The editor looked into the three default folders to see if the file was 
located in these folders. This feature has been preserved for the benefit of legacy code. 
In other words, as long as the file is in any of the three default alias folders then you 
do not need to specify the alias group name in curly brackets.



                      

The reset button restores the three default alias types and clears the remaining fields.

COLORTEXT
This new feature will color certain words in your True BASIC source code. Currently 
these parts are:
Linenumbers (if any)
Comments
Keywords (i.e. statements)
Functions and definitions
CALLs and SUBs
Literal quotes and string variables
Aliases
Numeric variables and constants
Punctuation

Depending on the background color, a default set of 9 different colors is used to color 
these parts. The standard color numbers are: 

BLACK (or dark backgrounds)
7 (gray) for Linenumbers
10 (green) for Comments
9 (blue) for Keywords (i.e. statements)
13 (magenta) for Functions and definitions
12 (red) for CALLs and SUBs
11 (cyan) for Literal quotes and string variables
14 (yellow) for Aliases

xii



24 (orange) for Numeric variables and constants
-2 (white) for Punctuation

WHITE (or light backgrounds)
8 (dark gray) for Linenumbers
2 (green) for Comments
9 (blue) for Keywords (i.e. statements)
13 (magenta) for Functions and definitions
12 (red) for CALLs and SUBs
3 (dark cyan) for Literal quotes and string variables
6 (dark yellow) for Aliases
25 (brown) for Numeric variables and constants
-1 (black) for Punctuation

Users are also free to create their own custom list of 9 colors in a simple text file. 
However, these colors are applied regardless of the background color.

COLORTEXT can be activated from the SETTINGS menu or from the right click 
menu.

Defined functions will only be colored correctly if the function has previously been 
declared e.g. DECLARE DEF mydef.

Once COLORTEXT has been switched on, then all currently open source programs will 
be colored, except wrapped files.

As you type, the text color may change with each keystroke until you press the space 
bar or type a punctuation mark. At that point the text will take on a fixed color. 

To switch COLORTEXT on click the ON button. To switch off COLORTEXT then click 
the OFF button. If you leave the filename field blank then the default colors are used. 
If you enter a filename (full pathname) then your list of custom colors will be used.

                            

xiii



LINE NUMBERS
Legacy code often uses line numbers, and some users may prefer to continue working with line numbers, 
even though TrueBASIC does not require them. The TrueBASIC editor works with or without line 
numbers. There are several utility programs which allow users to number, renumber and un-number 
programs. It is important to note that programs are automatically re-numbered after CUT and PASTE 
operations or when lines are deleted. GOTO and GOSUB references are also updated during re-
numbering.

AUTO LINE NUMBERING
The editor has a built-in feature that allows automatic line numbering. To invoke this feature the user must 
insert the following line as the first line of their program:

100 !AUTOLINENUM

Note that the line must begin with a line number followed by a space, followed by a comment mark (!). 
The keyword AUTOLINENUM is not case sensitive. The line number signifies the number you wish to 
start at. All subsequent lines are numbered in increments of 10. By embedding the automatic line 
numbering switch inside the program, means that the editor can detect which programs require numbering 
and those that don’t. This leaves the user to move freely between programs without having to switch this 
feature on or off for each program.

If the keyword line is removed, then the program becomes just a regular manually numbered program. 
Likewise a manually numbered program can be made automatic by adding the keyword line at the 
beginning, regardless of whether the current program is already numbered or not.

DELETING TEXT
From the current cursor position, the DEL key will delete single characters ahead of the cursor. The BS 
(backspace) key will delete text behind the cursor. The DEL key will also delete any highlighted text. 
Similarly, the back space key will also delete highlighted text.

If a block of text is already highlighted when you PASTE any text from the clipboard then the highlighted 
text will be replaced by the pasted text.

Note that EDIT fields, i.e. input boxes such as those in the FIND box or the CHANGE box , will now 
allow pasted text as well as typed text.

STOPPING PROGRAMS
There may be times during the course of developing programs that you will attempt to run a program that 
has an error that hangs the computer, or in some other way doesn’t terminate properly. For example you 
may have a DO…..LOOP statement with no EXIT DO to escape the loop. On the toolbar there is a red 
STOP icon which produces an Emergency Stop dialog box containing a STOP button. When you click on 
this button, the running process will abort immediately and you will be returned to the editor.



                                  

Note: if you are running a program, then it may produce a window that obscures the editor and the STOP 
toolbar icon. To reveal the editor window, click on the editor label on the taskbar or slide the program 
window out of the way to show the editor underneath.

HIGHLIGHTING TEXT
There are two ways to highlight text:

(1) By manually dragging the mouse across the text.

(2) By using the arrow keys in conjunction with SHIFT.

In the first method the highlighted text NEVER includes the end-of-line characters at the end of the last 
line highlighted. As a result, when this text is pasted into your text there are no “returns” or extra lines 
generated.

In the second case the end-of-line characters are ALWAYS included. As a result, when this text is pasted 
into your text then a new line is generated immediately after the end of the pasted text.

If you highlight any text prior to a paste operation, then the pasted text will replace the highlighted text.

If you highlight any text prior to typing at the keyboard, then the typed text will replace the highlighted 
text.

PEN COLOR (for lines of text)
A new text coloring feature has now been added. If you are modifying a program, you may wish to print 
the modifications in a different color so you can easily recognize what changes you have made. This 
cannot be done by changing the pen color because this will change the color of the whole text. Individual 
lines or blocks of text can now be colored by adding a color signature to each line. This done by 
highlighting the block of modified text and pressing the keys (#) for blue or (%) for red. This is a toggle 
action, so you can remove the color signatures by highlighting the same block of text and pressing either 
(#) or (%). The signatures (!#) or (!%) can also be added manually. The colored text can be run, compiled 
or bound in the normal way.



The True BASIC Editor menus

Normally you would use the mouse to click on menu headings, and then to click on 
items under the heading. Alternatively you can press the ALT key on the keyboard to 
activate the menu bar. The side arrow keys can be used to drive the heading highlight 
backwards and forwards across the menu headings. The up and down arrow keys can 
then be used to highlight individual menu items. Pressing the <RETURN> key will 
select the current menu item.

 FILE MENU
• NEW - this option opens a new empty editing page in the main window with 

the default title “untitled” followed by a sequential number. A maximum of ten 
new and existing windows can be open at the same, and you can switch 
between them as often as you like.

• OPEN – will raise an open file dialog box where you can navigate through 
drives, folders and files to select the file of your choice. The list of files is 
limited to program files only, i.e. those files with the extension TRU or TRC. 
You can extend this by selecting ALL FILES in the file type box. When you 
select a file it will displayed with the file name as the window title. The 
information box will display the total number of lines in the program.

• CLOSE – will close the current program in the main window. This action is 
identical to clicking the mouse on the close button (black cross on a gray 
background). You will be asked if you wish to save the contents of the window. 
When a program is closed, the code is erased from the computer’s memory.

• SAVE – will save the contents of the current window using the window title as 
the file name. The file will be saved in the same folder as the original version 
when the file was opened. In other words the new version will over-write the 
existing version.
If the program is being saved for the first time, i.e. it is untitled, then you 
should make sure you give your program a meaningful name because there is 
every chance that in a matter of weeks you will forget what it is called, so you 
will have to hunt through your programs folder to see if you recognize the 
name. For example, if your program calculates the time of sunrise and sunset 
at any geographical location, then SUNSET.TRU would be an appropriate 
name. Calling your program MYPROG.TRU or ANYPROG.TRU is not very 
helpful and will certainly not jog your memory as you glance through your 
program folder. Clearly this advice becomes more important the greater the 
number of program files you have saved. It is not unusual for True BASIC 
programmers to have hundreds, if not thousands, of saved program files on 
their hard drives, purely because it is so easy to write programs in this 
language.

• SAVE AS – will raise a save file dialog box that will let you specify any name 
for the file and will allow you to save the file in a folder of your choice. The 
default file name is the same as the window title, and the default destination 
folder is the same as the original file when it was first opened.

xiv



• UNSAVE – is a drastic measure because it will completely delete any file that 
you specify. You will be asked if you are sure you want to delete the named file. 
Once you delete a file there is no way to recover it. This is NOT the same as 
dragging a file to the recycle bin.

• RENAME – changes the name of the current window. It does not send a copy of 
the current source text to a file. If the current source has already been saved to 
a file, then this existing file will remain unchanged. This corresponds to the 
RENAME command that executes exactly the same action.

• PAGE SETUP – this option presents you with a special dialog box that allows 
you to specify certain features of any printed output.

• PRINT – allows you to select all or a part of your program to be hard copy 
printed. You select the text by dragging the mouse to highlight the required 
text. You can also select text using the SHIFT KEY in combination with the 
DOWN-ARROW key. This procedure uses a high definition print method more 
suited to proportional fonts. At present this option only prints in COURIER 10 
point font.

• LISTING - allows you to select all or a part of your program to be hard copy 
printed. You select the text by dragging the mouse to highlight the required 
text. You can also select text using the SHIFT KEY in combination with the 
DOWN-ARROW key. This procedure uses a standard print quality with 80 
characters per line and 60 lines per page as default values. These default 
values can be changed under the SETTINGS menu. It is more suited to fixed 
pitch fonts such as COURIER and LUCIDA CONSOLE.

• CHAIN TO….- allows the user to select an executable file, i.e. with the 
extension .EXE, and to run this application directly from the editor. When the 
application is shut down, the editor is re-activated and continues where it left 
off.

• CHAIN WINDOWS APP – allows the user to select an application file, such as 
a WORD document file (with the extension .DOC) or an Excel spreadsheet file 
(with the extension .CSV). The editor will run the main application and will 
automatically load the selected file. Both the Windows application and the 
editor continue to be active. 

• EXIT – will close all windows and shut down the True BASIC editor. You will 
be asked if you wish to save the program as each window is closed if the SAVE 
ON CLOSE menu option has NOT been selected.

EDIT MENU

xv

• UNDO – this option will re-instate the original program text prior to a CUT or 
PASTE operation. In other words, if you perform a CUT or PASTE action 
and you decide that you have made a mistake and want to return to the 
original text before you made the mistake, then using UNDO will 
achieve this. There are now ten levels of UNDO available to the user - in other 
words, you can backtrack ten times. The menu is labeled with the operation that 
can be undone, e.g. UNDO paste. The menu item is labeled "can't UNDO" when 
you can no longer backtrack any further.

• REDO – this option allows you to effectively undo a previous undo operation. In 
other words you can reinstate the former text after you have done an UNDO 
operation. As with UNDO, you can REDO repeatedly.



your program with the PASTE option. CTRL-X can be used as an alternative 
way to execute CUT.

• COPY – will copy any highlighted text to the clipboard, but will not erase that 
portion of text from your program. CTRL-C  can be used as an alternative. 
Portions of text held on the clipboard can be inserted back into your program 
with the PASTE option.

• FIND AGAIN – is a quick alternative to the FIND dialog box. Once the FIND 
search has located the first instance of a match, then you may use FIND 
AGAIN to progressively locate all the other instances.

• CHANGE – is similar to FIND except that when a match is found you have the 
option to replace the match with a specified alternative. You can replace the 
first instance of a match or you can replace all instances.

• KEEP – will retain the highlighted portion of your program and discard the 
rest. It is a quick way to delete large parts of your program.

• INCLUDE – will allow you to specify the name of a program file. The contents 
of this file will then be inserted in your program at the current cursor position.

• SELECT ALL – is a quick way to highlight the whole of your program text 
rather than dragging the mouse across all the text, which may occupy many 
pages.

• MOVE TO – this is a quick and useful way to place the cursor at a specific line 
or a specific word in your program. Alternatively you can select the name of a 
sub-routine from a list of all the sub-routines in your program, and the cursor 
will move to the start of that routine.

• WRAP – this option converts the current window to wrapped text, i.e. long 
lines are truncated at the edge of the window and are continued on the next 
line. In the WRAP mode the editor can be used as a general-purpose text 
reader. CAUTION: None of the options under the RUN menu will work while 
the window is in WRAP mode. Click the WRAP option again to restore normal 
programming mode.

RUN MENU
• RUN – this option will run the current program, i.e. the program in the front 

xvi• CUT – will copy any highlighted text to the clipboard, and will then erase that 
portion of text. Portions of text held on the clipboard can be inserted back into 

• FIND – will raise the find dialog box that allows you to specify and locate any 
word, part word or phrase in your program text. The search can be an exact 
match including upper and lower case, or the search can be independent of 
case. Normally the search begins at the current cursor position and proceeds to 
the end of your program. Alternatively you can “wrap” the search to include 
the whole of your program. The first instance of any text that matches your 
specification will be highlighted. After a FIND operation the FIND window 
stays on top, ready to be used again.

• PASTE – will transfer text from the clipboard to the point immediately after the 
current cursor position in your program. CTRL-V can be used as an alternative. 
You can position the cursor anywhere in your program by clicking the mouse at  
that point. The cursor location boxes at the bottom of the editor window indicate 
the current line and character position. If any text is highlighted, PASTE will 
replace the highlighted text with textfrom the clipboard.

page of the editor window. When the program has finished running the title 
bar will tell you to click the mouse or press any key. Either action will return 
you to the editor. If True BASIC encounters any errors, these will be shown as 



xvii
a list. You may select any of the listed errors and the cursor will immediately go 
to the line and character position where the error occurred. Prior to running your 
program, the editor adds a few extra lines of code to a copy of your source 
program (this preserves the original) and it is this copy that is run. These extra 
lines include adding any loaded libraries and aliases. In the case of MODULES 
and EXTERNAL program units, no extra code is added and no loaded libraries 
are added. Remember that the default directory is where the bound program is 
launched from. CAUTION: if you are using line numbers, make sure to leave 
plenty of space between your line numbers to allow the editor room for the extra 
code between your lines. Intervals of 10 are normally sufficient. 

• BREAKPOINT – will mark your program at the line where the cursor is 
positioned. BREAKPOINT is normally disabled (grayed out) and only becomes 
active when you select DEBUG MODE from the SETTINGS menu. The 
breakpoint will appear as the word <<<BREAKPOINT>>> surrounded angle 
brackets. This is a toggle action feature, i.e. if the line already has a breakpoint 
then it will be switched off, but if there is no breakpoint then one will be added. 
If you RUN your program with breakpoints marked, the program will stop at 
the first breakpoint. A dialog box will give you the opportunity to continue 
running your program. All breakpoints are cleared when you toggle DEBUG 
MODE again. If you insert a series of variable names immediately after the 
breakpoint, e.g. <<<BREAKPOINT>>>a,n,string$,xyz,b
then when your program halts at the breakpoint a list of all these variables and their
 current values will be displayed. In this way you can track the changing values of 
any variable while the program is running. This is a valuable aid to debugging. 
CAUTION: if you are using line numbers, make sure to leave plenty of space 
between your line numbers (10 lines is usually sufficient) to allow the editor to 
insert extra code between your lines to achieve this breakpoint feature.

• BIND – is a special linking process that combines your program with any 
library modules and other resources to produce a stand-alone executable 
application. The default name of this application is the same as your original 
source code except the extension is changed to EXE instead of TRU. A dialog 
box allows you to change this name and to specify the folder where the 
executable file will be saved. NOTE: this feature is NOT available in the 
Bronze edition so the menu item is grayed out and disabled. Prior to the 
binding process, the editor adds a few extra lines of code to a copy of your 
source program (preserving the original) and it is this copy which is bound. 
These extra lines include adding any loaded libraries and aliases, but DO NOT 
include the code that retains the output window. In other words, when your 
program reaches the END statement, the proram will stop and the screen will 
clear. If you need to retain the output window, you must add the code yourself. 
For example, immediately before the END statement add the following line:
CALL TBexitroutine
This will preserve your last screen until the user presses any key or clicks the 
mouse.

• COMPILE – will cause your program to be converted into a coded format that 
the computer understands. Unlike earlier editors, your program will be 
preserved. The compiled version will be automatically saved with the same file 
name and in the same folder as your source program, but the extension will be 
changed to TRC instead of TRU. Prior to the compiling process, the editor adds a 
few extra lines of code to a copy of your source program (preserving the original) 
and it is this copy which is compiled. These extra lines include adding any loaded 
libraries and aliases. In other words, a compiled program will run exactly like a 
source program. The exceptions to this rule are MODULES and EXTERNAL 
program units. In these two cases, no extra code or loaded libraries are added. 
Remember that the default directory is where the TRC program is launched from. 
CAUTION: if you are using line numbers, make sure to leave plenty (10 is usually 
sufficient) of space between your line numbers to allow the editor room for the 
extra code between your lines. 



WINDOW MENU
• RECENT FILES – this option displays a rolling list of the ten most recently 

closed files. As you close more files, older files will drop off the bottom of the 
list.

NOTE: At the bottom of the WINDOW menu there will be a list of all the program files 
that are currently OPEN. The list shows the full path name of each file. The current 
program file will be ticked. You may click the mouse on any of these file names to force 
the file to become the focus of the editor. When you close a program file it is removed 
from this list.

SETTINGS MENU
• SAVE ON CLOSE – this option sets an internal toggle action switch that 

automatically saves your program when you close the window. When the 
internal switch is active a tick will appear against this item. Click on this item 
again to cancel the internal switch and the tick will be erased. The default 
condition is OFF. The True BASIC editor will try to help you avoid 
catastrophic mistakes by presenting you with a dialog box that asks if you wish 
to save your program every time you click on the close window button.

• BACKUP ON SAVE – this option allows you to set an internal switch that will 
automatically produce a back-up copy of any program at the time you save the 
program. The back-up copy has the same name as the original file except the 
extension is BAK instead of TRU. When the internal switch is active a tick will 
appear against this item. Click on this item again to cancel the internal switch 
and the tick will be erased. This is known as a toggle action switch; click once 
for ON and click again for OFF. The default condition is ON.

• DEBUG MODE – is a toggle action switch that enables the BREAKPOINTS 
and TRACE options under the RUN menu. When DEBUG MODE is switched 
ON the item is ticked. When the switch is OFF the tick is erased and your 
program will run as normal. All breakpoints are removed when DEBUG 
MODE is switched OFF. The default condition is OFF.

xviii

• DO UPPER – is a built-in routine that will convert the text of any True BASIC 
program to all upper case (capital letters).

• DO LOWER – is a built-in routine that will convert the text of any True BASIC 
program to all lower case (small letters).

• TRACE – is another feature that helps you locate errors in your program by 
stepping through your program line by line. Essentially TRACE puts a 
breakpoint on every line. TRACE is normally disabled (grayed out) and only 
becomes active when you select DEBUG MODE from the SETTINGS menu. All 
breakpoints are cleared when you toggle DEBUG MODE again.

• DO FORMAT – is a built-in routine that indents your program text depending 
on certain keywords in order to make the text more readable. It also helps you 
to locate errors because it aligns corresponding statements such as FOR…
NEXT and DO….LOOP. If these statements are not perfectly aligned then 
there must be an error in the code between these statements. You will find 
that this menu option is one of the most frequently used features in the editor.

      Remember that the default directory is where the bound program is launched 
from. CAUTION: if  you are using line numbers,  make sure to leave plenty 
(10  is  usually  sufficient)  of  space  between  your  line  numbers  to  allow  the 
editor room for the extra code between your lines. 

• DO – is a general-purpose command in which you specify and run an 
EXTERNAL program unit. A file selector dialog box will assist you in locating 
the DO program of your choice.  Note: the program RUNDO.TRU is NOT a DO 
program and will generate errors if you attempt to run it. Do not move or delete 
this file because you will no longer be able to run any DO programs. 



font for all editor windows is ASI MONO, 10 point PLAIN (regular) or 
COURIER, 10 point PLAIN, and the standard default font color is BLACK. As 
an alternative LUCIDA CONSOLE 10 point PLAIN can be used as a fixed 
pitch font. The preferences dialog box also allows you to set the number of 
characters that will be printed across the hard copy page and the number of 
lines that will be printed per page. The default settings are 80 and 60 
respectively. Code lines longer than 80 characters will be wrapped in the hard 
copy print. 

• BINDER – allows you to select which binder you wish to use, i.e. the older 
version binder that requires DLL files in order for executable programs to run, 
or the new binder (5.5b19) which does not require DLL files to run executable 
programs. Note that the new binder has a number of residual bugs that 
prevent some TrueCtrl objects from working correctly.

• ALIASES – this menu option allows you to add or edit the list of alias 
pathnames used by the editor to locate filenames used in LIBRARY 
statements. Note that when the file is located in a sub-folder of the directory 
where the new editor is located, e.g. Tblibs, then only the sub-folder name is 
used in the alias list. If the file is located in a different directory altogether, 

• FUNCTION KEYS – is a toggle action switch that enables or disables the 
function keys. This feature is now enabled in this version.

• SHORT CUTS – is a toggle action switch that shows or hides short cut 
keystrokes against each menu item. The default condition is ON, i.e. short cuts 
are shown.

xix

then the full path to that directory must be given, e.g. c:\my documents\my 

• CONFIRM QUIT – is a toggle action switch that causes a dialog box to appear 
whenever you attempt to shut down True BASIC. The dialog box requires that 
you confirm your intention to shut down. This option will avoid shutting down 
when you did not mean to do this. When the confirm switch is active a tick will 
appear against this item. Click on this item again to cancel the internal switch 
and the tick will be erased. The default condition is ON.

• HOTSTART – is a toggle action switch that causes all the open files that you 
were using in the previous session with True BASIC to be loaded automatically 
when you start up True BASIC in the current session. When the hotstart 
switch is active a tick will appear against this item. Click on this item again to 
cancel the internal switch and the tick will be erased. The default condition is 
ON.

• PREFERENCES – raises a special dialog box where you can set the color of the 
editor window, and the name and color of the font used to print the text in the 
window. The default page color for the editor window is SAND. The default 

pictures. Do not use a trailing backslash.
Aliases can also be used with the OPEN file statement provided the file 
already exists, i.e. CREATE OLD is specified. The filename must also be a 
string literal within quote marks and not a string variable.
Legacy programs that used curly brackets and an alias group name, e.g. 
{mygroup} will be handled by the new alias system, even though the group 
name is ignored. Aliases that are added under the ALIAS menu are 
permanent, i.e. the editor will remember them so that when you shut down and
restart, the aliases will still be in effect. Note that temporary aliases can be 
added on the command line or by means of a SCRIPT file. Temporary aliases 
are not remembered when the editor shuts down.



HELP FOR True BASIC

• HELP – this option shows a small text window with a drop down index and an 
edit box that allows you to search the help file. You can resize this window to 
suit your purpose and it will remain at this size for the remainder of the 
session while you are working with True BASIC. The help files contain details 
of all the functions and statements in True BASIC and how to use these 
features. There are a number of other useful items of information in the help 
files including extracts from this book. You can select which help file you want 
to use from the CONTENTS menu. This help file will remain current until you 
change to another help file. 

      The full alphabetical index will be shown when you click on the down arrow 
button to the right of the topics title. When you select a topic from the index, 
the text related to the topic will be shown in the main text box. 

      If you are uncertain what you are looking for, you can type an associated word 
or concept in the search box then click on the green GO button. The program 
will then search the whole text in the current HELP file for a match and will 
display the results in the text box.  

      A unique feature of the HELP option is that you can edit, change or add items 
to the help file using the EDIT or INSERT options under the HELP WINDOW 
menu. COPY and PASTE options also allow you to copy code fragments 
contained in the help text box and transfer these fragments direct to your 
program

• FORMS – this option is grayed out (disabled) in all versions. It is a new option 
to True BASIC but must be purchased separately. The application 
automatically enables this menu option to make it fully integrated with the 
editor. FORMS is not available in any earlier versions. This program allows 
the user to design window layouts using a simple graphical drag-and-drop 
interface. Most importantly, FORMS generates the program code to reproduce 
your design, and includes this code in your own program. You can use FORMS 
repeatedly to create or modify as many windows as you like. Each window may 
contain as many controls and objects as you need. The code generated by 
FORMS is a complete skeleton application that can be run immediately 
without further intervention by the user. Included in the code are comments to 
guide you to the point where you need to insert your own program code to 
respond to user input. 

• TBILT – this option is grayed out (disabled) in all versions except Gold. It is a 
regular option to True BASIC but must be purchased separately. The 
application automatically enables this menu option. This is a free standing 
program that allows the user to design window layouts using a simple 
graphical drag-and-drop interface. The editor automatically chains to TBILT. 
Most importantly, TBILT generates the program code to reproduce your 
design, and leaves this code on the clipboard for you to paste into your own 
program.

• ABOUT True BASIC – will show you the version number, edition and release 
date of the version of True BASIC currently running.

xx

• COLORTEXT – this feature uses different colors for line numbers (if any), key 
words, calls and sub-routines, definitions and functions, punctuation, aliases, 
strings and numeric variables. Two default color schemes are available 
depending on the background page color (light or dark). The user can also 
define a custom color scheme. This option allows the user to switch colortext on 
or off. Note that when colortext is ON then all current open source files will use 
color text except files that are wrapped. Colortext can be RUN, COMPILED 
and BOUND in the normal way. 



• MANUALS – will display a selection list containing details of all the manuals 
available in the DOCS folder. When you select a manual from this list the 
program will automatically start up an Adobe PDF file containing the selected 
manual. When you close the Adobe Reader window, control is passed back to 
the True BASIC editor. You can also add your own manuals to the DOCS 
folder, provided the manual file itself is in PDF document format, and this 
manual will be automatically added to the list in the editor.

HELP WINDOW MENU
FILE

• PRINT – the current help file topic that appears in the text box will be copied 
to the hard copy printer.

• RUN DEMOS – first select a demo file by highlighting the name (drag the 
mouse across the name), then select RUN DEMOS. The file will be 
automatically loaded into editor window ready for you to run. 

• CLOSE – this option closes the HELP window and returns the user to the 
main True BASIC editor.

EDIT
• CUT – this option is normally disabled (grayed out). It only becomes active 

when the MODIFY or INSERT options are selected. When active you can copy 
any highlighted text to the clipboard, and that portion of text will then be 
erased. Portions of text held on the clipboard can be inserted back into the help 
file with the PASTE option.

• COPY – will copy any highlighted text to the clipboard, but will not erase that 
portion of text from the help file. Portions of text held on the clipboard can be 
inserted into your program with the PASTE option on the editor menu.

• PASTE – this option is normally disabled (grayed out). It only becomes active 
when the MODIFY or INSET options are selected. When active you can 
transfer text from the clipboard to the point immediately after the current 
cursor position in the help file. You can position the cursor anywhere in the 
text box by clicking the mouse at that point.

• MODIFY – this is a toggle action option that allows you to edit the existing 
help file text. For example, you may include additional explanatory notes or 
more examples to the existing topic, or you may correct mistakes if you find 
any. The options CUT and PASTE also become active. First select the topic you 
wish to modify from the drop-down topics list, then click the MODIFY option. 
When you have completed your changes select the MODIFY option again. This 
will erase the active tick mark and will disable CUT and PASTE. At this point 
you will be given the option to SAVE your modified topic or DISCARD it. You 
must exit the HELP window for your modified topic to appear in the drop down 
list.

• ADD NEW – this is a toggle action option that allows you to add extra topics to 
the help file. First select the ADDNEW option to clear the text window ready 
for you to type in your  topic. You must begin your topic with a title inside 

xxi



angle brackets, e.g. <TITLE> and this will ensure that your topic will then 
appear in the alphabetical drop down list. Your topic can be of any length. 
When you have finished, click the ADD NEW option again. At this point you 
will be given the option to SAVE your new topic or DISCARD it. The ADD 
NEW toggle option will then be turned OFF and CUT and PASTE will be 
disabled. You must exit the HELP window for your new topic to appear in the 
drop down list.

• IMPORT – is an alternative to ADD NEW. It allows you to import additional 
help information that has been saved in an external file. In this instance 
multiple help topics can be inserted in one operation. Each imported topic must 
begin with a title in angle brackets. The import file can contain any number of 
topics. A dialog box will request the name of the file and its entire contents will 
be appended to the current help file. This is a very simple way to update your 
help file using files generated by others, e.g. True BASIC Forum Members or 
by True BASIC Inc. You must exit the HELP window for your imported topics 
to appear in the drop down list. 

CONTENTS
Selecting any one of the following items determines which help file the editor will use. 
There are currently eight different help files that cover various aspects and library 
modules included with True BASIC.  In turn this determines the list of topics that you 
can select from the drop-down list.

• USING THE EDITOR – is a series of topics related to using the editor and the 
help feature. The topics are arranged alphabetically. This item is common to 
all editions of True BASIC.

• FUNCTIONS – this section lists and explains all the built-in functions within 
True BASIC and again it is common to all editions. Most topics contain code 
that can be copied to your programs.

• STATEMENTS – this section lists and explains all the statements in True 
BASIC. Most topics contain code that can be copied to your programs. This 
section is common to all editions of True BASIC.

• TRUECTRL – this section details all the sub-routines in the library module 
and explains the syntax and how to use each routine with code examples that 
can be copied directly to your programs. This option is not available to users of 
the Bronze edition. Instead, BronzeTC is included. 

• TRUEDIAL – this section details all the sub-routines in the dialog box library 
module and explains the syntax and how to use each routine with code 
examples that can be copied directly to your programs. This option is not 
available to users of the Bronze edition. 

• TRUECTX – this  section details all the sub-routines in the extended color and 
text library module and explains the syntax and how to use each routine with 
code examples that can be copied directly to your programs. This option is not 
available to users of the Bronze edition.

• TRUETDX – this section details all the sub-routines in the extended dialog box 
library module and explains the syntax and how to use each routine with code 

xxii



examples that can be copied directly to your programs. This option is not 
available to users of the Bronze edition.

• FORMS – this section describes how to use the FORMS program to create 
windows and objects and automatically generate code. This option is not 
available to users of the Bronze edition.

Note: The editor automatically reads all TXT files that reside in the TBhelp folder and 
creates the CONTENTS list from these files. To add another help file to this list, all 
you have to do is drop the file into the TBhelp folder and the editor will do the rest.

If you wish to add more help files you may use Notepad or the TB Editor to create 
additional menu items.

xxiii



CHAPTER

Writing and Running 4

Start True BASIC, if you haven’t already, as described in the preceding chapter.  This time,
instead of using an existing program, you’ll create your own in the editing window.  If you’ve
just started True BASIC BRONZE Edition and chosen "New", you’ll have a blank editing
window called “Untitled 1” because you haven’t yet named your program.  If you’ve been
running an existing program, choose New in the File menu to get a blank window which is
automatically named “Untitled #”.

Creating a Program
Suppose you’ve driven 420 miles on 14.3 gallons of gas.  To compute your gas mileage, you
would divide 420 by 14.3.  You can write a program to do this for you.  Type the following
into the editing window.  Press the Return key at the end of each line.

LET miles = 420
LET gallons = 14.3
PRINT miles, gallons, miles/gallons
END

23

Writing and Running 4
CHAPTER

Your First Program



It doesn’t matter whether you use capital or lowercase letters or more spaces than shown..  It
only matters that you enter the program in a fashion similar to what is shown on the previous
page. Don’t forget that the digits one (1) and zero (0) and the letters “el” (l) and “oh” (O) are
four distinct keys on a computer.  

If you make a mistake while you are typing, you can use the BACKSPACE or Delete key to
erase characters you have just typed.  Press BACKSPACE once to erase the preceding char-
acter; press it several times to erase several characters.  You can also use the arrow keys to
move the cursor bar anywhere on the screen to make a correction.  Move the mouse cursor
with the mouse and click at the point where you wish to make a correction.  Or drag and
highlight several characters that you may then delete.  (The next chapter tells how to make

Now let’s see what the program does.  Select Run in the Run menu.  You should see the
following “output”:

24 BRONZE Edition  Guide

simple corrections to your program; Chapter 11 gives more details on editing.)



The result is a little more than 29 miles per gallon.  (If you get different results or if the pro-
gram doesn’t run, check that you entered the numbers correctly in your program and that
you spelled the words miles and gallons the same way throughout.  LET, PRINT, and END
must also be spelled correctly.)

Each line in the program is a statement in True BASIC.  Like sentences in English, each
statement contains an instruction that True BASIC can follow.  Each statement begins with
a keyword.  Your program uses three types of statements:  LET, PRINT, and END.  You
don’t have to type keywords in uppercase, but we’ve done that throughout this manual to
clearly distinguish them from the rest of the information in the statement.  Keywords must
end with a space unless there is nothing else on the same line.  

The LET Statement
The keyword LET tells True BASIC to assign a value to something.  LET statements are
sometimes called assignment statements.  The first line of the program assigns the value
420 to the word miles.  When you again use miles in the PRINT statement, True BASIC
knows to use the value 420.

In programs, values such as 420 are called constants, and a name such as miles, which
could be assigned various values, is called a variable.  You’ll learn more about constants
and variables in Chapter 6.

254. Writing and Running Your First Program



26 BRONZE Edition  Guide

The PRINT Statement
The PRINT statement shows the results of a program on your screen.  Your program uses
one PRINT statement to display three values:  the values assigned to miles and gallons, and
the value obtained by dividing the value of miles by the value of gallons.

You can use PRINT statements to print constants, variables, or expressions (formulas that
combine constants and variables).  For example, the PRINT statement in your program
could have been:

PRINT miles, 14.3, 420/gallons

and the results would have been exactly the same.

Chapter 7 describes the PRINT statement in more detail; Chapter 6 introduces expressions.

The END Statement
The last statement in your program is an END statement.  It’s the signal to True BASIC
that there are no more instructions to carry out.
———————————————————————————————————————

x Every True BASIC program must finish with an END statement.
———————————————————————————————————————

How True BASIC Runs a Program
When you ran your program, True BASIC carried out (executed) the statements one by one,
from the first to the last — the same order in which you would read them.  No statement
was skipped or carried out more than once.  This is called a straight-line flow of control.
In later chapters, you’ll learn about structures that create branches and loops in the flow of
control.

Saving Your Program
To save your program, return to the editing window if necessary and select Save in the File
menu. Since this is the first time you have saved this program, you will be presented with
a dialog box which allows you to choose the directory where your file will be saved. Call this
program MPG and press Return or click with the mouse.

You will again use this file in the next chapter where you’ll learn how to make changes to
an existing program. 



CHAPTER

Modifying and Saving Programs 5

In the previous chapter, you learned how to write a simple program and save it.  Now, you’ll
make some modifications to that program and save those changes.  In the process, you’ll
learn how to add comments to a program and how to have the program ask for information
when it runs.

If it is not still in your editing window, open the MPG program you created and saved in the
last chapter.  You can use the Open command in the File menu for any program that you
saved, just as you did with GALTON.)

LET miles = 420
LET gallons = 14.3
PRINT miles, gallons, miles/gallons
END

Using Source and Output Windows

So far, we have been looking at the Editing Window which contains the program state-
ments.  As you begin to modify and test programs, you will be able to see both your output
window and your editing or “source window” on the screen.  When you run your program,
the results appear in the Output Window.

True BASIC uses an Error window to report errors, while actual output is sent to the
Output window.  When your program has finished, True BASIC will wait for you to press a
key or click the mouse.  Then the output screen will be erased and you will be returned to
the Source and Command Windows again.

(You can also keep the Output Window visible by selecting Output Window in the Window
menu.)

27



Making Simple Changes
Before you can edit your source program, you must learn how to move the text cursor.  First,
make sure that the text cursor is in the desired window.

In the source window, a blinking vertical bar | indicates the insertion point.  When you
type something on the keyboard, the new text appears at the insertion point.  If you want
to change 420 to 420.6, you must first put the insertion point after the 0 in 420 and then
type .6 .  You can move the insertion point with the mouse or the arrow keys.

The arrow keys move the insertion point a character or line at a time throughout the text.

There are two ways you can change existing text, such as replacing 14.3 with 15.7 in the
second line:

• Move the insertion point to follow 14.3 and press the Delete (or Backspace on
MacOS) key four times.  You may then type the new number.

• Highlight (“select”) the number 14.3 by dragging across it with the mouse.  Now
when you begin to type, the highlighted text disappears and is replaced by what
you type.  (You can also select a word by double-clicking on that word.)  

You can add new or blank lines by pressing the Return key at the beginning or end of an
existing line.  To remove a blank line, place the cursor at its beginning and press the Detete
(or Backspace) key.

You can split or join lines in much the same way:  split a line with the Return key at the
split point;   join two lines by moving the cursor to in front of the first word of the second
line and press Delete or Backspace.  The second line will be joined to the end of the line
above.

Adding Comments to Your Program
Comments and blank lines have absolutely no effect on how your program runs,  but they
make programs much easier to read.  From the very start, you should develop the habit of
adding comments to your program.

In True BASIC, comments start with exclamation points (!).  Everything from the excla-
mation point to the end of the line is part of the comment.  You may put a comment on a line
by itself or add one at the end of regular statement.  Add some comments to your MPG pro-
gram:

28 BRONZE Edition  Guide



!  Compute miles per gallon
!
LET miles = 420 ! miles traveled
LET gallons = 14.3                   ! gas used
PRINT miles, gallons, miles/gallons
END

To add the comments to an existing line, first move the insertion point to the end of the line
and then use the space bar to move out to the right a bit before you type the comment.

Saving Your Changes
You’ve now improved your MPG program by adding comments to it.  The saved version
doesn’t have those changes, however, until you again save the program.  To do that choose
Save in the File menu.  True BASIC replaces the old copy of MPG with a copy as it now
appears in your source window.  

If you’ve saved a program once and named it, the Save command doesn’t ask for a file name
for subsequent saves.  It assumes you want to use the same name and replace the existing
version.  If you wanted to keep the old copy and save the new, edited one with a different
name, you should use the Save As command.  We will do that a bit later.

The INPUT Statement – Getting Information From the User
The way the MPG program is written, you have to edit it in the source window whenever
you want to compute miles per gallon for different numbers of miles or gallons.  A program
like this is more useful if you can enter values when the program runs.

Instead of LET statements, you can use INPUT statements to assign values while the pro-
gram is running.  Replace the LET statement lines in your program with INPUT statements
as shown in the program below. 

!  Compute miles per gallon
!
INPUT miles
INPUT gallons
PRINT miles, gallons, miles/gallons
END

When you’re satisfied you’ve typed the changes correctly, run the program to see how the
INPUT statement works.

5. Modifying and Saving Programs 29



30 BRONZE Edition  Guide

When the program starts, it prints a “?”, which is a signal that it is waiting for you to enter
a number of miles.  Type the number 100 and press the Return key.  The program then
prints another question mark, now looking for the number of gallons.  Type the number 4
followed by the Return key.  Next, the program prints the results and stops.  Your output
window should look like this:

? 100
? 4
100             4               25 

Whenever it sees an INPUT statement, True BASIC prints a question mark and waits for
you to enter a response.  Whatever you enter is assigned to the variable in the INPUT state-
ment.  True BASIC knows that you are finished entering your number when you press the
Return key.

How will someone running your program know what they are supposed to enter when they
see a question mark?  The simplest way to fix this problem is to use PRINT statements with
text for the program to print:

!  Compute miles per gallon
!
PRINT “How many miles”;
INPUT miles
PRINT “How many gallons”;
INPUT gallons
PRINT miles, gallons, miles/gallons
END

Notice that the text to be printed is in quotation marks.  This is necessary so that True
BASIC won’t think the words are variables such as miles and gallons.  Chapter 6 explains
this more fully.  Chapter 7 explains the semicolon (;) at the end of the PRINT statement —
the semicolon makes the question mark appear on the same line as the text, and close to it.  

Add the PRINT statements shown above to your program and run it again.  You should see
the following output:

How many miles? 100
How many gallons? 4
100             4               25 



Saving Your Program With a Different Name
You’ve now made additional changes to the MPG program since you last saved it.  What if
you want to save these additions but you also want to keep the version as it was when you
last saved it?  In other words, you want two versions of the program — one with the data
supplied by LET statements and one that requests the information with INPUT statements.  

To save a copy of a program under a new name, use Save As in the File menu. Save this
version of your program with a name such as MPG2.  The MPG program as you last saved
it is not changed or replaced.

Opening or Quitting without Saving
If you have edited a program and then attempt to Quit True BASIC without saving the pro-
gram, True BASIC asks if you want to save the file.  You have three possible responses:

click Save to save the program (or replace a version with the same name) 
and quit True BASIC

click Discard to quit True BASIC without saving your current program

click Cancel to get back to the program, where you could then use Save As
if you wish to save under a new name

315. Modifying and Saving Programs



CHAPTER

Constants, Variables and Expressions 6

True BASIC lets you work with two kinds of information — numbers and strings.  By defi-
nition, strings are any combination of characters.  Examples of string data include names,
addresses, or phone numbers.  Let’s look first at numbers in True BASIC programs.

When you use numbers in a True BASIC program, they may be constants, variables, or
expressions (expression is just another name for formula).  Look again at the simple MPG
program that you created earlier:

!  Compute miles per gallon
!
LET miles = 420 ! miles traveled
LET gallons = 14.3 ! gas used
PRINT miles, gallons, miles/gallons
END

Constants
The MPG program contains two numbers:  420 and 14.3.  These are called constants or
numeric constants.
———————————————————————————————————————

x Constants are quantities whose values can’t change during a program run.
———————————————————————————————————————
You can write constants as whole numbers, such as 420, or as decimals such as 14.3
Note, however, that you can’t include any spaces or commas in numbers in True BASIC.
Thus 10,000 must be written as 10000.  

33



The following table shows some rules for writing numeric constants:
Number Constants

Acceptable Not Acceptable

6 VI
1002 1,002
321.33 1.2.3
0.003 1 000 000
.25

Variables
In the MPG program, the variables are miles and gallons.
———————————————————————————————————————

x Variables are names for quantities whose values may change during the
run of a program.

———————————————————————————————————————

You could think of a variable as a box that can contain a value.  A variable name (such as
miles or gallons) identifies a box and that name remains the same throughout the program,
but the value put into that box — assigned to that variable — can change each time the pro-
gram runs or even during a program run.

The LET statement assigns a value to a variable.  After the first line in the MPG program,
the variable miles contains the value 420.  The value of miles remains the same in this par-
ticular program, but you’ll see later how values of variables can change within a program.

You can pick any names you want for variables in True BASIC as long as you follow certain
“spelling” rules explained below.  Although the computer doesn’t care what names you use,
it’s usually a good idea to pick a name that somehow conveys what the variable means.  For
example, miles is a better choice than the letter m to represent miles traveled.  

Variable names can be up to 31 characters long.  You may use either capital or small let-
ters, or any combination.  True BASIC ignores the difference.  The main rule is:

———————————————————————————————————————

x Variables names must begin with a letter, but subsequent characters can
be letters, digits, or the underscore (_) character.

———————————————————————————————————————

34 BRONZE Edition  Guide



The underscore is the only punctuation mark allowed in variable names.  You can’t use
spaces or hyphens because these mean something special to True BASIC.  (A hyphen is
the same as a minus sign.)

Variable Names

Acceptable Not Acceptable

miles # of miles
miles_per_gallon miles.per.gallon
profits 13
tax1040 1world
time_of_day time-of-day

Expressions and Formulas

Since computer keyboards don’t have all the arithmetic symbols (or operators) on them, True
BASIC has made a few substitutions.  The symbols or arithmetic operators that True
BASIC uses are:

Symbol Meaning Example

+ addition a + b
- subtraction 3 - 2
* multiplication length*width
/ division miles/gallons
^ exponentiation (x2) x^2

You can use constants and variables to do arithmetic calculations.  When you combine con-
stants or variables using arithmetic symbols, you are writing an expression, which is just
another name for a formula.

For example:
miles/gallons

is an expression that divides the value of miles by the value gallons.

True BASIC does not notice spaces in expressions.  For example, “a+b” means the same
thing as “a + b”, and “miles/gallons” is equivalent to “miles / gallons”.  Remember, however,
that variable names cannot contain spaces.

6. Constants, Variables, and Expressions 35



Notice the symbols for multiplication and division.  Computer keyboards don’t usually con-
tain the ÷ symbol.  Similarly True BASIC wouldn’t know if an X were a variable name or
a multiplication symbol.  Therefore, you must always use the multiplication symbol (*) when
you want to multiply.  In algebra, the expression “ab” means “a X b”.  True BASIC, however,
would assume that “ab” is a variable name unless you specify “a*b”.  (The expression “a b”
is “illegal” because variable names cannot contain spaces and expressions must contain an
arithmetic operator.)

There is also a special symbol for exponentiation (raising to a power) because most com-
puters cannot write superscripts properly.

In the MPG program, for example, the expression that computes miles per gallon must be
written as:

miles/gallons

not
miles ÷ gallons

or
miles
-------
gallons

True BASIC follows rules that decide the order of calculation in an expression.  You
can also control the order of calculation with parentheses.

• True BASIC performs multiplications and divisions before it performs additions and
subtractions.  Thus, if you type 

6+10/2

the computer first divides 10 by 2 and then adds the 5 from that operation to the 6, getting
11.  If you want to add 6 to 10 and then divide the sum by 2, you must use parentheses to
force True BASIC to do that calculation first. 

(6+10)/2

• If you have several multiplications and/or divisions in one expression, True BASIC com-
putes them in order, from left to right.  Thus, if you type

12/6*2 

True BASIC first divides 12 by 6, and then multiplies the result (2) by 2 giving 4 as the final
result.  If you want to divide 12 by the result of 6 times 2 (giving 1 as the final result), you
must again use parentheses to tell True BASIC to do that first:

12/(6*2) 

• True BASIC computes exponents first, even before multiplications and divisions.  

36 BRONZE Edition  Guide



True BASIC does arithmetic as follows:  exponentiation first, then multiplication and divi-
sion, and finally addition and subtraction.  To be sure you get the results you want, use
parentheses even if you think you don’t need them.

The following table shows some examples of the differences between writing regular math-
ematical formulas and expressions in True BASIC:

In Mathematics In True BASIC
1 + 2 + 3 1 + 2 + 3 

3 X (4 + 5) 3*(4 + 5)

1 + 2 (1 + 2)/4
4

AB (A*B)/(C*D)
CD

x2 x^2

———————————————————————————————————————
x All expressions in True BASIC must contain appropriate arithmetic oper-

ators and must be typed entirely on one line; that is, you must not press
the Return key before you finish typing the expression.

———————————————————————————————————————

If a line is to long to fit on a single line of the screen, you can use the True BASIC line con-
tinuation feature.  To continue a line in this way, type an “&” at the point you want the line
to be broken and then press Return.  At the beginning of the next line, type another “&” and
then the rest of the line.  

Changing Values of Variables
The MPG program contains both constants and variables but it is a very simple program
where each variable retains the same value throughout one program run.

Consider the following COST program that adds the cost of three items, computes a sales
tax, and then gives the total purchase cost: 

LET item1 = 250
LET item2 = 26
LET item3 = 1200
LET total = item1 + item2 + item3
LET tax = .04 * total
LET total = total + tax
PRINT total
END

6. Constants, Variables, and Expressions 37



Notice the variable total.  In the fourth line, an arithmetic expression assigns a value to total
(the sum of the three items, or 1476 in this case):

LET total = item1 + item2 + item3

The next line uses that value of total with the constant .04 to compute the value of tax (.04
* 1476 = 59.04).  Now examine the next statement:

LET total = total + tax

This statement assigns a new value to total by adding the previous value of total (1476) to
the value of tax (59.04).  After this statement, total has this new value (1535.04), and thus
the PRINT statement uses that value when you run the program.  

You could rewrite the COST program to use a separate variable (such as itemtotal or subto-
tal) for the intermediate total.  Indeed, using two different variables may often be the wis-
est choice.  However, this ability to add to the value of a variable is important as you’ll see
when you begin to use loops in your programs (see Chapter 8).

An Introduction to Strings
True BASIC processes words as well as numbers.  In computer terminology, anything that
doesn’t have a numeric value is called a string.  Your age is a number, but your name or
street address is a string.  Strings can include any character your computer can display.
Like numbers, strings can be constants, variables, or expressions.  

In the Chapter 5, you used strings with PRINT statements to tell the user what to enter for
the INPUT statements in your MPG2 program:

!  Compute miles per gallon
!
PRINT “How many miles”;
INPUT miles
PRINT “How many gallons”;
INPUT gallons
PRINT miles, gallons, miles/gallons
END

Another common use of strings in computer programs is to print text with the output, to
make it clear what the numbers mean.  You could add another PRINT statement near the
end of the above program:

. . . 
PRINT “Miles”, “Gallons”, “Miles per Gallon”
PRINT miles, gallons, miles/gallon
END

38 BRONZE Edition  Guide



The pieces of text in all but the last of the PRINT statements are string constants; they
cannot be changed when the program runs.
———————————————————————————————————————
x String constants (text) must be enclosed in double quote marks.

———————————————————————————————————————

The double quotation marks keep True BASIC from treating those words as variable names.

Add the new PRINT statement to your MPG2 program and run it.  You should see a result
similar to:

How many miles? 450
How many gallons? 13.6
Miles           Gallons         Miles per gallon
450             13.6            33.0882 

Save your MPG2 program again to keep the new PRINT statement.

Using String Constants and Variables
Just as you can have numeric constants and numeric variables, you can have string con-
stants and string variables.  String variables are names that represent strings, just as
numeric variables are names that represent numbers.  String variables may have different
string values assigned to them during the run of a program.
———————————————————————————————————————
x String variable names must end in a dollar sign ($) to differentiate them

from numeric variables.
———————————————————————————————————————

Other than that, rules for string variable names are the same as those for numeric vari-
ables.  That is, string variable names can consist of a letter followed by up to 30 letters, dig-
its, or the underline character.

Programs often ask for your name and then use it again later.  In a language lab, for exam-
ple, a program that teaches Spanish might start by asking “Como te llamas?” and then
PRINT good morning to you in Spanish.  Your answer would be stored in a string variable;
the Spanish phrases would be string constants.

The demo program SPANISH uses one string variable and three string constants to say
hello in Spanish.  (Open this program from the TBDEMOS Directory.)

396. Constants, Variables, and Expressions



!  Ask for a name, then say good morning.
!
PRINT “Como te llamas”; ! “What’s your name”
INPUT name$! Get the answer.
PRINT “Buenos dias, “; name$; “.” ! “Good morning...”
END

Run the program, and enter your name when it asks “Como te llamas?”  For example:
Como te llamas? Sara
Buenos dias, Sara.

The next chapter gives more information on using strings with PRINT and INPUT statements.

A Brief Look at String Expressions
Just as there are numeric expressions, you can also use special string expressions in your
programs.  

You can combine, or concatenate, string constants or variables with the & (ampersand):
LET first$ = “Orville”
LET last$ = “Wright”
LET full$ = first$ & “ “ & last$

You can also use just part of a string — called a substring.  The following statements
create a code name from the first four characters of the last name plus the first three
characters of the first name — similar to codes used on mailing labels.

LET first$ = “Orville”
LET last$ = “Wright”
LET code$ = last$[1:4] & first$[1:3]
PRINT code$
END

will print
WrigOrv

(See Appendix C for a complete list of string functions.)

40 BRONZE Edition  Guide



CHAPTER

More on Input and Output 7

You’ve seen how INPUT and PRINT statements let you get information into and out of a
program.  This chapter explains these statements more fully and then introduces the LINE
INPUT statement.  

Printing Zones and the PRINT Statement

Look again at the MPG2 program and the output you get when you run the program:
!  Compute miles per gallon
!
PRINT “How many miles”;
INPUT miles
PRINT “How many gallons”;
INPUT gallons
PRINT “Miles”, “Gallons”, “Miles per Gallon”
PRINT miles, gallons, miles/gallons
END

How many miles? 450
How many gallons? 13.6
Miles           Gallons         Miles per gallon
450             13.6            33.0882 

Note that the text and the numbers in the last two lines of output line up neatly in columns.
That’s done by the commas in the PRINT statements.
———————————————————————————————————————
x The commas tell True BASIC that you want the items to be in print zones,

or columns, that are 16 characters wide.
———————————————————————————————————————

41



Change the commas to semicolons in those last two PRINT statements, and run the pro-
gram again:

PRINT “Miles”; “Gallons”; “Miles per Gallon”
PRINT miles; gallons; miles/gallons

Your results should look something like this:
How many miles? 312
How many gallons? 8
MilesGallonsMiles per gallon
312  8  39

———————————————————————————————————————
x The semicolons tell True BASIC to print the output items right next to

each other.
———————————————————————————————————————

True BASIC leaves a space on each side of a printed number, but none around strings.  (True
BASIC replaces the space in front of a negative number with the minus sign.)

When you write a PRINT statement to give several values, you’ll probably want to use com-
mas to separate those values into neat columns.  The semicolon is useful when you are print-
ing prompts for INPUT statements.  

PRINT “How many miles”;
INPUT miles

The semicolon tells True BASIC to print the ? for the INPUT statement in the space imme-
diately following the text “How many miles”.  

How many miles?

With no punctuation after the PRINT statement, True BASIC would have put the ? on the
next line, just as it usually puts the information from each PRINT statement on a new line.  
———————————————————————————————————————

x Unless a PRINT statement ends with a comma or semicolon, True BASIC
prints the next item on a new line.

———————————————————————————————————————
You can create blank lines in your output by using a blank PRINT statement.  You can
“tie” two or more PRINT statements together by ending the line with a comma or semi-
colon.  Consider the following statements:

PRINT “Congratulations, “; name$; “!”
PRINT
PRINT “You have won”; number_of_wins; ”games out of”;
PRINT number_of_attempts; ”tries.”

42 BRONZE Edition  Guide



Can you figure out how True BASIC would print this?  Make up values for the variables,
but don’t peek below!

Notice that the PRINT statements include string constants (the information in quotes), a
string variable (name$), and two numeric variables (number_of_wins and
number_of_attempts).  Notice also, that the string constant “Congratulations, “ includes a
space so that there will be a space before the value of name$.  But you don’t need spaces in
the strings that will print next to the numeric values.  Remember that True BASIC puts
strings right next to each other when you use semicolons, but it puts a space before and after
any positive numeric value that it prints.  (True BASIC puts a minus sign instead of the
space before negative numbers.)  Thus, True BASIC would print:

Congratulations, Chris!

You have won 12 games out of 25 tries.

More about Controlling Output
The comma and semicolon in PRINT statements let you control the appearance of your out-
put.  These two punctuation marks and the use of spaces in text constants should be ade-
quate for most of your early ventures in programming.

The PRINT USING, SET MARGIN, and SET ZONEWIDTH statements and the TAB func-
tion let you control your True BASIC output even more precisely.  PRINT USING (see
Appendix G) is especially helpful if you want numeric output to follow a specific pattern.

You can also send your output to a printer or another file on your disk.  As you’ve seen, the
PRINT statement “prints” in the output window of your computer screen. Chapter 10
explains briefly how you can send output to a printer or a file.

More about the INPUT Statement
True BASIC provides a special form of the INPUT statement that lets you write your own
prompt without a PRINT statement.  For example, you could rewrite the MPG2 program
to look like this:

!  Compute miles per gallon
!
INPUT PROMPT “How many miles?”: miles
INPUT PROMPT “How many gallons?”: gallons
PRINT “Miles”, “Gallons”, “Miles per Gallon”
PRINT miles, gallons, miles/gallons
END

(Don’t forget the quotes and the colons.)  The results will be exactly the same as before.

7. More on Input and Output 43



44 BRONZE Edition  Guide

One last refinement of the MPG2 program:  you can input both values with a single state-
ment.  You could combine the two INPUT PROMPT statements as follows:

INPUT PROMPT “Miles, gallons?”: miles, gallons

When you run the program, you must now give two numbers, separated by a comma:
Miles, gallons? 429, 12
Miles           Gallons         Miles per gallon
429             12              35.75 

Save this version of MPG2 if you wish.

The LINE INPUT Statement
When you use a comma in response to an INPUT statement, True BASIC assumes you are
entering another item.  What happens if you want to enter a string that contains a comma?

Look again at the SPANISH demo program you saw in the last chapter:
!  Ask for a name, then say good morning.
!
PRINT “Como te llamas”; ! “What’s your name”
INPUT name$ ! Get the answer.
PRINT “Buenos dias, “; name$; “.” ! “Good morning...”
END

If you use a comma when you give your name, you will get an error message:
Como te llamas ?   Ruy Diaz of San Antonio, Texas
Too many input items.  Please Reenter input line.

Como tl llamas ? Ruy Diaz of San Antonio
Buenos dias, Ruy Diaz of San Antonio.

One way to avoid this problem is to put quote marks around your reply:
Como te llamas? “Ruy Diaz of San Antonio, Texas”
Buenos dias, Ruy Diaz of San Antonio, Texas.

People who use your programs may not know they must use quotes, however.  The LINE
INPUT statement provides a better solution.  

———————————————————————————————————————

x LINE INPUT tells True BASIC to take the entire line as a single item, no
matter what it looks like.

———————————————————————————————————————



Here’s the SPANISH program written with a LINE INPUT statement:
!  Ask for a name, then say good morning.
!
PRINT “Como te llamas”; ! “What’s your name”
LINE INPUT name$ ! Get the answer.
PRINT “Buenos dias, “; name$; “.” ! “Good morning...”
END

Now you can run the program and include commas in the input line:
Como te llamas? Ruy Diaz of San Antonio, Texas
Buenos dias, Ruy Diaz of San Antonio, Texas.

You can even enter no reply to a LINE INPUT by just pressing the Return key.  (If you
just press Return with an INPUT statement, True BASIC complains that you did not give
enough input.)

The TD_LineInput Subroutine
An alternative to the LINE INPUT statement is the TD_LineInput dialog box. To use it
you must include a library statement in your program to tell True BASIC which library
file contains the subroutine. Then use a CALL statement. Both are shown below.

!  Ask for a name, then say good morning.
!
LIBRARY "TrueDial.trc"
CALL TD_LineInput (“Como te llamas”, name$)
PRINT “Buenos dias, “; name$; “.”
END

The CALL TD_LineInput statement displays a dialog box on the screen; it looks something
like this:

You can then type your name into the small box.

457. More on Input and Output



46 BRONZE Edition  Guide



CHAPTER

Loop Structures 8

So far you’ve seen only “straight-line” programs.  True BASIC starts at its top line, and goes
straight through the program.  Each statement is carried out in turn and only once.  A loop
structure lets you repeat a group of statements more than once.  In a FOR-NEXT loop, you
tell True BASIC exactly how many times you want to execute the statements in the loop.
The DO loop lets the program decide how many times to repeat.

How a FOR-NEXT Loop Works
Let’s start with the simple problem of printing the numbers from 1 to 10.  Instead of a PRINT
statement with ten items, or ten different PRINT statements, you can use a FOR-NEXT
loop.  Type in the following program and run it:

! Count from 1 to 10.
!
FOR i = 1 to 10 ! For each value from 1 to 10

PRINT i; ! Print current value
NEXT i ! Increase i
END 

Since the PRINT statement uses a semicolon, the results look like:
1  2  3  4  5  6  7  8  9  10 

Let’s look at what happens to i, the loop index variable.  The first time True BASIC sees
the FOR statement, it gives i the value 1.  The PRINT statement uses that current value of
i.  Then, the NEXT statement increases the value of i by one and sends True BASIC back
to the FOR statement.  Now i equals 2.

This loop repeats ten times, until i reaches the value 11.  At this point, i is greater than the
high end (10) given in the FOR statement, and so True BASIC goes to the first statement
after the NEXT statement, the END statement.  Thus, this FOR-NEXT loop means “for each
number from 1 to 10, print the number.”

47



The FOR-NEXT loop is a structure in True BASIC, or a kind of framework that organizes
other statements.  The variable i in this program is called the index variable; it acquires
a new value each time the loop runs.

———————————————————————————————————————

x The same index variable must appear in both the FOR statement and the
NEXT statement.

———————————————————————————————————————
The statement(s) between the FOR and the NEXT statements are carried out (or executed)
as many times as the loop is repeated.  In this book, the statements inside the loop (in this
case, the PRINT statement) are indented more than the FOR and NEXT statements.  This
is a matter of style; it’s not required in True BASIC, but it makes the program much easier
to read.

The loop alters the straight-line flow of control by repeating a group of statements.  Such
structures let you take advantage of the great power of computers.

Step Size in a Loop
The NEXT statement above added 1 to the index variable each time through the loop.  You
can make the NEXT statement add something other than 1 by putting your own step size
in the FOR statement.  For example, if you want a table of square roots in increments of
one-tenth, you can use .1 as the step size.

Open the demo program SQROOT from your True BASIC BRONZE Edition disk:
! Square roots.
!
PRINT “Number”, “Square Root” ! Print labels
PRINT ! Leave blank line
FOR number = 0 to 1 step .1 ! From 0 to 1 in small steps

PRINT number, Sqr(number) ! Print number & square root
NEXT number
END 

and run it:

Number          Square Root

0               0 
.1              .31622777 
.2              .4472136 
.3              .547722256 
.4              .63245553 

48 BRONZE Edition  Guide



.5              .70710678 

.6              .77459667 

.7              .83666003 

.8              .89442719 

.9              .9486833 
1.              1  

This program uses the built-in function SQR to obtain the square root of number.  (Chapter
14 explains built-in functions.)

If you want, you can have a negative number for a step size.  This makes the loop count down
instead of up.  Change the FOR statement so that your program looks like this:

! Square roots.
!
PRINT “Number”, “Square Root” ! Print labels
PRINT ! Leave blank line
FOR number = 10 to 5 step -1 ! Go from 10 down to 5

PRINT number, Sqr(number) ! Print number & square root
NEXT number
END 

When the step size is negative, the starting and ending conditions for the loop must also be
backwards — that is, they must go from large to small.  In the first version of SQROOT, the
loop stopped when the number became greater than one.  In the version with a negative step
size, the loop stops when number becomes less than five.  (If you forget to change the step
from .1 to -1, your loop won’t execute at all, because number can’t get from 10 to 5 without
a negative step.)

Number          Square Root

10              3.1622777 
9               3 
8               2.8284271 
7               2.6457513 
6               2.4494897 
5               2.236068 

You can use the index variable (here, number) outside its loop.  But what value will it have
outside the loop?  Add a PRINT statement to SQROOT so you can see what value number
has after the loop stops:

8. Loop Structures 49



! Square roots.
!
PRINT “Number”, “Square Root” ! Print labels
PRINT ! Leave blank line
FOR number = 10 to 5 step -1 ! Go from 10 down to 5

PRINT number, Sqr(number) ! Print number & square root
NEXT number
PRINT number
END 

and run it again:

Number          Square Root

10              3.1622777 
9               3 
8               2.8284271 
7               2.6457513 
6               2.4494897 
5               2.236068 
4 

As you can see, number equals 4 after the loop ends.
———————————————————————————————————————

x A FOR-NEXT loop always leaves the index variable with the first value
that fails the end test.

———————————————————————————————————————

Nested Loops
You may use any True BASIC statements inside a FOR-NEXT loop, even another loop.
Some problems are best solved by using loops inside loops, that is, nested loops.

As an illustration, open the demo program EXES:   
! Print pattern of x’s.
!
FOR row = 1 to 6

FOR xcount = 1 to row
PRINT “x”;

NEXT xcount

PRINT
NEXT row
END 

50 BRONZE Edition  Guide



This program prints a pattern of x’s on the screen:
x
xx
xxx
xxxx
xxxxx
xxxxxx 

Let’s analyze this program.  It has two loops:  an outer loop with the variable row as the
loop index, and within that an inner loop with the index variable xcount.  
———————————————————————————————————————

x The inner or nested loop must be entirely inside the outer loop.
———————————————————————————————————————

Each time the outer loop goes through one big cycle, the inner loop goes through as many
cycles as the current value of row.  This creates the triangle pattern.  As you can see, the
first row has one x, the second has two, and so on.

Note the empty PRINT statement just after the inner loop and just before the end of the
outer loop.  This second PRINT statement is carried out only at the end of a row.  It tells
True BASIC to start a new line.  If it wasn’t there, the program would just print 21 x’s on
one line.

If you want to print more than one triangle, you’ll have to use three loops, not just two.  Nest
a new loop between the row and xcount loops.  Notice how the indenting and blank lines
help you keep track of which loop is which:

! Print pattern of x’s.
!
FOR row = 1 to 6

FOR triangle = 1 to 3        ! new loop starts here

FOR xcount = 1 to row
PRINT “x”;

NEXT xcount

PRINT, ! new PRINT with comma
NEXT triangle ! new loop ends here

PRINT
NEXT row
END 

8. Loop Structures 51



Just as you need an empty PRINT statement to move to the next line before the NEXT
row, you also need a PRINT statement with a comma before the NEXT triangle, to move
to the next PRINT zone.  

x               x               x               
xx              xx              xx              
xxx             xxx             xxx             
xxxx            xxxx            xxxx            
xxxxx           xxxxx           xxxxx           
xxxxxx          xxxxxx          xxxxxx          

An Introduction to Conditions
In the FOR-NEXT loop, you must specify how many times you want the loop to repeat.
Computers, however, are quite capable of making decisions based on an arbitrary condition
that you specify.  The DO loop, introduced in the next section, and the decision structures
you’ll see in the next chapter both use conditions.

A condition in True BASIC is a comparison of values. Conditions use relational operators:

Operator Meaning
= equal to
<> or >< not equal to
< less than
<= or =< less than or equal to
> greater than
>= or => greater than or equal to

Conditions themselves have either true or false values.  For example:

Condition Value
1 < 2 true
1 + 2 < 3 false
5 + 3 >= 8 true
“abc” <> “ABC true
“yes” = “no” false
“elephant” < “spider” true
“elephant” < “Spider” false
“moon” < “moonbeam” true

52 BRONZE Edition  Guide



Notice that you can compare strings as well as numbers.  True BASIC orders string values
containing letters alphabetically except that all uppercase letters come before (are less than)
any lowercase letters.  Shorter strings come before longer strings that begin with the same
characters.  Most other characters (such as !, “, #. and $) and numbers come before letters.
The order for string characters is based on the ASCII character set, which is the standard
code that most computers use to represent keyboard characters.  (Appendix A of this book
lists the ASCII character set.)  

The next section shows how you can use conditions in DO statements.

An Introduction to DO Loops and Counters
The DO loop lets you repeat a group of statements just like the FOR-NEXT loop except that you
don’t specify number of repetitions.  Instead, you specify a condition and True BASIC repeats
the loop until the condition becomes true or while (as long as) the condition remains true.

Let’s say you have $10,000 in a savings account, and the bank gives 5.5% interest.  At the
end of the first year, the bank will pay you $550.  If you leave this money in the account, the
next year you’ll earn interest on $10,550, which yields slightly more than another $580, and
so forth.  Each year you’ll make a little more in interest than the year before.  How long will
it take for your money to double?  

Open the program INTEREST from the TBDEMOS Directory on your True BASIC
BRONZE Edition disk:

! Program to compute interest on a bank account.
! Stop when the money has doubled.
!
LET years = 0
LET money = 10000 ! Start with $10,000
LET original = money ! Remember original amount
LET interest = 5.5/100 ! Interest is 5.5%

DO until money >= 2 * original ! Loop until money doubles

PRINT years, money ! Print year and money
LET years = years + 1 ! Keep track of how long
LET money = money + (interest * money) ! Add in interest

LOOP
PRINT “In”; years ; “years, you’ll have $”; money
END 

8. Loop Structures 53



Run the program:
0               10000 
1               10550 
2               11130.25 
3               11742.414 
4               12388.247 
5               13069.6 
6               13788.428 
7               14546.792 
8               15346.865 
9               16190.943 
10              17081.445 
11              18020.924 
12              19012.075 
In 13 years, you’ll have $ 20057.739 

Let’s analyze how this program works.  It starts off with three LET statements assigning
starting values to the variables years, money, original, and interest.  (It’s a good idea to treat
original and interest as variables instead of constants, because then it’ll be easier to change
the program later on.) 

The DO UNTIL statement means “repeat the following group of statements until money is
greater than or equal to two times the original amount.”  The PRINT statement displays
the current values of years and money, and the first LET statement inside the loop adds 1
to the value of years.  The second LET statement in the loop takes the “old” value of money,
computes the interest on that value, adds the interest to the “old” value, and puts that sum
into the “new” value of money.  The LOOP statement marks the end of the group of state-
ments, and tells True BASIC to go back to the DO UNTIL statement.

True BASIC checks the condition (money > = 2 * original) each time before it executes the loop.
If it had been true the very first time, True BASIC would never have executed the loop!

The second time around, money is 10550, still less than $20,000, so True BASIC repeats the
loop.  The third time it’s 11130.25 so True BASIC repeats the loop, and so on.  The last time
through, money reaches the value 20057.739.  Then, when True BASIC returns to the DO
UNTIL statement, money is greater than 2 * original.  So the loop ends.

True BASIC then continues with the next statement after LOOP, which is the last PRINT
statement.  Thus the loop finishes when money has doubled (or more).

Notice again the LET statement inside the loop that adds 1 to the value for years.  The vari-
able years is a counter.  It is counting the number of times True BASIC goes through the
loop, which in this case is the number of years the money has been in the bank.  

54 BRONZE Edition  Guide



Change the interest rate and see how that affects the DO loop.  Edit the LET statement that
assigns the initial value to interest and run the program again.

LET interest = 8.5/100           ! Interest is 8.5% 

With 8.5% interest, you should find that the DO loop works only nine times instead of thir-
teen as it did before.  However, the condition (money > = 2 * original) is still met.

Note:  The INTEREST program doesn’t format dollar amounts as you are used to seeing
them:

In 9 years, you’ll have $ 20838.557 

True BASIC’s PRINT USING (see Appendix G) statement lets you control the exact format
of numeric (and string) output.  For example, you could replace the last PRINT statement
in INTEREST with the following two PRINT statements:

PRINT “In”; years ; “years, you’ll have “; 
PRINT USING “$##,###.##”: money 

With those statements, the final output line looks like:
In 9 years, you’ll have $20,838.56  

Variations on DO Loops, and Combining Conditions
With the UNTIL condition test on the DO statement, it is possible that the statements in the
loop will never run.  You can put the test on the LOOP statement instead of the DO statement.
In that situation, the statements in the loop will always run at least once, because True
BASIC won’t check the condition until it reaches the end of the loop.

DO 
PRINT years, money ! Print year and money
LET years = years + 1 ! Keep track of how long
LET money = money + (interest * money) ! Add in interest

LOOP until money >= 2 * original ! Loop until money doubles 

Instead of repeating the loop until the condition becomes true, you can loop while the con-
dition remains false.  The two statements:

LOOP until money >= 2 * original

and
LOOP while money < 2 * original 

are equivalent.  “While” and “until” are opposites, just as >= and < are opposites.

558. Loop Structures



As with UNTIL, you can use either DO WHILE or LOOP WHILE.  A DO WHILE loop may
never be used if the condition is false the first time; a LOOP UNTIL loop always runs at
least once since the test is made at the end of the loop.

You can also combine conditions with True BASIC’s logical operators: AND, OR, and
NOT.  You can use a combined condition anywhere a simple condition works.  For exam-
ple, the following statement would continue the loop until either the money doubles or 8
years go by:

LOOP until money >= 2 * original OR years >= 8 

56 BRONZE Edition  Guide



CHAPTER

Decision Structures 9

So far, you’ve seen simple programs where every statement is carried out in turn straight
through the program.  You’ve also learned about using loops where a group of statements
may be used several times or not at all.  In this chapter, you’ll write programs that can
decide which of two sets of statements to use.

Simple IF-THEN Decisions
The IF-THEN statement in True BASIC forms a structure, or framework, for a decision.
The IF part of the structure contains a condition that True BASIC uses to decide which parts
of the structure to use.  

IF statements use conditions just as the DO loop introduced in the last chapter.  (If you need
a quick review, refer to “An Introduction to Conditions” in the previous chapter.)

The simplest IF-THEN  decision carries out a single statement if a certain condition is true.
Call up the demo program COINS to see an example of a simple decision. 

! Flip a coin five times.
!
FOR toss = 1 to 5

IF Rnd<.5 then PRINT “Heads, you win”
NEXT toss

END 

This program simulates tossing a coin by using the RND, or random number, built-in func-
tion.  RND gives a different random number between 0 and 1 each time it’s used.  Half the
time, the random number will be greater than 1/2, half the time it will be less.  The COINS

57



program prints “Heads, you win” each time the random number is less than 1/2.  The rest
of the time, it doesn’t print anything.  (Chapter 14 explains built-in functions more fully.)
For example:

Heads, you win
Heads, you win 

Two out of the five times, the “coin” came up “heads” or less than 1/2.  The other three
times it was “tails” or greater than or equal to 1/2.  You can’t tell which tosses were heads
or tails, however.  When it was tails, True BASIC just ignored the PRINT statement and
went on to the NEXT statement.

Single-line IF-THEN-ELSE Decisions
The ELSE keyword lets you write a statement that will be carried out only when the con-
dition is false.  To print a different message for tails, add an ELSE and another PRINT
statement to the IF-THEN structure in the COINS program:

! Flip a coin five times.
!
FOR toss = 1 to 5

IF Rnd<.5 then PRINT “Heads, you win” ELSE PRINT “Tails,
you lose”
NEXT toss

END 

Remember that you must enclose text in double quotes (“).  Run this new version:
Tails, you lose
Heads, you win
Tails, you lose
Heads, you win
Tails, you lose 

Now you know that the second and fourth times were heads, and the first, third, and fifth
were tails.  Just as the THEN keyword precedes the statement to be executed when the con-
dition is true, the ELSE keyword precedes the statement to be executed when the condition
is false.

Multiple-Line Decisions
Quite often you want to execute more than one statement if a condition is true or false.  In
that case, you need to use more than one line for the IF-THEN or IF-THEN-ELSE struc-
ture.  You also need an END IF keyword to mark the end of the structure.

58 BRONZE Edition  Guide



Even though it has only one statement each for true or false conditions, you can change your
COINS program to use a multiple-line IF-THEN-ELSE structure.  Press the Return key to
split the IF-THEN statement onto several lines, and add an END IF statement.

! Flip a coin five times.
!
FOR toss = 1 to 5

IF Rnd<.5 THEN
PRINT “Heads, you win”

ELSE
PRINT “Tails, you lose”

END IF
NEXT toss

END

Run this program.  You should see the same results as when it was a single-line IF-
THEN-ELSE structure.

If you get an error message such as “Can’t use this statement here”, “Doesn’t belong
here”, or “Ending doesn’t match beginning”, you probably haven’t started the new lines in
the right places.

———————————————————————————————————————

x In the multiple-line IF structures, the keyword THEN must be the last
word in the IF statement. The two keywords ELSE and END IF must be
on lines by themselves.

———————————————————————————————————————

Each statement (such as a PRINT or LET) within the structure must also be on a line by
itself.

When the condition is true, True BASIC executes the statements between the IF statement
and the ELSE keyword, ignores the statements between the ELSE keyword and the END
IF keyword, and jumps to the statement right after the END IF statement.  When the con-
dition is false, True BASIC ignores the statements between the IF Statement and the ELSE
keyword, executes the statements between the ELSE keyword and the END IF keyword,
and continues with the statement right after the END IF statement.

9. Decision Structures 59



More About Counters
In the previous chapter, you saw how a variable can count the number of times something
happens in a program run.  The counter there was the variable years.  The statement

LET years = years + 1 

added 1 to the value stored in years each time the loop was run.  

You can use variables such as heads and tails in the COINS program to count the number
of times the toss comes up heads or tails.  Add the two LET statements to the IF structure
as shown below along with the two new PRINT statements after the FOR-NEXT loop.  

! Flip a coin five times.
!
FOR toss = 1 to 5

IF Rnd<.5 then
PRINT “Heads, you win”
LET heads = heads + 1 ! Count heads

ELSE
PRINT “Tails, you lose”
LET tails = tails + 1       ! Count tails

END IF
NEXT toss

PRINT
PRINT “You won”; heads; “times.  I won”; tails; “times.”

END

Run this version of COINS.  Each LET statement assigns the variable its “old” value plus
one whenever its group of statements are used. (In True BASIC, every numeric variable
starts with the value of zero.)

Tails, you lose
Heads, you win
Tails, you lose
Heads, you win
Tails, you lose

You won 2 times.  I won 3 times. 

60 BRONZE Edition  Guide



The RANDOMIZE Statement
You may notice that each time you run Coins, the tosses come out the same: tails, heads,
tails, heads, tails.  The “random number generator” for the RND function creates the same
sequence of “random” numbers each time.  This makes it easier for you to “debug” or check
your programs for accuracy.  Even if it uses random numbers, your program will work the
same each time you run it.  However, this feature also makes your programs less random.

To scramble the sequence of random numbers, add a RANDOMIZE statement to the start
of your program.  You only need one RANDOMIZE statement in a program to make the RND
function unpredictable in that program. ( In fact, using RANDOMIZE more than once can
actually make your random numbers less random.) It’s a good idea to put the RANDOMIZE
statement after the comments at the very beginning of the program and before any other
“executable statement”.

! Flip a coin five times.
!
RANDOMIZE

FOR toss = 1 to 5
IF Rnd<.5 then

PRINT “Heads, you win”
LET heads = heads + 1 ! Count heads

ELSE
PRINT “Tails, you lose”
LET tails = tails + 1 ! Count tails

END IF
NEXT toss

PRINT
PRINT “You won”; heads; “times.  I won”; tails; “times.”

END

Run this version of COINS several times.  You should get different results each time.

Save a copy of this version of the program if you wish — perhaps with a different name.
You may want to use all or part of it in your own programs later on.

The STOP Statement
Many programs use IF structures to decide when to stop.  The program could ask the user
if they wish to continue and then make a decision based on the response, or the program
could “decide” to stop when it completes its task.

9. Decision Structures 61



Call up and look at the demo program GUESS.  This program uses the built-in functions
INT and RND to “think” of a number between 1 and 6.  (The next section describes how that
works.)  You then have three chances to guess the number.  A FOR-NEXT loop gives you
the three guesses.  If you guess correctly before you’ve used all three chances, a STOP state-
ment in the IF structure ends the program at that point.

! Program to play a guessing game.
!
RANDOMIZE
LET answer = Int(Rnd*6) + 1 ! Choose number from 1 to 6

PRINT “I’m thinking of a number from 1 to 6.”
PRINT “You have 3 chances to guess it.”
PRINT
FOR chance = 1 to 3

PRINT “Enter your guess”; ! Ask for number
INPUT guess
IF guess = answer THEN

PRINT “Correct!!!”
STOP ! Stop here, you guessed it

END IF
NEXT chance
PRINT
PRINT “The number was”; answer
END 

Run the program a few times to see how lucky you are.  The output will be different each
time, because the program has a RANDOMIZE statement.

Generating Random Whole Numbers
You’ve now seen two programs that use the RND built-in function to produce a number ran-
domly.  The RND function always gives a decimal value between 0 and 1 (but never exactly
1).  In the COINS program, you didn’t care what the number was, you just needed to split
the numbers into halves — less than .5, or .5 or greater.

The GUESS program is a bit trickier:
LET answer = Int(Rnd*6) + 1 

First the RND function gives a decimal value between 0 and 1 (but never exactly 1).  That
value is multiplied by 6 to create a value between 0 and 6 (but never exactly 6).  As that
value is very likely a decimal value (such as 4.327), the statement also uses the INT (Integer)
function to take just the integer or whole number part:  0, 1, 2, 3, 4, or 5.  Finally, 1 is added
to give a whole number between 1 and 6.  

62 BRONZE Edition  Guide



Other Decision Structures
The IF-THEN-ELSE structure gives you two possible branches for your decisions.  The
program makes a decision and then carries out one of two sets of statements.  You can nest
an IF structure inside another if you wish to make additional decisions, but this can be awk-
ward if you have several related decisions.

True BASIC includes two more decision structures that let you choose among three or more
sets of statements.  The programs shown below provide a quick introduction; these programs
are in the TBDEMOS Directory.

The ELSE IF statement expands the IF structure to allow for multiple decisions.  Consider
the guessing game played in the GUESS program.  In that program there are just two things
that might happen after you guess:  the program says you are wrong, or it says you are cor-
rect and the game ends.  The program GUESS2 can do one of five things based on your guess:

! Program to play a guessing game.
!
RANDOMIZE
LET answer = Int(Rnd*10) + 1 ! From 1 to 10

PRINT “I’m thinking of a number from 1 to 10.”
PRINT “You have 3 chances to guess it.”
PRINT

FOR chance = 1 TO 3
PRINT “Enter your guess”; ! Ask for number
INPUT guess! Get a guess

IF guess < 1 THEN! Check it out
PRINT “Must be at least 1.”

ELSE IF guess > 10 then
PRINT “Can’t be more than 10.”

ELSE IF guess < answer then
PRINT “Too low.”

ELSE IF guess > answer then
PRINT “Too high.”

ELSE! Must be right
PRINT “Correct!!!”
STOP

END IF
NEXT chance

PRINT “The number was”; answer; “.”
END 

639. Decision Structures



The SELECT CASE structure lets you choose among several alternatives as does the IF-
THEN-ELSE IF statement, but it handles the condition test a bit differently.  The CRAPS
program plays the dice game “Craps”.  The rules are simple.  You play ten times.  Each time
you roll two dice.  If you roll 2, 3, or 12, you lose; roll 7 or 11 and you win outright.  Otherwise,
you remember your “point” on that first roll, and keep rolling until you get either a 7 or your
point again.  If you get your point, you win; but if you get a 7, you lose.  If you don’t know
the game, the True BASIC program might make the rules easier to follow:

! Craps game.
!
RANDOMIZE

FOR game = 1 to 10 ! Play 10 games

LET die1 = Int(6*Rnd + 1) ! Roll 1 die
LET die2 = Int(6*Rnd + 1) ! And the other
LET dice = die1 + die2 ! Sum of two dice

PRINT dice; ! Print this roll

SELECT CASE dice ! Branch on roll

CASE 2, 3, 12 ! dice = 2, 3, or 12
PRINT “You lose.”

CASE 7, 11 ! dice = 7 or 11
PRINT “You win.”

CASE ELSE ! Anything else
LET POINT = dice ! Remember that roll
DO

LET die1 = Int(6*Rnd + 1) ! Roll again
LET die2 = Int(6*Rnd + 1) ! Both dice
LET dice = die1 + die2
PRINT dice; ! Print this roll

LOOP until dice = 7 or dice = point

IF dice=point then PRINT “You win” else PRINT “You lose”
END SELECT

NEXT game

END 

64 BRONZE Edition  Guide



CHAPTER

Formatting and Printing Your Program 10

You’ve now learned the basic elements of programming.  This is a good time to review and
add to your knowledge of program format.  First, a quick review of the “facts”:

• True BASIC programs can contain comments, blank lines, or “executable” statements that
give instructions to True BASIC.

• Statements always begin with a keyword.  A space must separate the keyword from
anything else on the same line.

• Comments begin with an exclamation point.  They may be on a line by themselves or at
the end of an executable statement.  They have no effect on how the program runs, but they
make it much easier for a person to understand what the program does.

• Blank lines have no effect on how the program runs, but like comments they make a pro-
gram much easier to read.

• Variable names may be up to 31 characters long.  They must begin with a letter, but
may then contain any letters, digits, or underscore characters (_).  String variable names
must end with a dollar sign ($).

• All string constants (text) must be inside double quotation marks.

• All True BASIC programs must end with an END statement.

Guidelines for Good Programming
The program examples in this book illustrate some simple guidelines that can make your
programs easier to read and lead you to good programming style:

65



• Use comments at the beginning of a program to tell what the program does.  This is also
a good place to add your name and information about the date and version of the program.

• Use comments throughout the program to explain what each segment or structure does.

• Use variable names that give some clue about what they are used for.  Miles, years, orig-
inal, roll, toss, guess, and answer say a lot more than m, y, o, r, t, g, or a.

• Indent multiple-line structures such as loops and decision structures to show more clearly
the structure itself and the blocks of statements that are contained within the structure.

Indenting with Do Format
True BASIC comes with a formatting tool that can indent your program for you.  The
NOINDENT demo program in the TBDEMOS subdirectory is another version of the
GUESS program with no blank or indented lines.  This version has a nested IF structure.
Open this program and try to follow the structures in the unindented format.

! Program to play a guessing game.
! 
randomize
let answer = Int(Rnd*6) + 1 ! Choose number from 1 to 6
print “I’m thinking of a number from 1 to 6.”
print “You have 3 chances to guess it.”
print
for chance = 1 to 3
print “Enter your guess”; ! Ask for number
input guess
if guess = answer THEN
print “Correct!!!”
stop! Stop here, you guessed it
else! Analyze wrong answers
if guess > answer then 
print “Too high.  Guess again.”
else
print “Too low.  Guess again.”
end if
end if
next chance
print
print “The number was”; answer
end

66 BRONZE Edition  Guide



Now select the Do Format command in the Run menu.  This command indents the state-
ments inside structures and puts all keywords into uppercase.  You should find the struc-
tures much easier to follow.  (In fact, Do Format is a good first step in debugging your pro-
gram.  Chapter 18 has more information on that.)

! Program to play a guessing game.
! 
RANDOMIZE
LET answer = Int(Rnd*6) + 1 ! Choose number from 1 to 6
PRINT “I’m thinking of a number from 1 to 6.”
PRINT “You have 3 chances to guess it.”
PRINT
FOR chance = 1 to 3

PRINT “Enter your guess”; ! Ask for number
INPUT guess
IF guess = answer THEN

PRINT “Correct!!!”
STOP ! Stop here, you guessed it

ELSE ! Analyze wrong answers
IF guess > answer then

PRINT “Too high.  Guess again.”
ELSE

PRINT “Too low.  Guess again.”
END IF

END IF
NEXT chance
PRINT
PRINT “The number was”; answer
END

You should now be able to easily see and follow the nested IF structure that is in the
ELSE segment of the first IF structure.  

To make this program even more readable, you could add some blank lines.  Remember
how to do this?  Place the cursor (horizontal blinking bar) at the end or beginning of a line
and press the RETURN-key.  Use the DELETE-key at the beginning of the line to remove
undesired blank lines.

Indenting Blocks with > and < keys
You can, of course, indent single lines by adding spaces at the beginning of the line.  

You can also easily indent a block of lines in True BASIC.  First, select the lines you wish
to indent by dragging across those lines with the mouse cursor. (Make sure than the entire

10. Formatting and Printing Your Program 67



68 BRONZE Edition  Guide

lines are selected, not just the first part.) Then you can use the > or < keys to move all the
selected lines to the right or left.  Each time you press > the block moves one space to the
right; each time you press <, it moves one space to the left.  (Notice that you must hold the
Shift key to get < or > instead of a comma or period.)

Listing Your Programs on a Printer
You can get a paper (or hard-copy) listing of your program by chossing Print ... in the File
menu of the editing window.

To print just part of your program, first  use the mouse to select the desired lines and then
choose Print Selection ... in the File menu.  Select multiple lines by dragging across them
with the mouse.   

If you have trouble printing, check the following:

• Be sure your printer is turned on.

• Check that the printer cable is firmly connected at both ends.

See the last section in this chapter “Using the Command Window” for information on the
LIST command that also prints all or part of your program.

Listing Output from Your Programs

When you run your programs, the results are “printed” on the screen in the output window.
If you wish to send those results to your printer, you must “open a channel” to the printer.
Here is a quick introduction:

OPEN #1: printer !Opens channel #1 for the printer
FOR i = 1 to 10

PRINT #1: i !Print to #1 -- the printer
NEXT i
END 

After the OPEN statement that identifies the printer, a plain PRINT statement will still
“print” to the screen, but PRINT #1 will send output to the printer.  You may want to print
input prompts on the screen, but send the results of a calculation to the printer.  If you want
results to go to both the printer and the screen, you must have two print statements for each
output line.



The ECHO command, which you use in a command window, also lets you send program out-
put to a printer.  The last section in this chapter describes how to use the command window
and the ECHO command.

Printing graphics output is even easier. Just choose Print in the menu of the output window.

Using Line Numbers
True BASIC’s structures and editing features make it unnecessary to use line numbers in
your programs.  Although True BASIC recognizes and allows statements that rely on line
numbers (such as GOTO 1025), such statements are a holdover from the days before
structured programming languages were developed.  You won’t find them described in this
manual. However, we do include a very useful True BASIC utility, the Basic to True
BASIC Converter which will translate many earlier Basic programs into useful True
BASIC code. The Converter is described in Appendix H.

Using the Command Window
So far, you’ve told True BASIC what to do with menu choices.  You can also give commands
by typing them in a command window. This window has two parts. The actual command
part is limited to a single line at the bottom. The rest of the command window is actually a
"history" window containing all the commands you have typed recently.

Click in the command window to make it active and allow you to type a command.

You may type many commands that are also available in the menu, such as RUN, SAVE,
OLD (to open an existing program), NEW (to create a new untitled window), or DO FOR-
MAT.  There are also several True BASIC commands that are not in the menu.  Some of
these let you print copies of your program or output:

LIST Prints all or part of your program on your printer (indicate
lines to print just part of the program, such as LIST 1-10 for
the first ten lines).

ECHO Sends a copy of your output to a printer when you next use the
RUN command.  This stays in effect until you use ECHO OFF.
(You can send output to a file with ECHO TO filename.)

ECHO OFF Stops echo of subsequent output to a printer or file

RUN >> filename Sends a copy of your output to the named file.

Other commands are helpful in debugging or correcting errors in your programs.  Chapter
18 introduces some debugging commands.

6910. Formatting and Printing Your Program



70 BRONZE Edition  Guide



CHAPTER

Editing Hints and Shortcuts 11

You’ve already edited several small True BASIC programs, and you’ve seen in the previous
chapter how you can improve the format of your programs.  True BASIC has some special
editing commands and shortcuts that you may find useful as you continue working with
more and larger programs.

The Edit menu contains five sections of commands.  This chapter explains the first three
groups of commands.  The last two groups are introduced briefly; you’ll find them more help-
ful later as you begin to work with larger programs.

Most of the editing commands have keystroke equivalents. For example, to Cut text on the
Macintosh, you could use command-X. On Windows you could use Alt followed by E followed
by T. The details of these keystroke equivalents are not included here as they differ between
operating systems. They are listed in detail in Appendix E.

Undoing
The Undo command in the Edit menu helps you recover from an editing mistake. For instance,
if you have just deleted text (rather than cutting it to the clipboard,) simply select Undo .

This command will “undo” the effects of the most recent Cut , Delete , or Paste operation (see
the next section.) And it will undo all typing since the last Cut , Delete , or Paste operation,
or mouse click.

Selecting, Cutting, Copying, and Pasting
Deleting, Cutting, Copying, and Pasting text are important editing tools. The Cut, Copy, and
Paste commands in True BASIC’s Edit menu work just like those commands in most other
applications.  They all depend on selecting text – selecting single words, parts or all of lines,
or blocks of lines.

71



Selecting Text.  To delete, move, or copy something, you must first select or highlight the
desired text using the mouse in one of the following ways:

• drag across the desired words or lines

• double-click on a word to select that word

You can extend a selection by moving the mouse pointer and then holding the Shift key while
you click with the mouse.

If you are not familiar with Cut, Copy, and Paste, practice using them with the SMOKY demo
program as described below.  (Just don’t save your changes without using Save As to rename
the program; you’ll use SMOKY again in Chapter 17.)

Open the demo program SMOKY and run it to see what it does.  Now practice selecting the
four lines of DATA statements.

Deleting Lines. Once you’ve selected something, use the Cut command to remove the text.
Select the two comment lines in the SMOKY program and choose Cut in the Edit menu.  The
lines will disappear.

The Cut command puts these lines into the “clipboard” so you can get them back later.  Choose
Paste in the Edit menu.  True BASIC will put the lines back where they were originally. 

———————————————————————————————————————

x The Cut command removes selected text from your program and puts
it in the clipboard.

———————————————————————————————————————

Note that you can also use the Delete key to remove selected lines.  But, unlike Cut, the
Delete key does not put anything in the clipboard.  You cannot Paste something that has
been “deleted”.

Moving Lines.  Use Cut and Paste to remove selected lines and then insert them else-
where in the file.  

This time, select the four DATA lines in the SMOKY program.  Use the Cut command to
remove the lines (and put them in the clipboard).  Then move the insertion point to the
left of the DO statement.  Now choose the Paste command.  True BASIC puts the DATA
lines before the DO loop.

72 BRONZE Edition  Guide



———————————————————————————————————————

x The Paste command puts the current contents of the clipboard at the
current insertion point in your program.

———————————————————————————————————————

Run the program again.  It still works, regardless of the location of the DATA lines.  You’ll
learn more about this statement in Chapter 12.

Notice that the two comment lines disappeared from the clipboard when you copied the four
DATA lines.  The clipboard holds only one selection at a time.  It contains the last thing you
cut or copied.  Previous contents are lost each time you use Cut or Copy, but you may Paste
the same text from the clipboard as many times as you wish.

Copying Lines. You can copy selected lines to another part of your program by using Copy
and Paste.  Copy puts the selected lines into the clipboard without removing them from the
program.  You can then Paste a copy to another spot.

Make a second copy of the four DATA lines to follow the existing DATA lines.  Select the
four DATA lines in the SMOKY demo program and choose Copy in the Edit menu.

———————————————————————————————————————

x The Copy command puts a copy of selected text in the clipboard with-
out removing the text from your program.

———————————————————————————————————————

Move the insertion point to the line below the last DATA statement, and choose Paste in
the Edit menu.  True BASIC inserts a new copy of the four DATA lines.

Run the program again.  You’ll hear the same lines twice.

Find and Change
Finding Words. Put the insertion point at the beginning of the SMOKY program, and
choose Find from the Edit menu.  True BASIC will present a Find dialog. Type:

Data

in either upper or lowercase.  Press the Return or the Enter key, or click the Find but-
ton on the lower part of the box.  True BASIC will select (display in reverse video) the
first occurrence of the word data in the program:

DO while more data

11. Editing Hints and Shortcuts 73



To find the next occurrence of the word data, choose Find Again in the Edit menu.  True
BASIC will select the next occurrence of the word data, which is the first DATA statement. 

Finding Parts of Words. Choose the Find command again.  This time, type:
dat

and press the RETURN key or click Find. True BASIC will select the next occurrence of dat,
which is the first part of the next occurrence of the word data.

If you want to find just part of a word and distinguish between upper or lower case, click in
the box “Case Sensitive” in the Find dialog box. If you want to find the exact word, click in
the box “Entire Word” in the Find dialog box.

Without moving your insertion point, choose Find one more time.  This time look for the word:
read 

Even though the program SMOKY contains a READ statement, True Basic won’t find it
because the insertion point was below the READ statement when you used Find. Instead,
you’ll be told

“read” not found

in the message line at the bottom of the Editing Window.

If you want to go back to the beginning of the file to continue the search, click in the box
“Wrap” in the Find dialog box.

———————————————————————————————————————

x True BASIC always searches from the insertion point to the end of
the program, and then stops, unless Wrap has been selected.

———————————————————————————————————————

74 BRONZE Edition  Guide



Move the insertion point to the very beginning of the program.  Choose Find Again.  True
BASIC will find the READ statement now, because you started the search at the very begin-
ning of the program.

Changing Text. The Change command lets you change all occurrences of a word or num-
ber to a different word or number.  Choose Change... from the Edit menu.  Type the word
music$ in the first line, and the word notes$ in the second line. Now click on the Replace All
button.

Look at the READ and PLAY statements, and you’ll see that the variable names have
changed.

The Change command works over the entire contents of the Source Window. Otherwise,
the Change command works like the Find command. You can make it case sensitive. And
you can have it apply only to entire words and not parts of words. 

Keep and Include
The next two commands in the Edit menu will become useful as you begin to work with larger
programs.

If you want to remove all but one section of a program, use the Keep command.  Select the
part you want to keep and then choose Keep from the Edit menu.  True BASIC will delete
everything in your program except the selected text. True BASIC will also change the name
of what is left to "Untitled ?" to prevent your accidentally saving it over the original file.

The Include command lets you add the contents of another file to your program.  Put the
insertion point at the place where you wish to add the new file and select Include from the
Edit menu.  You’ll get a dialog box where you can specify any existing file in any directory

7511. Editing Hints and Shortcuts



on any disk.  True Basic will insert the contents of that file at the insertion point of your
current program.

Select All and Move To
The Select All command will select the entire contents of the Editing Window, whether vis-
ible or not. This can be useful if you want to move the entire file to another Editing Window.

The Move To commands lets you move to a specific place in the program by specifying line
numbers or the name of a particular subroutine or function.  For example, you can move to
the beginning of your program by using Move To and specifying line 1. 

As another example, if you want to work with your subroutine MakeImage, just type its
name in response to the Move To dialog box.

76 BRONZE Edition  Guide



CHAPTER

Using and Storing Data 12

So far, you’ve used the LET and INPUT statements to assign values to variables.  These
work fine if you have just a few values.  The READ and DATA statements described in this
chapter let you supply a list of numbers or strings in your program and assign them, one by
one, to variables.  They always go together: the DATA statement lists all the values, and
the READ statement assigns them to variables.

The DATA and READ Statements

Call up the demo program TRIVIA and look at how it uses READ and DATA statements.
! Trivia quiz.
!
READ num_quest ! Number of questions

FOR i = 1 to num_quest ! Read all questions

READ question$, answer$

PRINT question$;
LINE INPUT reply$ ! Get user’s guess

IF reply$ = answer$ THEN ! If correct...
LET right = right + 1 ! Count right replies
PRINT “Correct.” ! And say bravo

ELSE
PRINT “No, the correct answer is “; answer$; “.”

END IF

NEXT i

77



PRINT “You got”; 100 * right/num_quest; “% right.”

DATA 5

DATA What is the capital of Austria, Vienna
DATA What year did Franklin Pierce take office, 1853
DATA “What is the capital of Manitoba, Canada”, Winnipeg
DATA “How many years, on average, does a baboon live”, 20
DATA How about a gray squirrel, 5

END 

The first executable statement after the initial comment lines is a READ statement.  This
“reads” the first item in the first DATA statement and assigns that value to the variable
num_quest.  The value of num_quest determines how many times the program goes through
the FOR-NEXT loop.

The second READ statement is inside the FOR-NEXT loop.  It gets the next two values from
the list of DATA statements and assigns them to the two variables in the READ statement.
Question$ takes the value “What is the capital of Austria” and answer$ gets the value
“Vienna”.  The next time through the loop, question$ and answer$ take the next two values
in the DATA statements, and so on.  

Run the program to see how it works.  You can give any answers you want; the dialog below
is just a sample.

What is the capital of Austria? Salzburg
No, the correct answer is Vienna.
What year did Franklin Pierce take office? 1844
No, the correct answer is 1853.
What is the capital of Manitoba, Canada? Winnipeg
Correct.
How many years, on average, does a baboon live? 20
Correct.
How about a gray squirrel? 15
No, the correct answer is 5.
You got 40 % right. 

———————————————————————————————————————

x DATA statements may be placed anywhere in your program.
———————————————————————————————————————

You saw that the location of the DATA statements didn’t matter when you  moved them in
the SMOKY program in the last chapter.  Often they go at the very end of a program; some-

78 BRONZE Edition  Guide



times it’s more convenient to put them right after a READ statement.  You may use a sep-
arate DATA statement for each item, or use commas to put several items on one statement.
True BASIC lumps all the DATA statements in a program together, in order, into one long
list of data items.  Each time it executes a READ statement, True BASIC reads the next
item in the DATA list, regardless of where it appeared in the program.
———————————————————————————————————————

x READ and DATA statements can use either numbers or strings.
———————————————————————————————————————

You may freely mix strings and numbers in your DATA statements.  Just be sure that the
variable name type (numeric or string) is reading an appropriate type of data item.  You
can’t read a string data item into a numeric variable, but you can read a number into a string
variable.  The TRIVIA program reads some numbers for the string variable answer$.  This
is perfectly legal in True BASIC, as long as you don’t try to use that variable to do arith-
metic calculations.
———————————————————————————————————————

x You must put double quote marks around string data items that contain
commas, or around items that begin or end with spaces.

———————————————————————————————————————

If you don’t use quote marks, True BASIC will assume that any commas are separating data
items, and it will ignore any extra spaces before or after the data.  

Checking for More Data
The TRIVIA program stores the number of questions in the first item in the DATA state-
ments.  The number of questions then controls the FOR-NEXT loop so that it reads the cor-
rect number of items.  If the program tried to read more items than are contained in the
DATA statements, True BASIC would give you an error message.  

It is not always convenient to count the number of DATA statement items, however.  True
BASIC provides a way that you can use a DO loop to check whether there are any more data
items available.  The SMOKY demo program you edited in the last chapter illustrates this
method.  You haven’t learned the PLAY statement yet for performing music, but you should
be able to follow the logic of the program.

! Plays the beginning of
! “On Top of Old Smoky”.

DO while more data

12. Using and Storing Data 79



READ music$    ! Get the string representations
PLAY music$    ! And play the notes

LOOP

DATA O4 L4 C C E G O5 L2 C. O4 A.
DATA L4 A F G A L1 G
DATA L4 C C E G L2 G. D.
DATA L4 E F E D L2 C.

END 

The DO WHILE MORE DATA statement means “keep looping while there are more data
items to read”.  This is why the program still worked even when you copied and pasted an
extra set of the DATA statements.  
———————————————————————————————————————

x MORE DATA is true as long as there are more items in the DATA list.
———————————————————————————————————————

DO WHILE MORE DATA makes it easier to change the amount of data at the end of the
program.  You never have to count the data items, or remember to change the number say-
ing how many data items there are.  After all, the computer should do all this bookkeeping
work!

(As a practice exercise, rewrite the TRIVIA program to use a DO WHILE MORE DATA
statement instead of the FOR-NEXT loop.)

Besides the MORE DATA condition, True BASIC also has an END DATA condition, which
works just the opposite way.  END DATA is true if you’ve run out of data to read.  It’s prob-
ably easiest to use END DATA with a DO UNTIL or LOOP UNTIL statement.  For exam-
ple, you could rewrite the SMOKY program to use a plain DO statement with a LOOP
UNTIL END DATA statement.  

———————————————————————————————————————

x END DATA is true when there are no more items in the DATA list.
———————————————————————————————————————

80 BRONZE Edition  Guide



Reusing Data Values
So far, the TRIVIA and SMOKY programs have read each data item once and only once.  

———————————————————————————————————————

x Summary: True BASIC’s RESTORE statements lets you reuse data values
that have already been assigned to variables.

———————————————————————————————————————

After you use a RESTORE statement, True BASIC begins reading again at the first item
in the list of DATA statements.  The following version of SMOKY uses a RESTORE state-
ment whenever the end of the data is reached.  This program also illustrates the END
DATA condition which is the opposite of MORE DATA.

! Plays the beginning of
! “On Top of Old Smoky”.
PRINT "Now playing 'On Top of Old Smoky'"

DO while more data
READ music$! Get the string representations
PLAY music$! And play the notes

IF end data then RESTORE

LOOP

DATA O4 L4 C C E G O5 L2 C. O4 A.
DATA L4 A F G A L1 G
DATA L4 C C E G L2 G. D.
DATA L4 E F E D L2 C.

END 

Notice that this program now contains an infinite loop.  The program will never end on its
own.  First, it will play through to the end of the data.  When the last item is read, the IF
END DATA condition will then be true and the RESTORE statement will “reset” True
BASIC to the beginning of the DATA items.  DO WHILE MORE DATA will therefore still
be true.  Thus, the data will play again, and again be restored after the last item.  (Click in
the close box of the output window to stop the program.)

Notice also, that you may use the END DATA or MORE DATA conditions anywhere that
you can use a logical condition.  Thus, you can use them in IF-THEN statements as well as
on a DO WHILE or DO UNTIL. 

12. Using and Storing Data 81



You can also combine checks for END DATA or MORE DATA with other conditions using
AND or OR.  With AND, both conditions must be true.  With OR, if just one condition is true
then the test is true.  Can you figure out how the following version of the TRIVIA program
will work?

! Trivia quiz.
!
DO

READ question$, answer$

PRINT question$;
LINE INPUT reply$ ! Get user’s guess

IF reply$ = answer$ THEN ! If correct...
LET right = right + 1 ! Count correct replies
PRINT “Correct.” ! And say bravo

ELSE
PRINT “No, the correct answer is “; answer$; “.”

END IF

IF end data and right < 3 then
RESTORE
LET right = 0

END IF

LOOP until end data or right >=3

DATA What is the capital of Austria, Vienna
DATA What year did Franklin Pierce take office, 1853
DATA “What is the capital of Manitoba, Canada”, Winnipeg
DATA “How many years, on average, does a baboon live”, 20
DATA How about a gray squirrel, 5

END 

Storing Data in Files
True BASIC also lets you write and read data to and from a wide variety of files. A file is a
collection of information saved on a disk in your computer. Files may contain text, data, or
programs; each of the True BASIC programs you've been creating are saved in separate files.
Because files continue to exist after your program stops and even after you turn off your

82 BRONZE Edition  Guide



computer, they serve as long-term storage. There are several advantages to storing your
data in one or more files separate from the file containing your  program:

• It is easier to create and maintain a large amount of data in a separate file. You don’t need
DATA statements, and your data takes no space in your program.

• You can run a program with several different sets of data (each stored in a different file),
or have one set of data that can be used by several programs.

• A program can change or make additions to data stored in files. You can store results for
use in later program runs.

True BASIC programs can read and write to five kinds of files: text, record, random,
stream, and byte files. Here, we'll look at just text files as these are the easiest to create
and understand.

A text file contains lines that True BASIC can display on the screen. You can create text-
file lines at the keyboard using True BASIC's screen editor or by printing output from a True
BASIC program to a file. All of the True BASIC programs you've been looking at are actu-
ally text files.

Reading Data From Text Files
The demo program TRIVIA2 is a version of the Trivia Quiz that gets its data from the text
file TRIVDATA. Open the TRIVIA2 program and notice how it differs from the versions
you've seen so far:

! Trivia quiz -- reads data from a file.
!
OPEN #1: name "TrivData.tru" ! Open file as channel #1
DO

INPUT #1: question$, answer$ ! Get data from channel #1
LET total = total + 1 ! Count the questions
PRINT question$;
LINE INPUT reply$ ! Get user’s guess

IF reply$ = answer$ THEN ! If correct...
LET right = right + 1 ! Count correct replies
PRINT “Correct.” ! And say bravo

ELSE
PRINT “No, the correct answer is “; answer$; “.”

END IF

12. Using and Storing Data 83



LOOP until end #1

PRINT "All done.  You answered"; right; "out of"; total;
PRINT "questions correctly."

CLOSE #1

END 

The OPEN statement "opens a channel" to the file TRIVDATA. This channel, #1 in this
case, then serves as a  shorthand name for the file you have opened. (This is similar to the
way you “open a channel” to the printer as seen in Chapter 10. The PRINTER and NAME
keywords tell True BASIC what you want. By using different channel numbers, you can
open a printer and one or more files at the same time.)

The INPUT #1: statement looks at the opened file for input rather than asking for it at the
keyboard. The LOOP UNTIL END #1 statement works as does LOOP UNTIL END DATA,
but it looks for data in the opened file rather than in DATA statements within the program.
You may also use MORE #1 wherever you might use a MORE DATA statement.

Similarly, if you add the statement:
IF end #1 then RESET #1: begin

just before the LOOP statement, the program will run continuously using the TRIVDATA
questions over and over again. In that case, you would have to use the Stop command in
the File menu of the Output Window, or click the close box of the Output Window to stop
the program.

The CLOSE #1 statement closes the channel to the file. Although True BASIC automati-
cally closes any open files at the end of a program, it's a good idea to close a channel when
you no longer need it.

The TRIVDATA file must contain the data just as you would type it on the keyboard in
response to an INPUT statement. The INPUT #1 statements asks for two input items. Look
at TrivData.tru and you'll see that each line contains two input items separated by a comma.

Which part of a lemon provides the zest, skin
What is a German motorway or freeway called, Autobahn
Which is the most populous country in the world, China
What year did the SS Titanic sink, 1912
What is the largest snake in South America, Anaconda
What shape does a honeybee make its cell, hexagonal
What is the main power source for orbiting research satellites,

solar

84 BRONZE Edition  Guide



———————————————————————————————————————

x The data-file lines must exactly match the INPUT requests as the pro-
gram cannot "re-ask" a file for input.

———————————————————————————————————————

If there are too few or too many items, or the types do not match, your program will stop
with an error. If you can't fit all required input items on one line (as with the last question),
you can end a line with a comma to indicate that another input item follows on the next line.

Use the arrow keys to move to the end of the TRIVDATA file and you'll see that the last
line of data is the last line of the file. There are no extra CR or CR-LF sequences at the end
of the file. (If a data file ends with a blank line, you may receive an error message such as
"Too few input items" when True BASIC expects more data but finds no input items on the
line.)

You may also use the LINE INPUT, MAT INPUT, and MAT LINE INPUT statements to
read from text files. LINE INPUT is, in fact, the best statement to use with strings that
might have commas or quotes in them; see the section "Using LINE INPUT with String
Data in Text Files" below. Just be sure that the data in the file matches the appropriate for-
mat for the input statement or statements in the program. (The MAT statements read into
arrays and are explained in the next chapter.)

Creating Text Files
You may use True BASIC's screen editor to enter data into a text file. Create a new file as
if you were creating a new program, and then type in your data in the proper format. Do not
use any DATA statements – and of course no line numbers!

You can also create data files with any application (such as a word processor, spreadsheet,
or database program) that lets you save text-only files. Check the instructions for your appli-
cation to learn how to save such files; put commas between data items if necessary.

For practice, create an alternative set of questions for the TRIVIA2 program. You can then
edit TRIVIA2 to open you new data file, or you can modify the program to ask you what file
to use for input:

INPUT PROMPT "What file contains the questions?": filename$
OPEN #1: name filename$

True BASIC programs can also create text files and put data into them, as described in the
next section.

12. Using and Storing Data 85



Printing String Data To Text Files
Just as you can open a channel to a printer and then PRINT to the printer instead of the
screen (see Chapter 10), you can open a channel to a file and PRINT to that file. You can
easily adapt any program you've written so far to send output to a file rather than to the
screen or printer:

OPEN #1: NAME "outfile.tru", CREATE NEWOLD   
! Opens channel #1 to a file

ERASE #1 ! Make sure file is empty
FOR i = 1 to 10

PRINT #1: i ! Print to file #1
NEXT i
CLOSE #1 ! Close the file
END

Simply opening the file and replacing your PRINT statements with PRINT #1 statements
works fine if you merely want to save your output – perhaps for later listing on a printer.
However, if you are storing data for future use by a program, you must plan ahead.

The CREATE NEWOLD phrase that is part of the OPEN statement will create the output
file if necessary.

———————————————————————————————————————

x If you want to print data to a file for later use by a program, you must put
the data into the file in a format appropriate for input.

———————————————————————————————————————

Consider the following variation on TRIVIA2.

! Trivia quiz -- reads data from a file.
!
INPUT PROMPT "File containing the questions? ": filein$
OPEN #1: name filein$

INPUT PROMPT "File to store missed questions? ": fileout$
OPEN #2: name fileout$, create newold
RESET #2: end

DO
INPUT #1: question$, answer$ ! Get data from channel #1
LET total = total + 1 ! Count the questions
PRINT question$;
LINE INPUT reply$ ! Get user’s guess

86 BRONZE Edition  Guide



IF reply$ = answer$ THEN ! If correct...
LET right = right + 1 ! Count correct replies
PRINT “Correct.” ! And say bravo

ELSE
PRINT “No, the correct answer is “; answer$; “.”
PRINT #2: question$; ","; answer$

END IF

LOOP until end #1

PRINT "All done.  You answered"; right; "out of"; total;
PRINT "questions correctly."

CLOSE #1
CLOSE #2

END 

This program opens a second file and prints to it each missed question along with the cor-
rect response. Notice that the PRINT #2 statement also prints the comma that must sepa-
rate these two items if you later wish to use the file for input.

The CREATE NEWOLD keywords on the second OPEN statement tell True BASIC to cre-
ate a new file if it can't find one with the specified name.

The RESET #2: END statement tells True BASIC to move to the end of the second file. True
BASIC is always "looking" at the beginning of a newly opened file, which is fine if you are
using the file for input or if the file is empty. But True BASIC can print only to the end of
existing text files, so you must either erase the file or move to the end before you can PRINT.
(If the file is empty, the RESET statement has no effect.)

———————————————————————————————————————

x If you want to PRINT to a text file that is not empty, you must first
ERASE the file or RESET to the END of the file.

———————————————————————————————————————

Make these changes to the TRIVIA2 program and try it out.

12. Using and Storing Data 87



Reusing Stored Data For Input
Each time you run the above program, it adds any missed questions to the end of the #2 file
– your "output file". If you send output to the same file for several runs of the program, it
may eventually contain a long list of questions.

You could later use those saved questions to quiz yourself again because the questions and
answers were printed to the file in a proper format for input. For example, assume you ran
the program with TRIVDATA as the source of the questions and a file call REQUIZ for the
missed questions. You could then run the program again, naming REQUIZ as the source
of questions and a new file name to received the missed questions.

Note: do not open the same file for both Channel #1 and #2! This is rarely, if ever, desirable,
and with the TRIVIA program as written above, you'll get an error message if you attempt
to do so. This is because True BASIC normally opens a file with "permission" to read from
it and write to it, and one file can give only one "write permission" at a time.

Reusing Stored Data For Input
Look at the following questions, which  you might want to add to a data file read by the
TRIVIA2 program:

Who wrote 20,000 Leagues Under the Sea, Jules Verne

As written above, this line would produce the error message "Too many input items." True
BASIC would interpret the comma in 20,000 as marking the end of the first input item. You
can place such an input string in double quotes to indicate that the comma is part of the
string:

"Who wrote 20,000 Leagues Under the Sea", Jules Verne

But what if you want to place the title "20,000 Leagues Under the Sea" in quotes? You would
have to use single quotes for the title, or you could repeat the double quotes where you want
True BASIC to see them as quotes and not as markers for the end of the string:

"Who wrote '20,000 Leagues Under the Sea'", Jules Verne

or
"Who wrote ""20,000 Leagues Under the Sea""", Jules Verne

Although you can add quotes as necessary if you create the data file yourself, you could
easily make mistakes. And it becomes even more complex if you want your program to
PRINT such strings to a file for later use as input!

88 BRONZE Edition  Guide



The LINE INPUT statement provides a much "cleaner" way to use strings for input to text
files. To "fix" the TRIVIA2 program, first place the questions and answers on different lines
in your data file. For example:

Who wrote ""20,000 Leagues Under the Sea"
Jules Verne
What name is given to burnt sugar used as flavoring
caramel

You can then easily change the TRIVIA2 program to read a complete input line for each
variable, regardless of punctuation:

LINE INPUT #1: question$, answer$

And, you can very easily PRINT strings to a file that could later be used for input:

PRINT #2: question$
PRINT #2: answer$

These two PRINT statements put each string on a separate line in file #2.

Printing Numeric Data to Text Files
The demo program BALANCE shows how you can send both numeric and string data to a
file and then reuse the data in that file when the program is run again:

! Check balance program; keeps current data in a text file
!
! Open the data file and get existing values, if any
OPEN #1: name "CHKDATA", create newold
!
! If file contains data, get it & report current amounts
IF more #1 then

LINE INPUT #1: bal_date$
INPUT #1: curbal, lastcheck_amt, lastdep_amt
PRINT "As of "; bal_date$; ", your balance was $"; curbal
PRINT "Your last check was $"; lastcheck_amt
PRINT "Your last deposit was $"; lastdep_amt
PRINT
PRINT "Input all checks and deposits since "; bal_date$

ELSE
PRINT "Input all checks and deposits."

END IF
!

12. Using and Storing Data 89



90 BRONZE Edition  Guide

! Get new transactions
!
PRINT "Enter one per line: use - for checks, + for deposits"
PRINT "Enter 0 (zero) when done"
!
DO
! Get new transactions

INPUT amount
LET curbal = curbal + amount ! Update balance
IF amount < 0 then

LET lastcheck_amt = amount*(-1)
ELSE IF amount > 0 then

LET lastdep_amt = amount
END IF

LOOP until amount = 0
!
LINE INPUT PROMPT "Date of last transaction: ": bal_date$
PRINT "Your current balance is $"; curbal
!
! Clear data file and enter new amounts
ERASE #1
! Remove any existing data
PRINT #1: bal_date$
PRINT #1: curbal; ","; lastcheck_amt; ","; lastdep_amt
CLOSE #1

END

This program uses a single data file CHKDATA. The program first reads the current val-
ues (if any) from the file to variables used by the program. After it calculates all new trans-
actions, the program erases the data file and prints the new information to it. Thus,  you
could use CHKDATA again and again, and you will always be working with the most recent
information about your bank balance.

If you run this program and then open the CHKDATA file, you'll see the data as follows:

July 4, 1998
460.93 , 436.5 , 1000

Notice that the program prints commas between the three numeric data items to match the
INPUT statement. It prints the string bal_date$ to a line by itself and uses a LINE INPUT
statement to read that line. This avoids the problem that a comma within the date would
cause with an INPUT statement.



More About File Input and Output
When a True BASIC program opens a text file, the program is normally "looking" at the
beginning of the file. The first input statement reads the first line of data, the second input
statement reads the second line, and so on. You can re-use the data in a text file by using a
RESET statement:

RESET #1: begin

A True BASIC program can print only to the end of a text file. You must move to the end of
the file by first reading all the data, by erasing the file, or by using a RESET statement:

RESET #1: end

Record files let you move around within a file more easily, and the True BASIC language
provides additional statements, listed below, for use with these and other kinds of files. Go
to the online HELP facility and select these statements for information and examples.

Additional File Related Statements:

ASK #n: ACCESS MAT INPUT #n:
ASK #n: DATUM MAT LINE INPUT #n: 
ASK #n: ERASABLE MAT PRINT #n:
ASK #n: FILESIZE
ASK #n: FILETYPE READ #n: 
ASK #n: MARGIN
ASK #n: NAME SET #n: MARGIN
ASK #n: ORGANIZATION SET #n: POINTER
ASK #n: POINTER SET #n: RECORD
ASK #n: RECORD SET #n: RECSIZE
ASK #n: RECSIZE SET #n: ZONEWIDTH
ASK #n: RECTYPE
ASK #n: SETTER UNSAVE
ASK #n: ZONEWIDTH WRITE #n: 

Also, in Appendix I you can read more about the various file structures, text, stream, ran-
dom, record, and byte, that are part of the True BASIC Language System and how each is
typically used. 

9112. Using and Storing Data



92 BRONZE Edition  Guide



CHAPTER

Arrays and Matrices 13

Problems often arise that would require an unreasonable number of variables to solve.  Open
the demo program INVNTORY, which keeps the inventory of a hardware store:

! Inventory for 5 items.
!
READ item1$, number1
READ item2$, number2
READ item3$, number3
READ item4$, number4
READ item5$, number5

PRINT “You have these items:”
PRINT item1$, item2$, item3$, item4$, item5$
PRINT number1, number2, number3, number4, number5

DATA hammers, 4, umbrellas, 2, wood stoves, 1
DATA bags of salt, 4, pliers, 2
END 

Imagine how much trouble it would be to change this program to handle thirteen items!
Now consider that a large store might have thousands of different items in stock.  Clearly,
you need a better way of handling many similar values.  

One-Dimensional Arrays
This problem calls for array variables.  An array is a variable that can hold several differ-
ent values at once.  You could think of a one-dimensional array as a list of items.  You iden-
tify each item with the name of the list and the item’s position in the list.

93



Rewrite the INVNTORY program to use two arrays, item$ and number as shown below:

! Inventory with arrays
!
DIM item$(5), number(5)

FOR i = 1 to 5
READ item$(i), number(i)

NEXT i

PRINT “You have these items:”
FOR i = 1 to 5

PRINT item$(i), number(i)
NEXT i

DATA hammers, 4, umbrellas, 2, wood stoves, 1
DATA bags of salt, 4, pliers, 2
END 

When you run this program, you get the following output:

You have these items:
hammers          4 
umbrellas        2 
wood stoves      1 
bags of salt     4 
pliers           2 

Figure 13.1 illustrates the two arrays item$ and number.  The DIM statement declares that
the variables are arrays and sets their size; each array can hold five different values.  (DIM
is short for “dimension,” as it fixes an array’s dimensions.)
———————————————————————————————————————

x You must name every array in a DIM statement before you can use it in
the program.

———————————————————————————————————————

The five individual values within each of  item$ and number are the elements of the arrays.
The elements of item$ are strings, and the elements of number are numbers.  The name of
a string array must end in a dollar sign, just like the name of a regular string variable.  You
cannot mix numbers and strings in a single array.

94 BRONZE Edition  Guide



Figure 13.1 – Items in Arrays

Array Subscripts
The numbers used to identify a particular element of an array are subscripts.  Subscripts
must be enclosed in parentheses () after the array name.  The elements of item$ and num-
ber automatically use subscripts from 1 to 5 because the DIM statement set the size of the
arrays to 5.  

Each time through the FOR-NEXT loops, True BASIC reads and prints different elements
of item$ and number.  The first time through the loop, i equals 1, so the program reads and
prints item$(1) and number(1).  The second time through, i equals 2, so the program reads
and prints item$(2) and number(2), and so on.  (You describe elements in an array as “item-
dollar-sub-one” or “number-sub-two.)

You can use the elements in an array in any order.  For example, you could change the sec-
ond FOR statement to print the elements in reverse order.  

! Inventory with arrays
!
DIM item$(5), number(5)

FOR i = 1 to 5
READ item$(i), number(i)

NEXT i

PRINT “You have these items:”
FOR i = 5 to 1 step -1

PRINT item$(i), number(i)
NEXT i

DATA hammers, 4, umbrellas, 2, wood stoves, 1
DATA bags of salt, 4, pliers, 2
END 

hammers umbrellas wood stoves bags of salt pliers

item$(1) item$(2) item$(3) item$(4) item$(5)

item$

4 2 1 4 2

number(1) number(2) number(3) number(4) number(5)

number

13. Arrays and Matrices 95



The program will print the items in reverse order:

You have these items:
pliers           2 
bags of salt     4 
wood stoves      1 
umbrellas        2 
hammers          4  

Array Bounds
In the INVNTORY program, item$ and number both have five elements, numbered from 1
to 5.  In True BASIC, however, you can use any numbers as the lower bound and upper
bound for the array.  That is, instead of having a lower bound of 1, the array could have a
lower bound of 1991.  Instead of having an upper bound of 5, you might use 1995.  You still
have an array with five elements, but with different bounds.

You may want to adjust array bounds to make a particular problem easier to solve.  The fol-
lowing program shows how you could read and compare census figures for a couple of towns:

! View census figures
!
DIM springfield(1985 to 1990), woodsville(1985 to 1990)

FOR y = 1985 to 1990
READ springfield(y), woodsville(y)

NEXT y

INPUT PROMPT “What year are you interested in? “: year
IF springfield(year) > woodsville(year) then

LET town$ = “Springfield”
ELSE

LET town$ = “Woodsville”
END IF
PRINT “In”; year; town$; “ had the largest population.”

DATA 17635, 16413, 17986, 16920, 18022, 17489
DATA 18130, 17983, 18212, 18433, 18371, 18778
END 

A sample run produces output such as:

What year are you interested in? 1987
In 1987 Springfield had the largest population. 

96 BRONZE Edition  Guide



The DIM statement declares bounds from 1985 to 1990 for the arrays springfield and
woodsville, so each array has six elements.  

You may use any numbers you wish for an array’s upper and lower bounds.  For example,
to keep track of Centigrade temperatures in the northern United States or Canada, you
might want to dimension an array such as temp(-40 to 40).  This array has 81 elements.  

Naturally, as your arrays get bigger, they take more computer memory to store.  True BASIC
places no limits on the size of your arrays except for what will fit in your computer’s avail-
able memory.

Arrays of Two or More Dimensions
So far, you’ve seen only “one-dimensional” arrays.  These arrays require only one number
as subscript.  But True BASIC lets you have arrays with 2, 3, 4, or almost any number of
dimensions.  (The maximum number of dimensions is 255.)

Typically, you would use a two-dimensional array when you have two different sets of
strongly related values.  Open the Demo Program STATES, which plays a trivia quiz with
state capitals, and run it.

! State capital quiz.
!
RANDOMIZE
DIM state$(50,2) ! 50 states, 2 items per state

FOR i = 1 to 50
READ state$(i,1) ! Read state name
READ state$(i,2) ! And capital

NEXT i

FOR i = 1 TO 10 ! Ask 10 questions
LET n = Int(50*Rnd) + 1 ! Pick a number between 1 and 50
PRINT “The capital of “; state$(n,1); “ is”;
LINE INPUT capital$ ! Get the reply
IF Lcase$(capital$) = Lcase$(state$(n,2)) THEN

PRINT “RIGHT!”
ELSE

PRINT “Nope, it’s “; state$(n,2); “.”
END IF

NEXT i

13. Arrays and Matrices 97



DATA Alabama,Montgomery, Alaska,Juneau, Arizona,Phoenix
DATA Arkansas,Little Rock, California,Sacramento
DATA Colorado,Denver, Connecticut,Hartford, Delaware,Dover
DATA Florida,Tallahassee, Georgia,Atlanta, Hawaii,Honolulu
DATA Idaho,Boise, Illinois,Springfield, Indiana,Indianapolis 
DATA Iowa,Des Moines, Kansas,Topeka, Kentucky,Frankfort 
DATA Louisiana,Baton Rouge, Maine,Augusta, Maryland,Annapolis
DATA Massachusetts,Boston, Michigan,Lansing
DATA Minnesota,St. Paul, Mississippi,Jackson
DATA Missouri,Jefferson City, Montana,Helena
DATA Nebraska,Lincoln, Nevada,Carson City
DATA New Hampshire,Concord, New Jersey,Trenton
DATA New Mexico,Santa Fe, New York,Albany
DATA North Carolina,Raleigh, North Dakota,Bismarck
DATA Ohio,Columbus, Oklahoma,Oklahoma City, Oregon,Salem
DATA Pennsylvania,Harrisburg, Rhode Island,Providence
DATA South Carolina,Columbia, South Dakota,Pierre
DATA Tennessee,Nashville, Texas,Austin, Utah,Salt Lake City
DATA Vermont,Montpelier, Virginia,Richmond,
Washington,Olympia
DATA West Virginia,Charleston, Wisconsin,Madison
DATA Wyoming,Cheyenne
END 

(Note:  This program uses the LCASE$ built-in function to convert all answers to lowercase
for comparison since upper and lowercase letters are not equal.  The next chapter explains
the use of functions.)

Figure 13.2  –  A Two-dimensional Array

A good way to visualize a two-dimensional array is as a table with rows and columns.  In
the STATES program state$(50,2) has 50 rows corresponding to the 50 states, and 2 columns
corresponding to the two items for each state.  The state name is in the first column and the
state capital is in the second column. Figure 13.2 shows the first five rows.

state$

state$(1,1) Alabama Montgomery state$(1,2)

state$(2,1) Alaska Juneau state$(2,2)

state$(3,1) Arizona Phoenix state$(3,2)

state$(4,1) Arkansas Little Rock state$(4,2)

state$(5,1) California Sacramento state$(5,2)

98 BRONZE Edition  Guide



The MAT Statements
The sample programs you’ve seen so far have used FOR-NEXT loops to READ each value
into an array or to PRINT each value of an array.  True BASIC has several MAT statements
that let you do something for a whole array in one statement.  The keyword MAT is short
for matrix which is another word for a two-dimensional array.  However, you may use MAT
statements with arrays of any dimension.

The MAT READ statement lets you read an entire array in one statement.  For example,
you could remove the FOR loop from the revised INVNTORY program and substitute a MAT
READ statement.  Notice that you must also edit the DATA statements!

! Inventory with arrays
!
DIM item$(5), number(5)

MAT READ item$, number

PRINT “You have these items:”
FOR i = 5 to 1 step -1

PRINT item$(i), number(i)
NEXT i

DATA hammers, umbrellas, wood stoves, bags of salt, pliers
DATA 4, 2, 1, 4, 2
END 

The MAT keyword tells True BASIC to read the entire array, so you don’t put anything in
parentheses after the array name.  

———————————————————————————————————————

x MAT READ fills the first array named before reading to any other arrays
named in the statement.

———————————————————————————————————————
You must therefore edit the DATA statements to put all the values for item$ first, followed
by all the values for number.  If you don’t, you’ll get the error message “Data item isn’t a
number” when the program tries to read a string item into an element of number.
(Remember that True BASIC lets you read a number as a string, but cannot accept any-
thing but numeric constants for numeric items.)

The MAT PRINT statement lets you print out the contents of an array with a single state-
ment.  You could replace the remaining FOR loop from the INVNTORY program:

13. Arrays and Matrices 99



100 BRONZE Edition  Guide

! Inventory with arrays
!
DIM item$(5), number(5)

MAT READ item$, number

PRINT “You have these items:”
MAT PRINT item$, number

DATA hammers, umbrellas, wood stoves, bags of salt, pliers
DATA 4, 2, 1, 4, 2
END 

The output will be different from the previous version, because MAT PRINT prints all the
elements of item$ and leaves a blank line before it prints the elements of number.  Commas
and semicolons in MAT PRINT statements have the same effect as in regular PRINT state-
ments.

You have these items:
hammers      umbrellas    wood stoves   bags of salt   pliers

4            2            1             4               2 

True BASIC prints arrays of two or more dimensions in similar fashion, except that it moves
to a new line for each new dimension printed.  For example, a MAT PRINT state$ statement
in the STATES quiz would begin a new line after each row of two items:

Alabama         Montgomery
Alaska          Juneau
Arizona         Phoenix
. . . (etc.) 

MAT INPUT and MAT LINE INPUT let you input a whole array in one statement.  For
example:

DIM expense(1980 to 1989)
PRINT “Please enter the 10 expense items”
MAT INPUT expense

You must respond with ten numeric constants separated by commas, entered in the form of
a single input-reply.



Advanced Work with Arrays and Matrices

As your programming skills increase, you may wish to explore further about how you can
use arrays in True BASIC.  This section gives you a quick introduction  to some of these fea-
tures.

You can redimension arrays as a program is running.  You can’t actually change the num-
ber of dimensions, but you can change the bounds or sizes of the dimensions of an array.
This lets you write flexible programs that can adjust array sizes to different sets of data.
Both the MAT INPUT and MAT READ statements have versions that let you change the
size of an array to fit the number of items available.  You can also change the size of an array
with the MAT REDIM statement.  True BASIC also has built-in functions to let the pro-
gram figure out the current size or upper and lower bounds of any array.  (The next chap-
ter introduces built-in functions; the Help Utility and Appendix C lists most of True BASIC’s
built-in functions.)

You can make matrix assignments with the simple MAT statement.  You can assign the
same value to every element in an array:  

MAT initial = 10 

You can also assign one array to another as long as they have the same number of dimen-
sions.  The array being assigned to adjusts its size to match the other array.  In the follow-
ing statements, the question mark (?) with the MAT INPUT statement adjusts the size of
the array scores to equal the number of items entered.  The following MAT statement assigns
the same values to the array initial and adjusts the size of initial so that it matches scores.

DIM initial(100), scores(100)
MAT INPUT scores(?) ! input any number of items
MAT initial = scores ! arrays are equal & same size 

True BASIC’s matrix arithmetic lets you add, subtract, and multiply arrays.  For addi-
tion or subtraction, two arrays must have the same size and shape.  To multiply two arrays,
the number of columns in the first array must equal the number of rows in the second.  You
can also multiply an array by a single number.  

10113. Arrays and Matrices



102 BRONZE Edition  Guide



CHAPTER

Functions and Subroutines 14

As your programs get bigger and bigger, you’ll find them easier to read and “debug” if you
have them segmented into smaller parts.  True BASIC’s subroutines and functions offer
you ways to break down your programs into logical units. 

Subroutines

Call up the demo program CRAPS, which introduced the SELECT CASE structure from
Chapter 9.  Notice that the four lines that simulate the dice roll (three LETs and one
PRINT) appear twice in the program.  The first time is right after the FOR statement,
and the second is right after the DO statement. 

! Craps game.
!
RANDOMIZE

FOR game = 1 to 10 ! Play 10 games

LET die1 = Int(6*Rnd + 1) ! Roll 1 die
LET die2 = Int(6*Rnd + 1) ! And the other
LET dice = die1 + die2 ! Sum of two dice

PRINT dice; ! Print this roll

SELECT CASE dice ! Branch on roll
CASE 2, 3, 12! dice = 2, 3, or 12

PRINT “You lose.”

CASE 7, 11! dice = 7 or 11
PRINT “You win.”

103



CASE ELSE ! Anything else
LET POINT = dice ! Remember that roll
DO

LET die1 = Int(6*Rnd + 1) ! Roll again
LET die2 = Int(6*Rnd + 1) ! Both dice
LET dice = die1 + die2    
PRINT dice; ! Print this roll

LOOP until dice = 7 or dice = point

IF dice=point then PRINT “You win” else PRINT “You lose”
END SELECT

NEXT game

END 

You can rewrite this program to use a subroutine.  Move one set of the dice-rolling lines
(the three LETs and one PRINT) to the beginning of the program following RANDOMIZE,
and remove the other set.  Add SUB and END SUB statements to define the group of state-
ments as a subroutine.  Insert CALL statements where you want to use the subroutine:

! Craps game with subroutine for rolling the dice.
!
RANDOMIZE

SUB Rolldice
LET die1 = Int(6*Rnd + 1) ! Roll 1 die
LET die2 = Int(6*Rnd + 1) ! And the other
LET dice = die1 + die2 ! Sum of two dice

PRINT dice; ! Print this roll
END SUB
FOR game = 1 to 10 ! Play 10 games

CALL Rolldice ! Subroutine rolls dice

SELECT CASE dice ! Branch on roll

CASE 2, 3, 12 ! dice = 2, 3, or 12
PRINT “You lose.”

CASE 7, 11 ! dice = 7 or 11
PRINT “You win.”

104 BRONZE Edition  Guide



CASE ELSE ! Anything else
LET POINT = dice ! Remember that roll
DO

CALL Rolldice ! Roll again
LOOP until dice = 7 or dice = point

IF dice=point then PRINT “You win” else PRINT “You lose”
END SELECT

NEXT game

END 

True BASIC skips around the subroutine when you run the program.  The statements in
the subroutine are used only when a CALL statement in the main part of the program (the
main program) “calls” that subroutine name.  At the END SUB statement, True BASIC
returns to the line following the CALL statement.  

When True BASIC returns to the CALL statement in the main program in the above exam-
ple, the variable dice has the new value assigned by the subroutine.  Thus the SELECT CASE
or LOOP UNTIL statements share the variable dice with the subroutine in this program.

Run this edited version of CRAPS and you should find that it works just as before.

Subroutines with Parameters
Subroutines let you write general purpose “tools” that you can use anywhere in your pro-
grams.  You can use the subroutine from CRAPS any time you want to simulate the
rolling of two dice.  However, in this version of the subroutine, you have to refer to the
result by the same variable name that the subroutine uses (in this case, dice).  

To make subroutines more general and more helpful to you, you can use parameters in
your SUB statements and arguments in your corresponding CALL statements.  To illus-
trate, rewrite the subroutine Rolldice so that it can simulate the rolling of any given num-
ber of dice:

SUB Rolldice (sum_dice, num_dice)
LET sum_dice = 0 ! Initialize
FOR i = 1 to num_dice

LET roll = Int(6*Rnd + 1) ! Roll a die
LET sum_dice = sum_dice + roll ! Add to sum

NEXT i
PRINT sum_dice; ! Print this roll

END SUB 

14. Functions and Subroutines 105



You’re now using two parameters in the SUB statement above.  Sum_dice represents the
sum of the rolls, and num_dice gives the number of dice rolled.  The subroutine doesn’t
change num_dice but it does change sum_dice.  

To use this new subroutine, you must also use two arguments in the CALL statement.  For
example:

CALL Rolldice (dice, 2) 

The first argument, dice, is the main program’s name for the sum of dice rolls, and 2 is the
number of dice to be thrown.  
———————————————————————————————————————

x Arguments share values with their corresponding parameters when the
subroutine runs.

———————————————————————————————————————

Dice and sum_dice temporarily become equivalent so that when True BASIC returns to the
main program dice has the value of sum_dice.  Similarly, num_dice has the value of 2 dur-
ing this call to the subroutine.

This subroutine illustrates two kinds of parameters:  

• Num_dice is an input parameter that is only for sending information into a subroutine.
Since an input parameter returns nothing, you may use constants for the corresponding
argument on CALL statements as in the example above.  

• Output parameters are variables whose values are changed by the subroutine.  They
send information out from the subroutine to the corresponding argument in the main part
of the program.  Sum_dice is an output parameter.

• True BASIC does not distinguish between input and output parameters; it's only in the
way you use them.

Built-in Functions

You’ve already seen several of True BASIC’s built-in functions:  RND, INT, SQR, and
LCASE$, for example.  Appendix C lists most of True BASIC’s built-in functions.

To use a built-in function, all you do is refer to the function by name (perhaps giving it some
information such as the number whose square root you want).  True BASIC then “returns”
a value to the program (such as the square root of the number you used with the function.)

106 BRONZE Edition  Guide



In the following short example, answer acquires the value 3.1622777, which is returned by
the function SQR.

LET answer = Sqr(10)
PRINT answer
END 

You can think of a function as a machine that takes some numbers or strings as input, and
produces one number or string as output.  Functions differ from subroutines in that
• functions can return only one value and 
• functions cannot change the values of any parameters sent to them.

Now you’ll see how to define your own functions and use them to break your programs into
logical units.

One-line Functions
One-line functions are the simplest kind of function.  You can simulate the rolling of one die
as a one-line function.  Here’s the CRAPS program again, rewritten to use a function Rolldie.

! Craps game with one-line function for rolling one die.
!
RANDOMIZE

DEF Rolldie = Int(6*Rnd + 1) ! Roll 1 die

FOR game = 1 to 10 ! Play 10 games

LET dice = Rolldie + Rolldie ! Rolldie function twice

SELECT CASE dice ! Branch on roll
CASE 2, 3, 12 ! dice = 2, 3, or 12

PRINT “You lose.”
CASE 7, 11 ! dice = 7 or 11

PRINT “You win.”
CASE ELSE ! Anything else

LET POINT = dice ! Remember that roll
DO

LET dice = Rolldie + Rolldie ! Roll again
LOOP until dice = 7 or dice = point
IF dice=point then PRINT “You win” else PRINT “You lose”

END SELECT

NEXT game

END 

14. Functions and Subroutines 107



Once you have defined a function in a DEF statement, you use that function simply by
using its name where you would a variable.  True BASIC carries out the instructions in the
DEF statement and the resulting value is “returned” to the function name.  

———————————————————————————————————————

x You must define a function before you use it in your program.
———————————————————————————————————————

If you don’t define it first, True BASIC won’t know that you are referring to a function and
not a variable or array when you use the function name.  

Multi-line Functions
You can also write multi-line functions to solve problems that require several lines of True
BASIC statements.  DEF and END DEF statements define a multi-line function.  As with
one-line functions, you must define your multi-line functions before you use them.

The SGN function is a multi-line function already built into True BASIC.  SGN returns the
sign of a number.  That is, you give it a single number as an argument, and it returns:

-1 if the number is negative
0 if the number equals 0
+1 if the number is positive

You could easily define a SGN function yourself and test it as follows:
! Define the Sgn function
!
DEF Sgn(x)

SELECT CASE x
CASE is < 0 ! If negative . . .

LET Sgn = -1 ! . . .return -1
CASE 0 ! If zero . . .

LET Sgn = 0 ! . . .return a 0
CASE else ! Otherwise must be positive

LET Sgn = +1 ! . . .return +1
END SELECT

END DEF

INPUT n ! Input a number
PRINT Sgn(n) ! Print its sign
PRINT Sgn(3-5*2) ! And the sign of this formula
END

108 BRONZE Edition  Guide



If you run this program and give 35 as input, you will see the following results:

? 35
1
-1

Inside the definition of Sgn, the program selects one of three cases depending upon the sign
of the parameter and assigns a value to Sgn.  At the END DEF line, the function actually
produces its output value, which is whatever value was assigned during the execution of the
function.  (If no value is assigned, then 0 is returned.)

Global Variables
You’ve seen how you can pass variables as parameters to subroutines and functions, but
what about other variables used within a subroutine or function definition?  They, too, are
shared with the rest of the program.  Such variables shared by two parts of a program are
global variables.  

Global variables are sometimes useful, but often they are a source of hard-to-spot program
bugs.  Consider the example in the TBDEMOS folder/directory – BUG:

! An insidious bug
!
DEF XXX$(n) ! Return a string of n X’s

LET s$ = ““ ! Start with an empty string
FOR i = 1 to n ! Loop. . .

LET s$ = s$ & “x” ! . . . adding an X each time
NEXT i
LET XXX$ = s$

END DEF

FOR i = 1 to 4 ! Ask four times
PRINT “How many X’s”;
INPUT n
PRINT XXX$(n)

NEXT i
END 

When you run this program and give an input of 10, you would only see the following:

How many X’s? 10
xxxxxxxxxx 

14. Functions and Subroutines 109



What happened?  This program should ask for input four times and draw four sets of X’s.
The problem is that two different parts of the program are using the variable i, and one part
is causing trouble for the other.  Follow the program step by step:

• First, the function definition is created but not used.

• The FOR-NEXT loop that asks for input four times begins and i takes the value 1.  The
program asks “How many X’s?” and you reply “10”.  The program calls the function XXX$
with 10 as its argument; in other words, XXX$ should return a string of ten x’s.  So far, so
good. 

• Within the XXX$ definition, s$ starts as an empty string.  Then a FOR-NEXT loop adds
an “x” to the value of s$ 10 times.  After 10 times through the loop, i equals 11 so the loop
stops.  The program assigns the value of s$ to XXX$ and returns to the main program where
it prints that returned value (“xxxxxxxxxx”).  That looks OK.

• The program moves on to the NEXT i statement where it increases the value of i by one.
Here is the problem!  At the end of the function, i is 11 and that value is shared with the
main program.  After the NEXT i statement in the main program, i equals 12!  The FOR-
NEXT loop in the main program never runs again and the program ends.

The function uses two variables that are not parameters:  s$ and i. This is a dangerous sit-
uation, since some other part of the program might use either variable as happens in this
example.  

Bugs of this sort are very typical when you use global variable within a function or sub-
routine.  You may be more likely to avoid this kind of error if you keep all the statements
that use a certain variable within a few lines of each other.  In True BASIC, you may also
escape these pitfalls by using external subroutines and external functions or by declar-
ing variables in a LOCAL statement.

Try using debug mode and breakpoints with this program (see Chapter 18.) You will see
that there is only one variable i in your program; you may deduce from that that you are
attempting to use it for two purposes.

110 BRONZE Edition  Guide



External Subroutines and Functions

External subroutines and functions are like internal ones, but with two important differ-
ences.  

• They are all defined after the END statement.  They are outside the main program.

• All their variables are local to the function or subroutine definition.  Except for parame-
ters, no variables share values with the main program, even if they have the same names.

To see how this works, you can rewrite the “buggy” example from the previous section.

! Using an external function

DECLARE DEF XXX$

FOR i = 1 to 4 ! Ask four times
PRINT “How many X’s”;
INPUT n
PRINT XXX$(n)

NEXT i
END 

! XXX$ -- returns n x’s

DEF XXX$(n) ! Return a string of n X’s
LET s$ = ““ ! Start with an empty string
FOR i = 1 to n ! Loop. . .

LET s$ = s$ & “x” ! ... adding an X each time
NEXT i
LET XXX$ = s$

END DEF 

When you run this version of the program, you’ll find that it now correctly asks for x’s four
times:

How many X’s? 10
xxxxxxxxxx
How many X’s? 4
xxxx
How many X’s? 7
xxxxxxx
How many X’s? 2
xx

11114. Functions and Subroutines



You must add one new statement when you use an external function.  The DECLARE DEF
statement tells True BASIC that XXX$ is a function and not a variable or an array.  
———————————————————————————————————————

x The DECLARE DEF statement must appear before an external function is
used.

———————————————————————————————————————

You need only give the function’s name in a DECLARE DEF statement; you do not have to
list parameters or even say how many there are.  

External subroutines go after the END statement, just like external functions.  However,
because you use subroutine names only in a CALL statement, you do not have to declare
them with a DECLARE SUB statement.  True BASIC knows that anything in a CALL state-
ment is a subroutine.  

The LOCAL Statement
If you name variables in a LOCAL statement within a subroutine or function, those vari-
ables will not share values with the main program.  Here is the XXX$ function from the
BUG program written with a local statement:

DEF XXX$(n) ! Return a string of n X’s
LOCAL i, s$
LET s$ = ““ ! Start with an empty string
FOR i = 1 to n ! Loop. . .

LET s$ = s$ & “x” ! ... adding an X each time
NEXT i
LET XXX$ = s$

END DEF 

Now, XXX$ can be an internal function and you could safely use the variable names i and
s$ in the main program.  Those variables are no longer global and will not share values.

You can also use the LOCAL statement in main programs along with the OPTION TYPO
statement to help catch misspelled variable names.  Chapter 18 describes this programming
technique. 

112 BRONZE Edition  Guide



CHAPTER

Libraries 15

Subroutines and functions — sometimes called procedures — let you segment your True
BASIC programs.  They may be either internal or external.  Internal procedures are part
of the program that uses them.  External procedures are outside the “calling” program.  In
the examples you’ve seen they appear after the END statement of the main program.  

External functions and subroutines are even more useful when you put them into
libraries.

Libraries
A library is a file that has no main program.  It is only a collection of external functions
and subroutines.  Any program can use these procedures.  All you have to do is include a
LIBRARY statement in the program to identify the library file.  Thus, a library file acts
as a “tool kit” of useful functions and subroutines.
———————————————————————————————————————

x Each library file must begin with an EXTERNAL statement, which indi-
cates that the file has no main program in it.

———————————————————————————————————————

The GAMESLIB file in the TBDEMOS folder/directory is a library file.  It’s a small
library, with a subroutine that simulates rolling any number of dice, and a function that
simulates flipping a coin:

EXTERNAL

SUB Rolldice (sum_dice, num_dice)

LET sum_dice = 0
FOR i = 1 to num_dice

113



LET roll = Int(6*Rnd + 1)
LET sum_dice = sum_dice + roll

NEXT i

END SUB

DEF Coin$ 

IF Rnd < .5 then
LET Coin$ = “heads”

ELSE
LET Coin$ = “tails”

END IF

END DEF 

You can revise the CRAPS program to use this library:

! Craps game using Library file.
!
LIBRARY “gameslib.tru”
RANDOMIZE

FOR game = 1 to 10 ! Play 10 games

CALL Rolldice(dice,2) ! Subroutine rolls 2 dice

SELECT CASE dice ! Branch on roll
CASE 2, 3, 12 ! dice = 2, 3, or 12

PRINT “You lose.”

CASE 7, 11 ! dice = 7 or 11
PRINT “You win.”

CASE ELSE ! Anything else
LET POINT = dice ! Remember that roll
DO

CALL Rolldice(dice,2)    ! Roll again
LOOP until dice = 7 or dice = point
IF dice=point then PRINT “You win” else PRINT “You lose”

END SELECT

NEXT game

END 

The above program uses the subroutine RollDice but doesn’t use the function to flip a
coin; you don’t have to use everything in the library.  But, you can expand CRAPS so that
it flips a coin to decide which of two players goes first.  Notice that you must use a

114 BRONZE Edition  Guide



DECLARE DEF statement before you use the function, just as you must with an external
function in the same file.

! Craps game.
!
LIBRARY “gameslib.tru”
DECLARE DEF Coin$
RANDOMIZE

INPUT PROMPT “Heads or tails? “: choice$
LET toss$ = Coin$ ! Flip the coin

IF Lcase$(choice$) = toss$ then ! Tell who won
PRINT choice$; “, you go first”
LET player$ = “You “

ELSE
PRINT toss$; “, I go first”
LET player$ = “I “

END IF

FOR game = 1 to 10 ! Play 10 games

CALL Rolldice(dice,2) ! Subroutine rolls 2 dice

SELECT CASE dice ! Branch on roll
CASE 2, 3, 12 ! dice = 2, 3, or 12

PRINT player$; “lose.”
CASE 7, 11 ! dice = 7 or 11

PRINT player$; “win.”
CASE ELSE ! Anything else

LET POINT = dice ! Remember that roll
DO

CALL Rolldice(dice,2) ! Roll again
LOOP until dice = 7 or dice = point

PRINT player$;
IF dice=point then PRINT “win” else PRINT “lose”

END SELECT

IF player$ = “You “ then ! Switch players
LET player$ = “I “

ELSE
LET player$ = “You “

END IF

NEXT game

END 

11515.  Libraries 



Notice that this program has several new or revised statements.  New statements include
the group near the beginning that tells who won the coin toss, and the group at the end of
the FOR loop that switches players after each game.  Several PRINT statements now use
the variable player$ to indicate whose game it is.

The built-in function LCASE$ lets you enter answers in upper or lowercase when you run
the program; LCASE$ translates all answers to lowercase.  You do not declare LCASE$
because True BASIC already knows about all built-in functions.  

Appendix C in this manual lists most of True BASIC’s built-in functions. All of them are
included in the HELP files. Type help on the command line, or select the menu “Help for
True BASIC”. See Appendix F for more details.

Aliases

When you use a LIBRARY statement, True BASIC makes an effort to look for your library
file. It looks first in your current directory or folder. Then it looks in the directory named
“TBLibs”. Thus, when you use any of the True BASIC libraries that are included with the
Bronze Edition, True BASIC will find them in the “TBLibs” directory, regardless of your
current directory.

You can see the entire list of aliases by typing the command “alias” on the command line.
Besides the aliases for libraries, there are aliases for “Do” programs and for “Help” files.

You probably will have no need to change these aliases, but you can do so by selecting “Set
Alias” in the “Settings menu”. But be careful! If you accidentally mess them up, just quit or
exit True BASIC and start again.

Compiling

Most of the LIBRARY files used with the Bronze Edition are text files — which are also
known as “source code” files. They can also be compiled files. It doesn’t make any difference.
(Source files usually have the extension

They can also be compiled files. It doesn’t make any difference. Source files usually have the
extension ”.tru” in their name, while compiled files have the extension “.trc”. You may notice
that your program’s startup time is slightly less when the library files have been compiled,
but it makes a real difference only with very large programs.

You can easily make a source file into a compiled file by selecting “Compile” in the “Run”
menu. But first, be sure that your source file has been properly saved.

116 BRONZE Edition  Guide



CHAPTER

Graphics 16

Using True BASIC, you can write programs to draw points, lines, curves, and filled regions.
You can produce animation and color, you can easily mix text with your graphics, and you
can supply graphical input while your program is running.  True BASIC’s Pictures let you
create re-usable graphics procedures.  This chapter introduces several aspects of True
BASIC graphics.

Drawing Points
The easiest kind of graphics is marking points or drawing lines on a coordinate grid.  The
PLOT statement lets you do this on the output window that is currently active.

For each point you plot, you must give two coordinates:  the X-axis or horizontal coordi-
nate, and the Y-axis or vertical coordinate.  Unless you specify otherwise (you’ll see how to
do that in a bit), True BASIC assumes your output screen uses a horizontal (X) axis from 0
to 1 and a vertical (Y) axis from 0 to 1.  The point with the coordinates (.2, .4) is shown below.  

Y-axis

X-axis

.

0
 0

(.2, .4)

1

1

117

Figure 16.1  –  PLOT .2, .4



A simple True BASIC program to draw this point on your screen has just two lines:

PLOT .2,.4
END 

To plot additional points, you just add more PLOT statements.  The following program puts
four points on the screen.  Create this program and run it.

PLOT .2,.4
PLOT .4,.4
PLOT .4,.6
PLOT .2,.6
END 

Drawing Lines
To draw lines, you use semicolons with your PLOT statements.  Imagine that you are draw-
ing with a light pen.  A simple PLOT statement uses the pen’s beam to draw a point and
then turns the beam off.  A semicolon at the end of a PLOT statement (or between two points
in the PLOT statement) leaves the beam on.  When True BASIC moves to the next point, it
draws a line with the light pen.  The beam stays on until a PLOT statement ends without
a semicolon.

Add semicolons to the above program so that it connects points to draw two horizontal lines
(Figure 16.2):

PLOT .2,.4;   ! Draw a line to next point
PLOT .4,.4    ! Turn the “pen” off
PLOT .4,.6;   ! Draw a line to the next point
PLOT .2,.6
END 

When drawing lines, you can combine several points on one PLOT statement.  The follow-
ing program connects all the points to draw a box (Figure 16.3).  Notice that you must add
another PLOT statement to close the box, that is, to draw a line from the last point to the
first point:

PLOT .2,.4; .4,.4; .4,.6; .2,.6; ! Connect all points
PLOT .2,.4 ! Close box; turn off “pen”
END 

118 BRONZE Edition  Guide



Figure 16.2  - Horizontal Lines Figure 16.3  - A Box

Changing the Coordinates

As you saw above, True BASIC assumes the output coordinates go from 0 to 1 in both the
horizontal and vertical directions.  However, you can use a SET WINDOW statement to set
any boundaries you want.

For example, if you want the coordinates to go from 0 to 10 in both directions, you could
include the following statement before you give any PLOT statements:

SET WINDOW 0, 10, 0, 10 

The first two numbers give the start and end values for the horizontal axis, the second num-
bers give the start and end for the vertical axis.

Your coordinate system need not begin at zero, and the horizontal and vertical axes need
not match.  For example if you were plotting a graph to show production of cars over this
century, you might set your coordinates as follows:

SET WINDOW 1900, 1990, 0, 10000000 

The horizontal axis would show the range of years, and the vertical axis would let you plot
production amounts from 0 to 10,000,000.

You can change the coordinates within a program.  All PLOT statements use the coordinate
system specified in the most recent SET WINDOW statement.  

16.  Graphics 119



Drawing Shapes

True BASIC gives you two ways to draw empty or solid shapes.  The BOX statements are
the easiest and fastest method.  

The BOX LINES statement draws the outline of a square or rectangle.  You give the coor-
dinates of the left, right, bottom, and top edges in the same way as in the SET WINDOW
statement.  The following program outlines a square as shown in Figure 16.4.

! Draw a square
!
SET WINDOW 0, 30, 0, 20 ! 15,10 is center of window
BOX LINES 10, 20, 5, 15 ! Draw box with sides = 10
END 

Figure 16.4 - BOX LINES 10, 20, 5, 15

Similarly, the BOX AREA statement draws a solid square or rectangle using the coordi-
nates you give in the statement:

! Draw a solid square
!
SET WINDOW -15, 15, -10, 10 ! 0,0 is center of window
BOX AREA -5, 5, -5, 5 ! 5*2 is length of each side
END 

120 BRONZE Edition  Guide



You can draw circles and ellipses using the BOX CIRCLE or BOX ELLIPSE statement.  You
give coordinates to these statements just as you do for BOX LINES and BOX AREA.  True
BASIC draws a circle or ellipse inside the border of the invisible box defined by the coordi-
nates.  It doesn’t matter whether you use the CIRCLE or ELLIPSE keyword.  If your coor-
dinates define an invisible square, you get a circle; if the coordinates define a rectangle, you
get an ellipse.

If you wish to draw a solid circle or ellipse, first draw the figure and then fill it in with the
FLOOD statement.  For the FLOOD statement, you give the coordinates for some point
inside the object you want to fill.  True BASIC fills the object from that point out to its bound-
aries.  For example (Figure 16.6):

SET WINDOW -10,10,-10,10
BOX CIRCLE -5, 5, -5, 5
FLOOD 0,0
END 

Figure 16.5  - BOX AREA -5, 5, -5, 5

You can draw more complex objects using a series of PLOT statements ending in semicolons.
If you wish to fill the object you can then use a FLOOD statement.  The following program
outlines a knight from a chess set and then fills the object. The result is shown in Figure
16.7 on the next page.

16.  Graphics 121



! Draw a knight
!
PLOT .2,.1;.8,.1;.8,.2; ! Draw the outline
PLOT .7,.25;.7,.3;.8,.4;.65,.7;.6,.9;.55,.9;
PLOT .5,.82;.2,.75;.2,.6;.3,.6;.4,.55;
PLOT .25,.45;.2,.37;.3,.3;.3,.25;.2,.2;.2,.1
FLOOD .5,.5 ! Fill it in
END 

The PLOT AREA statement connects a series of points and fills in the object.  It works
much as a series of PLOT statements except that PLOT AREA always connects the last
point to the first.  So you need not repeat the first point.  The following statements draw
and fill a triangle (Figure 16.8).  Note that the PLOT AREA statement has a colon after
the AREA keyword.

SET WINDOW -2, 2, -2, 2
PLOT AREA:  -1,-1; 1,-1; 0,1
END 

Figure 16.6 Figure 16.7 Figure 16.8
BOX CIRCLE and FLOOD PLOT and FLOOD PLOT AREA

Using Colors
In the examples used so far, all solid objects are filled with a color that is dependant on
your monitor and default graphics mode for your computer.  You can also use different
colors, or shades of gray if you have a black and white monitor.

The SET COLOR statement lets you set a color or shade for succeeding PLOT state-
ments.  You can set colors by number or name:

SET COLOR “red”
SET COLOR 3

122 BRONZE Edition  Guide



The table shows the equivalent color names, numbers, and meanings for colors supported
for most graphics modes with color monitors.  In addition, there are two default colors: -1
(black) for the foreground, and -2 (white) for the background. When opened the first time,
all windows have these default colors.

Name Number Meaning

black 0 black

blue 1 blue

green 2 green

cyan 3 cyan

red 4 red

magenta 5 magenta

brown 6 brown (yellow on some monitors)

white 7 white

8 gray

9 bright blue

10 bright green

11 bright cyan

12 bright red

13 bright magenta

yellow 14 yellow  (brown on some monitors)

15 bright white

The following program (SQUARES in the TBDEMOS directory) draws a series of solid
squares in different colors or shades of gray:

! Draw six squares
!
SET WINDOW -10, 10, -10, 10
BOX AREA -6, 6, -6, 6 ! Draw outer square in black
FOR i = 5 to 1 step -1 ! From large to small

SET COLOR i! Change color
BOX AREA -i, i, -i, i ! Draw next square

NEXT i
END 

16.  Graphics 123



Figure 16.9 –  Six squares.

If you have a color monitor, you can use the nine True BASIC color names (listed in the table
above).  If your computer can produce more colors, you can use color numbers and the SET
COLOR MIX statement for greater variety.  The color numbers you can use depend on the
graphics mode of your computer.  SET COLOR MIX lets you control the red, green, and blue
elements producing a given color number. 

Animation

True BASIC’s BOX KEEP, BOX CLEAR, and BOX SHOW statements let you simulate
movement on the screen.  The idea is to draw an image within a rectangular area on the
screen, save that image as a string variable, and then redraw the image a slight distance
away.

BOX KEEP saves the contents of a rectangular area on the screen in a string variable.  You
then erase the rectangular area on the screen with BOX CLEAR, and redraw the object
somewhere else with BOX SHOW.  

The ARROW program in the TBDEMOS directory uses these statements to shoot an arrow
across the screen.  Open it and run it.

! Shoot an arrow across the screen!
SET WINDOW 0, 10, 0, 10

PLOT 0,5; 1,5 ! Draw arrow
PLOT .6,4.5; 1,5; .6,5.5
BOX KEEP 0, 1, 4, 6 in arrow$ ! Memorize arrow
PAUSE 1 ! Pause before shooting

124 BRONZE Edition  Guide



LET x = 0
FOR move = 1 to 50 ! Move in small steps

BOX CLEAR x, x+1, 4, 6 ! Erase old arrow
LET x = x + .2 ! Advance x position
BOX SHOW arrow$ at x,4 ! Draw at new position

NEXT move

END 

Notice that the BOX KEEP and BOX CLEAR statements take coordinates to define a rect-
angular area just as the other BOX statements.  For BOX SHOW you specify just the lower
left corner where you want to draw the new image.

The PAUSE statement makes True BASIC wait before it erases and begins to move the
arrow.  The number tells how many seconds to pause.  To slow the progress of the arrow
across the window, you can add a PAUSE statement inside the FOR loop, just before the
NEXT statement.

BOX CLEAR clears just the specified area so that other images can remain.  If you wish to
clear the entire screen, use the CLEAR statement.

For a more sophisticated program using animation, look at the Demo Program KNIGHT.

Pictures
Pictures are like subroutines for graphics.  You can think of them as stencils. Define a pic-
ture and you can use it repeatedly to redraw an object at different locations.

As you will see, pictures are more flexible than stencils.  You can draw the same picture
repeatedly, but change its size or shape, or rotate it on the screen.  

A picture is much like a subroutine.  You name it and put the statements that plot it inside
PICTURE and END PICTURE statements.  When you want to use the picture, you “call” it
with a DRAW statement.  The following program uses a picture to draw a knight from a
chess game.  You’ll notice that the picture contains the same statements used to draw a
knight in the previous section on “Drawing Shapes”.  The following version is saved as PIC-
TURE in the TBDEMOS folder/directory.

! Draw a knight using a picture
!
PICTURE Knight

PLOT .2,.1;.8,.1;.8,.2;       ! Draw the outline
PLOT .7,.25;.7,.3;.8,.4;.65,.7;.6,.9;.55,.9;
PLOT .5,.82;.2,.75;.2,.6;.3,.6;.4,.55;

16.  Graphics 125

DRAW Knight



PLOT .25,.45;.2,.37;.3,.3;.3,.25;.2,.2;.2,.1
FLOOD .5,.5                   ! Fill it in

END PICTURE

DRAW Knight

END 

Like subroutines and functions, pictures may be internal or external.  External pictures
may be stored in Library files.

Transformations
So far there doesn’t seem to be any great benefit to defining a picture.  The true power of
pictures comes when you use them with transformations and parameters.
Transformations let you move pictures or rotate, re-scale, or tilt them when you draw
them.  For example, you could replace the DRAW statement above with the following lines
to draw lots of knights all over the screen.  

SET WINDOW 0, 10, 0, 10
FOR x = 0 to 9

FOR y = 0 to 9
DRAW Knight with shift(x,y)

NEXT y
NEXT x

The SHIFT transformation moves horizontal and vertical coordinates by the amounts you
specify.  The above statements use a larger coordinate system (SET WINDOW 0, 10, 0, 10)
and then draw the knight 100 times within that window.  Try it!

Similarly, you can double the size of the knight:

DRAW Knight with scale (2,2) 

or make it twice as tall as wide:

DRAW Knight with scale (2,4)

SCALE multiplies the horizontal and vertical coordinates of your picture by the amounts
you specify.  Be aware that your scaled picture may become bigger than the window coor-
dinates!  Use a SET WINDOW statement to give enlarged coordinates if necessary.

Other transformations let you “shear” (or tilt) the picture or rotate the picture.  You must
give the amount of tilt or rotation in radians unless you include an OPTION ANGLE
DEGREES statement first.  You may then use degrees.

126 BRONZE Edition  Guide



The SHEAR transformation leans vertical lines forward (clockwise) by the angle you spec-
ify.  For example,

OPTION ANGLE DEGREES ! Use degrees
DRAW Knight with shear (45) 

makes the knight lean to the right by 45 degrees.  Use a negative angle to lean a picture to
the left.  As with SCALE, you may have to use a SET WINDOW statement so that the pic-
ture doesn’t lean out of the window.

ROTATE moves pictures counterclockwise (clockwise if you use a negative angle) around
the (0,0) point in the window.  Note that this is not the same as rotating a picture in place!
You can easily rotate a picture out of coordinate window, unless you adjust coordinates with
SET WINDOW or also shift the picture.  

For example, if you rotate the knight 90 degrees, it would “fall on its face to the left” and be
out of the standard coordinate system (0, 1, 0, 1).  The upper right box of Figure 16.10 shows
the knight drawn in the standard coordinate system with no transformations.  The gray
knight was rotated with the statements:

OPTION ANGLE DEGREES ! Use degrees
DRAW Knight with rotate (90) 

True BASIC rotates the knight about the point (0,0) and out of the standard coordinate win-
dow.

DRAW Knight
with Rotate (90) 

Figure 16.10 – RotateTransformation

16.  Graphics 127



You can combine transformations on one DRAW statement by placing an asterisk (*)
between transformations.  For example, you could rotate the knight and then move it back
into the (0, 1, 0, 1) window:

OPTION ANGLE DEGREES ! Use degrees
DRAW Knight with rotate (90) * shift (1,0)

When you use more than one transformation, True BASIC performs them in order from left
to right.  Because of this, the order of transformations can make a difference.  You’re most
likely to get the results you expect if you use SHIFT as the last transformation.  

Creating Complex Pictures
With pictures and transformations you can create complex graphics.  You can transform pic-
tures and use them within other picture definitions.  The HOUSES program in the TBDE-
MOS folder/directory combines simple pictures and transformations to provide a “neigh-
borhood” of houses.  Look at the program and run it.  Try some variations of your own!

The GraphLib Library
The GRAPHLIB library provides the following routines:

Frame frames the graphics window

Axes draws X and Y axes

Ticks draws X and Y axes with tick marks

Polygon draws a polygon with any number of sides

Bars draws a bar graph of data

Fplot plots a function

These are all subroutines; use them with a CALL statement.  You must give arguments for
several of the subroutines.  Open the GRAPHLIB file to see what each subroutine expects.  

Remember that your program must include a LIBRARY statement to identify the
GRAPHLIB file.  Your program must either be in the same directory as GRAPHLIB, or you
must give more information in the LIBRARY statement.  For example, if you save your pro-
gram in the same location as (but not inside) the TBLIBS folder/directory, you could use the
following LIBRARY statement.  This program draws coordinate axes with tick marks at
every unit.

128 BRONZE Edition  Guide



LIBRARY “GraphLib.tru” 
SET WINDOW 0, 10, 0, 10
CALL Ticks(1,1)
END

Other Graphics Features
As you become more proficient, you might want to use some of True BASIC’s other graph-
ics statements.  Several of these are described briefly below.

Text in Graphics Output.  
You can use the PRINT command in a graphics window, but it is hard to control the loca-
tion and appearance of the text.  The PLOT TEXT command lets you specify a coordinate
location for the string you wish to print:

PLOT TEXT, at -1, 5 : “Test Results” 

The coordinates designate the lower left corner of the text unless you control the location
with a command such as SET TEXT JUSTIFY “center”, “bottom”.

Graphics Input
The GET POINT and GET MOUSE commands let you give coordinates to your program by
“pointing to” a spot in the output window while the program is running.  Using these com-
mands, you could draw a figure by pointing to various places on the screen and having your
program connect the points.

MAT PLOT Statements
If you are plotting many points, you could compute the coordinates and store then in a two-
dimensional array with one row for each point (with X coordinates in the first column, and
Y coordinates in the second).  You can then use MAT PLOT POINTS, MAT PLOT LINES,
and MAT PLOT AREA to plot the coordinates in the array.  

Open the MATPLOT program in the TBDEMOS folder/directory to see the following exam-
ple of a MAT PLOT AREA statement.  (This uses the SIN, COS, and PI built-in functions;
Appendix C lists most of True BASIC’s built-in functions.) 

16.  Graphics 129



!  MAT PLOT AREA example
!
DIM points (201,2)
SET WINDOW -1, 1, -1, 1

FOR t = 0 to 2 step .01 ! Compute points
LET c = c+1 ! Count points
LET points(C,1) = sin(3*t*pi) ! x-coordinate
LET points(c,2) = cos(5*t*pi) ! y-coordinate

NEXT t

MAT PLOT AREA: points ! Draw and fill in

END 

Printing Graphical Displays
You can print the contents of any physical window by selecting Print in the window's menu.
If you have a color printer, the results will be printed in color. If you do not have a color
printer, the colors will be shown as different shades of gray.

130 BRONZE Edition  Guide



Programming for Windows

In other parts of this manual you have been shown how to write ‘top-down’ programs

and routines.  In other words the programs start at the beginning and finish at the

end, and how the user proceeds through this sequence of events is controlled entirely

by the person who wrote the program.

Programming for Windows requires a completely different approach because a window

can contain many objects; such as menus, push buttons, edit fields, lists etc., and the

user has complete freedom to activate any of these objects at any time.  You, as the

programmer must accept that you no longer control the process.  Your job is to write a

program that takes account of whatever the user wants to do in whatever order they

elect to do it. 

This is a profound difference in the way you think about and approach writing

programs so make sure you understand this fundamental concept before you try to

work with windows.

In TrueBASIC this is not as difficult as it sounds. Firstly because a special library

module called BronzeTC has been constructed that makes it very easy to create

windows and objects. In general, just one single line of code will produce a whole

window or an object such as a list or push button.

At the start of all your windows programs you need to access this library with:

You also need to initialise this library with:

     CALL TC_init

It is also good practice to restore everything to normal when you exit your program

with:

     CALL TC_cleanup
     END

Secondly, this library contains a sub-routine called TC_event that solves the problem

of finding out what actions the user has made with the mouse or the keyboard.

Indeed, you will find that calling this sub-routine from inside a DO....LOOP structure

in your programs makes programs much easier and quicker to write, because you can

use the same ‘skeleton’ program every time.  The folder TBdemos contains such a

‘skeleton’ program called TBstandard.TRU.  

The skeleton program has been set out to allow for a menu, a push button, an edit

field, a list button and both window scroll bars. You will see that the program consists

of a simple event loop in which the type of event is analysed and each type calls an

16.  Graphics 131

     LIBRARY “BronzeTC.trc”



appropriate sub-routine to deal with the event. As an illustration the ID of a push

button is call mybutton, but you can use any meaningful name. For example if the

button quits the program then it would have a label “QUIT” so it would be convenient

to use the ID name quit. Similarly the edit field ID has been called myedit, but if your

edit field asks for a surname then it would be more sensible to call the edit ID

surname. This rule applies to all object ID names.

Every event must have an appropriate response from the program, even if the

response is to ignore the event. Usually the way to deal with an event is to call a sub-

routine. This keeps everything nice and tidy because each routine only does one simple

task — it deals with just one event. Collectively your program may be quite complex,

but individual routines will be extremely simple. Think of the main program as being

an index of events. You look up the index for an event and it points to a sub-routine

where you will find the detail. This strategy will make trouble shooting and de-bugging

so much easier. Even the task of creating objects to fill your window is best done inside

a sub-routine.

In top-down programming you always control what the user does next, but in

programming for windows you have to accept that the user may do absolutely

anything, however bizarre or stupid, so you need to prepare for this. For example,

suppose you have a program that essentially collects data for an address/phone book.

In the window you will probably have several edit fields for name, address, phone

number etc and a SUBMIT button, and maybe a CANCEL button. You are expecting

the user to complete all the edit fields and then press the SUBMIT button, so your

response to the SUBMIT button would be to file the data entered by the user. 

In practice, the user may well press the submit button without completing all the edit

fields, so you need to check whether this has been done before you write some

incomplete data to your file. Similarly, you should also check whether the data that

the user has entered is reasonable. If you want the user to enter a phone number then

you need to check that what they have typed conforms to the pattern of numbers you

normally expect for phone numbers. The library module Bronze_TD provides you with

a range of dialog boxes that you can display to inform the user that they have done

something wrong.

In many ways working with windows is a lot easier that writing ordinary programs

simply because the code that generates objects and controls how they work has already

been done for you. In normal programming a lot of your time is spent writing code that

gets input information and even more code to display information on the screen.

Windows objects do most of this for you, so you can spend more time and effort on what

your program really does.

The next concept that you need to understand before you go any further is the

difference between physical and logical windows.  Physical windows are those that

usually have a border, a title bar and buttons for closing and re-sizing the window.

Logical windows are zones or areas within a physical window.  Logical windows have

no borders or title bars nor any control buttons.  Every time you create a physical

window, a logical window is also created to fill that window.  Why have two windows?

The reason is very simple; physical windows are where you put windows objects such

132 BRONZE Edition  Guide



as push buttons, edit fields and list buttons, and logical windows are where you use all

the other TrueBASIC features such as PRINT, PLOT and image handing statements

such as BOX SHOW.

It will help you to visualize how things will appear on the monitor screen if you think

of the physical window as being on top.  For example, if you color an area of the logical

window with a BOX AREA statement, then you place a push button in the physical

window, the button will appear on top of the colored area.  If you change the colored

area with another BOX AREA statement, then the button will still be on top.

The size and location of all windows are defined by four co-ordinates in this order; 

left, right, bottom, topleft, right, bottom, topleft, right, bottom, topleft, right, bottom, top

The co-ordinates for windows are always relative to the whole screen.whole screen.whole screen.whole screen.

The co-ordinates for objects inside windows are always relative to the windowwindowwindowwindow.

The final concept that you need to get your head around is that all windows and all

objects inside windows each have a unique identity number. The reason why we need

identities is again very simple. Suppose you have several push buttons labelled QUIT,

CANCEL and SUBMIT, then you will want to know which of them the user has clicked

on. The TC_event routine will tell you that a button has been pressed and it also gives

the ID number of the button. If you have created multiple windows, then TC_event

will also tell you the ID of the window the user is currently working with. The most

difficult concept to grasp is that you don’t need to know the value of the ID number,

because you can use a variable name instead.  You are free to use any variable name

you like. Suppose you have a button that is labelled QUIT, then you might use the

variable name quit as the ID for this button.

Remember, that there is nothing magical or mystical about windows and the objects

inside them. They are just graphical images painted on the screen. However, behind

the scenes, there is a great deal of code that makes the object appear to react in a

particular way when you click the mouse inside the perimeter of the object. Take for

example a simple push button, which you create with just one very simple line of code:

     CALL TC_PushBtn_create(id,”LABEL”,xl,xr,yb,yt)

You don’t need to worry about all the code that paints a rectangular area of the screen

gray, and works out where the center is so that the word LABEL is printed in the

middle in black. Nor do you have to concern yourself with working out how to color the

edges of the rectangle to give the button a 3D effect of standing proud of the

background using shadows on the bottom and right hand edges. When you click the

button these shadows are reversed momentarily to give the impression the button has

been pressed. All this code has been done for you in the library module BronzeTC. 

Until now the output from your programs has been displayed on the screen in the

default font, over which you had no control. BronzeTC now gives you control over the

font, not just in the default window, but all windows, e.g.

16.  Graphics 133



     CALL TC_win_SetFont(wid,”Times”,12,”Bold italic”)

Where wid is the ID of the window you wish the font to apply to.

You may change the font details any number of times, so it is possible to fill the screen

with a variety of fonts in different sizes and styles, and in different colors, e.g.

     CALL TC_win_SetFont(wid,”Times”,12,”Bold italic”)
Set Color 9 ! blue
PLOT TEXT, AT 20,50:”This is an example”
CALL TC_win_SetFont(wid,”Arial”,16,”Bold”)
Set Color 12 ! red
PLOT TEXT, AT 20,100:”of different fonts”
CALL TC_win_SetFont(wid,”Helvetica”,10,”Plain”)
Set Color 13 ! magenta
PLOT TEXT, AT 20,150:”in various colors”

Much of your programming effort will have been spent devising ways of getting user

INPUT, and then even more time working out how to display the output data. The

tools available in BronzeTC will make these tasks much easier and will give greater

impact to your output. 

Remember that all the code you use with BronzeTC will run without any changes if

you later upgrade to the TrueCtrl and TrueDial library modules. This is because

BronzeTC is a cut down version of the TrueCtrl library. Similarly BronzeTD is a

reduced set of dialog boxes from the TrueDial library. 

Demonstration programs featuring the objects in BronzeTC can be found in the

Tbdemos folder.

To use these features correctly you will need to refer to the BronzeTC manual which is

located in the documents folder. This manual also contains details of BronzeTD dialog

boxes. 

134 BRONZE Edition  Guide



CHAPTER

Sound and Music 17

You’ve already seen the Demo Program SMOKY that plays the first few lines of “On Top of
Old Smoky”.  True BASIC’s PLAY and SOUND statements let you produce melodies and
general sound effects on your computer.

The PLAY Statement
The PLAY statement lets you play simple melodies on your computer.  When you use a PLAY
statement, you give it a string consisting of codes for notes, tempo, and how the notes should
be played.

Open the SMOKY program, run it again, and then take a look at the music codes in the
DATA statements.

! Plays the beginning of
! “On Top of Old Smoky”.

DO while more data

READ music$    ! Get the string representations
PLAY music$    ! And play the notes

LOOP

DATA O4 L4 C C E G O5 L2 C. O4 A.
DATA L4 A F G A L1 G
DATA L4 C C E G L2 G. D.
DATA L4 E F E D L2 C.

END 

135



136 BRONZE Edition  Guide

Look at the first DATA statement, which represents the first six notes of “On Top of Old
Smoky.”  The letters A through G represent the notes A through G.  The other codes give
True BASIC information about how to play the sequence of notes.

The letter O followed by a digit sets the current octave.  The octaves start at C and go
up to B, as on a piano keyboard.  (Middle C is the first note in octave 5.)  This song begins
in the fourth octave, so the first string item is “O4”.

Next, the letter L followed by a digit tells True BASIC the length of the note or notes
to play.  The larger the number with the code L, the shorter the length of the note.  Therefore,
“L4” means a quarter note, “L2” a half note, and “L1” a whole note.  True BASIC plays all
notes following an L code at that length until another L appears in the string expression.

After the first DATA statement sets the octave and the length of notes, “C C E G” tells True
BASIC to play two C’s, an E, and a G as quarter notes.  The next note, however, is in the
next octave, so you need another O code to set the octave to O5.

After O5, the next note is a 3/4 note C.  This is done by changing the length to L2 (half note)
and adding a dot after the letter C.  The dot multiplies the length of the note by 3/2,
just as it does in written music.  The line ends by going back down to octave 4 and playing
another 3/4 note, A.

The remaining string data use these codes to play the next three lines of the song.  You may
type the letters in the codes in upper or lowercase.  Also, the spaces between the codes don’t
matter to True BASIC, but they do make the program easier to read!

True BASIC has other music codes that give you more control over the notes and the way
they’re played.  The letter T sets the tempo, or speed, for the rest of the melody.  The num-
ber given with T represents the number of quarter notes played in one minute.  If you don’t
specify the tempo, True BASIC plays 120 quarter notes per minute.  Add the code T180 to
the first DATA statement, and run Smoky again.

The ML code plays music legato, and MS plays staccato.  (Legato means play the music
smoothly with a connection between successive notes.  Staccato means play the music
briskly with no connection between notes.)  Add some of these codes to Smoky, and run it
again.  You can use the MN code to set the music style back to normal.

You can include sharps and flats in your music by adding a “+” or “#” after the note to indi-
cate a sharp, or “-” after the note to indicate a flat.  You can also write lengths of single notes
by putting the appropriate digit after the letter for that note.  For example, the first two
lines of  “America” in the key of F would look like this:



F4 F4 G4 E4. F8 G4
A4 A4 B-4 A4. G8 F4 

The letter R stands for rest.  The number given with R has the same meaning as the num-
bers associated with the code L.  That is, R4 means rest for the length of a quarter note, R2
means rest for the length of a half note, etc.

The following table summarizes the PLAY codes. 

Code Meaning

A to G Play a note in current octave, at current tempo, etc.

L n Set the length of subsequent notes.

ML Play music legato, or smoothly.

MN Play music normally (not legato or staccato).

MS Play music staccato, or briskly.

O n Set current octave.  Middle C is the first note in octave 5.

R n or P n Rest (pause) for length n.

T n Set the tempo.

# or + Sharp.

- Flat.

. Play dotted note.

The SOUND Statement
The SOUND statement makes your computer emit sounds that are not necessarily musical
notes.  You specify the frequency of the sound in Hertz (cycles per second) and the duration
of the sound in seconds.  For example, the statement:

SOUND 440, 10 

plays concert A, which has a frequency of 440 Hertz, for 10 seconds.

13717. Sound and Music



138 BRONZE Edition  Guide



CHAPTER

Correcting Errors and Debugging 18

There are three kinds of mistakes you might make when writing a program:  (1) improperly
used True BASIC statements, (2) errors that occur when a program runs, and (3) “bugs” that
prevent your program from working as you intended.   True BASIC can help you find many
of these errors, and you can learn some tricks to help you find others.

Illegal Statements

One of the easiest things that True BASIC can find for you is a statement or structure you
have used incorrectly.  When you attempt to run a program with an illegal statement, True
BASIC opens an error window and displays an error message that gives the line and char-
acter numbers at which the error was detected. If you double-click on one of the error mes-
sages, True BASIC will place the cursor at the offending spot in your program.  You can then
correct that error and run the program again.  Repeat if there are more than one error in
the error window.

Consider the following program "WRONG":

PIRNT  “You are about to toss a coin”
IF rnd<.5 PRINT “Heads; win” else PRINT “Tails; lose” 

When you run this program, True BASIC opens an "Errors" window with contents like this:

139



The first error shows that an "illegal statement" was encountered at line 1, character 1. A
missing "then" keyword was detected in line 2, character 11. Finally, it was seen that there
is no "end" statement.

If you now double-click on the first line, True BASIC places the editing window cursor at
line 1, character 1, or just in front of the word PIRNT. You can now correct this word by dou-
ble-clicking on it and then retyping it correctly, PRINT.

Repeat with the second and third lines in the "Errors" window.

PRINT  “You are about to toss a coin”
IF rnd<.5 then PRINT “Heads; win” else PRINT “Tails; lose”
END 

Appendix D lists and briefly explains the error messages you are likely to see as you write
programs using the statements introduced in this book.  If you are not sure of the correc-
tions you need to make, reread the appropriate sections of this Guide. 

If you use Do Format to indent your programs, you can often catch problems in multi-line
structures such as IF-THEN-ELSE decisions or FOR-NEXT loops.

Errors During Program Runs — Exceptions
A program can sometimes cause errors when it is run (executed).  For example, the statement

LET answer = a/b 

is a “legal” statement.  But if b equals 0 when this statement is carried out, the program would
stop and you would get a “Division by zero” error.  Errors that happen during program runs
are called exceptions.  The list of error messages in Appendix D includes exceptions.

True BASIC has a structure and four built-in functions that you can include in your pro-
grams to intercept this type of error and provide a remedy that can enable the program to
keep running.  The WHEN structure is mentioned in Appendix B, and the EXLINE,
EXLINE$, EXTEXT$, and EXTYPE functions are explained in Appendix C.

Correcting Bugs in Your Programs
True BASIC cannot detect the third type of programming error.  Your program may be
“legal” and contain no “exceptions”, but it still gives the “wrong” answers.  Somehow, you’ve
not written the program correctly to accomplish what you wanted to do.

140 BRONZE Edition  Guide



18. Correcting Errors and Debugging 141

True BASIC can’t tell what you want your program to do, so it can’t tell you where you’ve
gone wrong, but there are some tools you can use to debug your programs.  

• One of the first things to do is use DO FORMAT to make the program more readable
(see Chapter 10).  

• Next, get a printed listing of your program and read it carefully (see Chapter 10).  

• As you read, check your variable names.  Have you spelled them correctly and consis-
tently throughout the program?  The OPTION TYPO and LOCAL statements
described below can help you catch spelling errors in variable names.

OPTION TYPO and LOCAL. You can put an OPTION TYPO statement at the beginning
of your program to request True BASIC to check all variables in that program.  For this to
work, all variable names must be declared in a LOCAL statement or appear as parameters
in a SUB, DEF, FUNCTION, or PICTURE statement.  (All arrays must be declared in DIM
or LOCAL statements.)  True BASIC gives an “Unknown variable” error for any undeclared
variable that it sees.  You have to do some extra typing to list all variables in a LOCAL state-
ment, but it can save debugging time by finding misspelled variables.  Chapter 14 introduces
the LOCAL statement.  

• If you are not sure where your errors are, but suspect parts of the program, insert
some extra PRINT statements to see what values your variables have at various
points in your program.

• Go into debug mode and insert breakpoints into your program.

Breakpoints. You can insert breakpoints into your program.  When you run the program,
True BASIC halts at each breakpoint and displays a list of variable names and their current
values.  Most of the time you can actually change the value of one or more of these variables.
Type the CONTINUE command or select the menu item Continue to resume the program
run.  (For a review on using the command window, see Chapter 10.)

The first step is to turn debugging on by selecting the third item in the Settings menu.

To insert a breakpoint, move the cursor to the desired line and select Break in the Run
menu, or type Break on the command line. You can insert as many breakpoints as you like.
To remove a breakpoint, select the line and again type Break on the command line.

Now run your program. When True BASIC reaches a breakpoint, it opens a Variable window
that displays all the variables in your program and their current values. You can actually
change the values of some of them, but this must be done carefully! To continue running the
program, select Continue in the Variable window menu, or type Continue on the command
line. If you want to stop your program, select Stop from the Variable window menu.



142 BRONZE Edition  Guide

If you accidentally close the Variable window, you can reopen it by selecting it from the
Windows menu of Editing window.

Debugging - A Case Study

Let’s take a very simple problem, adding up the numbers from 1 to some positive whole num-
ber which we will call n.  A program to do this might be:

! Sum of numbers from 1 to n
INPUT n
FOR i = 1 to n

LET sum = sum + i
NEXT i
PRINT sum
END

When you run this program and enter 5, it will print 15 (the correct answer.)  When you run
the program again and enter 3, it will print 6 (again, the correct answer.)

Since you want to use this program more than once, you might have the brilliant idea of
including it in a loop, so you can enter several numbers without having to Run the program
from scratch each time.  Here is one possible solution (notice that you have added an IF
statement to allow the program to stop!)



143

! Sum of numbers from 1 to n
DO

INPUT n
IF n = 0 then EXIT DO
FOR i = 1 to n

LET sum = sum + i
NEXT i
PRINT sum

LOOP
END

When you run this program and enter 5, it prints 15 as it should.  But when you now enter
3, it prints not 6, but 21, which is a wrong answer.

You might be able to see the problem, and the solution, immediately.  But let’s see how we
can use Debugging Mode, Breakpoints, and the Variable Window to help us.

Make sure Debug Mode is checked in the Settings menu.  Now place
the cursor in front of the line ‘LET sum = sum + 1’, which is the
workhorse line in the program. Now choose Run from the Run menu.
The program will stop almost immediately at the breakpoint.  The
Variable Window will look like this:

Everything looks okay.  Continue the program by selecting Continue from the Run of the
Variable Window, or by typing ‘continue’ in the command line, until it prints the result 15,
in the Output Window.

18. Correcting Errors and Debugging



144 BRONZE Edition  Guide

Now, enter 3 when the ‘?’ appears.  Notice the current status of the Variable Window. 

Once you see this, you may figure out the solution; In this case add this line to your pro-
gram:

LET sum = 0

just after the IF statement and just in front of the FOR statement. The program will now
run correctly.

True BASIC always initialized numeric variables to 0.  But if you reuse a variable in your
program, you’ll have to set it to 0 yourself!



APPENDIX

ASCII Character Set A

This table lists the ASCII character set. The order of characters determines how string
conditions are evaluated. The decimal and hexadecimal equivalents given for each
character are useful for advanced programmers.

145

Decimal Name Hex
000 nul 00 
001 soh 01 
002 stx 02 
003 etx 03 
004 eot 04 
005 enq 05 
006 ack 06 
007 bel 07 
008 bs 08 
009 ht 09 
010 lf 0A 
011 vt 0B 
012 ff 0C 
013 cr 0D 
014 so 0E 
015 si 0F 
016 dle 10 
017 dc1 11 
018 dc2 12 
019 dc3 13 
020 dc4 14 
021 nak 15 
022 syn 16 
023 etb 17 
024 can 18 
025 em 19 
026 sub 1A 
027 esc 1B 
028 fs 1C 

Decimal Name Hex
029 gs 1D 
030 rs 1E 
031 us 1F 
032 space 20 
033 ! 21 
034 “ 22 
035 # 23 
036 $ 24 
037 % 25 
038 & 26 
039 ’ 27 
040 ( 28 
041 ) 29 
042 * 2A 
043 + 2B 
044 , 2C 
045 - 2D 
046 . 2E 
047 / 2F 
048 0 30 
049 1 31 
050 2 32 
051 3 33 
052 4 34 
053 5 35 
054 6 36 
055 7 37 
056 8 38 
057 9 39 

Decimal Name Hex
058 : 3A 
059 ; 3B 
060 < 3C 
061 = 3D 
062 > 3E 
063 ? 3F 
064 @ 40 
065 A 41 
066 B 42 
067 C 43 
068 D 44 
069 E 45 
070 F 46 
071 G 47 
072 H 48 
073 I 49 
074 J 4A 
075 K 4B 
076 L 4C 
077 M 4D 
078 N 4E 
079 O 4F 
080 P 50 
081 Q 51 
082 R 52 
083 S 53 
084 T 54 
085 U 55 
086 V 56 



Decimal Name Hex
087 W 57 
088 X 58 
089 Y 59 
090 Z 5A 
091 [ 5B 
092 \ 5C 
093 ] 5D 
094 ^ 5E 
095 _ 5F 
096 ` 60 
097 a 61 
098 b 62 
099 c 63 
100 d 64 

Decimal Name Hex
101 e 65 
102 f 66 
103 g 67 
104 h 68 
105 i 69 
106 j 6A 
107 k 6B 
108 l 6C 
109 m 6D 
110 n 6E 
111 o 6F 
112 p 70 
113 q 71 
114 r 72 

Decimal Name Hex
115 s 73 
116 t 74 
117 u 75 
118 v 76 
119 w 77 
120 x 78 
121 y 79 
122 z 7A 
123 { 7B 
124 | 7C 
125 } 7D 
126 ~ 7E 
127 del 7F 

146 BRONZE Edition  Guide

Program A:
PRINT "Shows the printable

character"

PRINT "for a given character
number"

DO
INPUT n
PRINT chr$(n)

LOOP
END

Program B:
PRINT "Shows the character

number for a given key"

PRINT "Press a key"
DO

IF key input then
GET KEY k
PRINT k

END IF
LOOP
END

Program C:
PRINT "Shows the character

number for a"

PRINT "given character or
character abbreviation"

PRINT "Enter an abbreviation"
DO

INPUT abb$
WHEN error in

LET n = ord(abb$)
PRINT n

USE
PRINT "Invalid

abbreviation"
END WHEN

LOOP
END

Below are three short True BASIC programs that can help you determine or verify charac-
ter numbers from your keyboard.  

Program A displays the printable character when you enter a chr$ value.

Program B shows the character number when you press a keyboard key.

Program C asks you to enter the character abbreviation to verify the character number.



APPENDIX

True BASIC Statements B

This appendix lists all of the statements in True BASIC, and then lists an example or
two of those statements that are discussed in this Guide. Information may also be found
in the Help facility; type HELPor select the menu item HELP that appears at the top of the
screen. Choose STATEMENTS from the list of topics displayed. (See Appendix F)

Ordinary Statements and Structures
These statements are fundamental to almost all programs.

PROGRAM FOR Loop Structure
END EXIT FOR
LET NEXT
DO Loop Structure

EXIT DO SELECT CASE Structure
LOOP CASE

IF CASE ELSE
IF Structure END SELECT

ELSEIF 
ELSE 
END IF 

These statements are of a miscellaneous type; some are discussed in this manual.
ASK FREE MEMORY RANDOMIZE 
DIM REM 
PAUSE STOP

These statements deal with line-number programs; they are not discussed in this Guide.,
but can be found in the online HELP facility.

GOSUB ON GOTO 
GOTO RETURN 
ON GOSUB 

147



These statements allow setting various options; only OPTION ANGLE AND OPTION
TYPO are discussed in this manual.

OPTION ANGLE OPTION NOLET
OPTION ARITHMETIC OPTION TYPO
OPTION BASE OPTION USING
OPTION COLLATE 

Input and Output Statements
These are the main statements dealing with input and output that are discussed in this
manual.

DATA MAT PRINT
INPUT MAT READ
LINE INPUT PRINT 
MAT INPUT READ 
MAT LINE INPUT RESTORE 

These input-output statements are not discussed in this book but appear in the HELP
facility.

ASK MARGIN SET MARGIN
ASK ZONEWIDTH SET ZONEWIDTH

File Statements
The following file statements are discussed in this manual

CLOSE #n OPEN #n:
ERASE #n RESET #n:
INPUT #n: PRINT #n:
LINE INPUT #n:

Functions and Subroutines
These statements are the heart and soul of organizing complicated programs.

CALL EXTERNAL 
DECLARE DEF (FUNCTION) LIBRARY
DEF LOCAL 
DEF Structure SUB Structure

EXIT DEF EXIT SUB
END DEF END SUB

148 BRONZE Edition  Guide



The following statements are not discussed in this book but appear in the HELP facility.
FUNCTION DECLARE NUMERIC 
FUNCTION Structure DECLARE STRING

EXIT FUNCTION DECLARE SUB
END FUNCTION CHAIN

Graphics and Sound Statements
These graphics and sounds statements are discussed in this manual.

BOX AREA PICTURE Structure
BOX CIRCLE EXIT PICTURE
BOX CLEAR END PICTURE
BOX DISK PLAY
BOX ELLIPSE PLOT
BOX KEEP PLOT AREA
BOX LINES PLOT LINES
BOX SHOW PLOT POINTS 
CLEAR PLOT TEXT
DRAW SOUND
FLOOD SET WINDOW

SET TEXT JUSTIFY 

These graphics statements are not discussed in this manual but appear in the HELP
facility.

ASK BACK GET POINT
ASK COLOR MAT PLOT
ASK COLOR MIX MAT PLOT AREA
ASK CURSOR MAT PLOT LINES
ASK DIRECTORY
ASK MAX COLOR MAT PLOT POINTS
ASK MAX CURSOR OPEN SCREEN
ASK MODE SET BACK
ASK NAME
ASK PIXELS SET COLOR
ASK SCREEN SET COLOR MIX
ASK TEXT JUSTIFY SET CURSOR

SET DIRECTORY
ASK WINDOW SET MODE
BOX DISK SET NAME
GET KEY WINDOW
GET MOUSE 

B. True BASIC Statements 149



MAT Statements
Several of these MAT statements are discussed in this book.

MAT PRINT
MAT Assignment
MAT INPUT MAT READ
MAT LINE INPUT

Some of the MAT statements are not discussed in this book, but are found in the HELP
facility.

MAT REDIM MAT PLOT AREA
MAT WRITE MAT PLOT LINES

MAT PLOT POINTS

Files Statements
Several file statements are discussed in this manual. Additional statements, listed below,
are described in the HELP facility.

ASK #n: ACCESS MAT INPUT #n:
ASK #n: DATUM MAT LINE INPUT #n: 
ASK #n: ERASABLE MAT PRINT #n:
ASK #n: FILESIZE
ASK #n: FILETYPE READ #n: 
ASK #n: MARGIN
ASK #n: NAME SET #n: MARGIN
ASK #n: ORGANIZATION SET #n: POINTER
ASK #n: POINTER SET #n: RECORD
ASK #n: RECORD SET #n: RECSIZE
ASK #n: RECSIZE SET #n: ZONEWIDTH
ASK #n: RECTYPE
ASK #n: SETTER UNSAVE
ASK #n: ZONEWIDTH WRITE #n: 

Module Structures
These statements, which deal with modules, are not discussed in this book but are
described in the HELP facility.

MODULE Structure
PRIVATE DECLARE PUBLIC
PUBLIC END MODULE
SHARE 

150 BRONZE Edition  Guide



Exception Handling
Exception handling is not discussed in this book, but these statments are described in the
HELP facility:

CAUSE ERROR  or   CAUSE EXCEPTION
CONTINUE
HANDLER

END HANDLER
EXIT HANDLER

RETRY
WHEN Structure

USE 
END WHEN

Debugging Statements
Certain debugging statements required by ANSI are not discussed in this book. Instead,
it is recommended that you use the Breakpoint feature discussed in Chapter 18.

BREAK
DEBUG
TRACE

Builtin Subroutines
While not, strictly speaking, statements, True BASIC includes several builtin subroutines.
They are not discussed in this Manual but are contained in the HELP facility.

Clipboard
ComLib
ComOpen
Divide
Object
Packb
Read_Image
System
Sys_Event
TBD
Unpackb (a function, not a subroutine)
Write_Image 

B. True BASIC Statements 151



Alphabetical Listing of Statements
This section gives examples and brief descriptions of the statements and structures dis-
cussed in this Guide. A wealth of additional information about True BASIC statements can
be found in the HELP facility which is part of your True BASIC Bronze Edition. Select HELP
from the main menu at the top of your screen.

BOX AREA Statement
BOX AREA left, right, lower, upper

Draws the rectangle specified and fills it with the current foreground color. 

BOX CIRCLE Statement
BOX CIRCLE left, right, lower, upper

Draws an ellipse (or circle) inscribed in the rectangle specified in the current foreground color.

BOX CLEAR Statement
BOX CLEAR left, right, lower, upper

Clears the rectangular region specified; that is, it fills that region with the current back-
ground color.

BOX ELLIPSE Statement
BOX ELLIPSE left, right, lower, upper

BOX ELLIPSE is the same as BOX CIRCLE.

BOX KEEP Statement
BOX KEEP left, right, lower, upper IN stringvar$

Stores the entire rectangular region specified into stringvar$.

BOX LINES Statement
BOX LINES left, right, lower, upper

Draws the outline of a rectangle specified in the current foreground color.

BOX SHOW Statement
BOX SHOW stringvar$ AT left, lower

BOX SHOW restores the image previously stored in stringvar$ to the rectangular posi-
tion whose lower left corner is specified.

152 BRONZE Edition  Guide



CALL Statement
CALL subroutine-name (arg1, arg2, ..., argn)

The CALL statement invokes the subroutine given by the SUB statement with the same
name. The arguments in the CALL statement must match with the parameters in the SUB
statement (in number, positions, type, and number of dimensions.)
Parameter passing is by reference; that is, changes to them within the subroutine will
cause simultaneous changes the arguments in the CALLstatement.

CLEAR Statement
CLEAR

Clears the screen or output window and resets the text cursor to the row 1, column 1.

DATA Statement
DATA  element, ...,  element

The data elements can be quoted or unquoted strings.
At program startup, all the data in the collection of DATA statements in a program-unit are
collected into a data list, in the order in which they are encountered.
(See also READ and RESTORE).

DECLARE DEF Statement
DECLARE DEF funcname,  …, funcname

DECLARE DEF statements must name all external functions used in the given program-
unit before their first use. DECLARE DEF statements must name all internal functions
used in the given program-unit whose definitions occur later in the program-unit than their
first use.

DEF Statement
DEF identifier = numeric-expression
DEF identifier (parm1, ..., parm n) = numeric-expression
DEF identifier$ = string-expression 
DEF identifier$ (parm1, ..., parm n) = string-expression

The DEF statement allows the programmer to define single-line functions.
The function is invoked by including its name, with suitable arguments, in an expression.
The arguments must match the parameters in the DEF statement in number, position, type,
and number of dimensions.

B. True BASIC Statements 153



DEF Structure
DEF identifier (parm1, ..., parm n)

...
EXIT DEF   [optional]
...

END DEF
The DEF structure input order allows the programmer to define new multi-line functions.
The DEF structure may contain one or more EXIT DEF statements. 
The function is invoked by including its name, with suitable arguments, in an expression.
The arguments must match the parameters in the DEF structure in number, position, type,
and number of dimensions. Parameter passing is by value; that is any changes to the
parameters will not cause changes to the corresponding arguments.
The defined function can also contain DECLARE DEF and LOCAL statements.

DIM Statement
DIM array (bounds), ..., array (bounds)

Except for function or subroutine parameters, each array in a program-unit must be dimen-
sioned in a DIM or LOCAL statement that occurs lexically before the first reference to that
array.

DO Loop
DO { | WHILE condition | UNTIL condition | }

. . .
EXIT DO   [optional]
. . .

LOOP {  WHILE condition | UNTIL condition | }
The DO statement can contain either a WHILE or UNTIL part, or nothing, and the same
for the LOOP statement. There can be any number of  EXIT DO statements.

DRAW Statement
DRAW picture name (arg 1, ..., arg n)
DRAW picture name (arg 1, ..., arg n) WITH trans *... *  trans
trans:: SCALE (size) 

SCALE (xsize, ysize)
ROTATE (angle) 
SHIFT (xshift, yshift)
SHEAR (angle) 

The (argument-list) is optional. The DRAW statement causes the picture named to be drawn

154 BRONZE Edition  Guide



on the screen, just as if the DRAW statement were replaced by the code of the picture defi-
nition. The angles in ROTATE and SHEAR are measured in radians unless OPTION
ANGLE DEGREES is in effect.
If the WITH clause is present, then the transformation applies applies to PLOT, FLOOD,
and MAT PLOT statements (but not BOX statements) in the picture before drawing it. If a
picture also contains DRAW statements with WITH clauses, then the final transformation
is the “product” of the transformations along the way. The transformation consists of shifts,
rotations, shears, or changes of scale, or any sequence thereof.
SCALE with one argument is the same as SCALE with two arguments with the same scale
factor applied to both the x- and y-directions. That is, SCALE(a)= SCALE(a,a).
ROTATE causes the picture to be rotated counter-clockwise through the given angle.
SHIFT causes the picture to be shifted in the x-direction by an amount given by the first
argument, and in the y-direction by an amount given by the second argument.
SHEAR causes the picture to be tilted clockwise through the specified angle. That is, it
leaves horizontal lines horizontal, but tilts vertical lines through the given angle. 

END Statement
The END statement must be the last statement of a program and is required. Only one END
statement is allowed. The file that contains the program can also contain external proce-
dures and modules following the END statement. Executing the END statement stops the
program. 

END DEF Statement
The END DEF statement must appear as the last statement of a DEF structure.

END IF Statement
The END IF statement must appear as the last statement of an IF structure.

END PICTURE Statement
The END PICTURE statement must appear as the last statement of a PICTURE structure.

END SELECT Statement
The END SELECT statement must appear as the last statement of a SELECT structure.

END SUB Statement
The END SUB statement must appear as the last statement of a SUB structure.

B. True BASIC Statements 155



EXIT DEF Statement
EXIT DEF

The EXIT DEF statement jumps to just beyond the END DEF statement of the innermost
function that contains it, and is optional.

EXIT DO Statement
EXIT DO

The EXIT DO statements jumps to just beyond the LOOP statement of the inner-most DO
loop containing the EXIT DO, and is optional.

EXIT FOR Statement
EXIT FOR

The EXIT FOR statement jumps to just beyond the NEXT statement of the inner-most
FOR loop containing the EXIT FOR, and is optional.

EXIT PICTURE Statement
EXIT PICTURE

The EXIT PICTURE statement jumps to just beyond the END PICTURE statement of the
innermost picture that contains it, and is optional.

EXIT SUB Statement
EXIT SUB

The EXIT SUB statement jumps to just beyond the END SUB statement of the innermost
subroutine that contains it, and is optional.

EXTERNAL Statement
EXTERNAL 

The EXTERNAL statement must appear at the start of a LIBRARY file of external proce-
dures.

FLOOD Statement
FLOOD xcoord, ycoord

FLOOD will fill, with the current foreground color, the closed graphical region containing
the point whose x-coordinate is xcoord and whose y-coordinate is ycoord.

156 BRONZE Edition  Guide



FOR Loop
FOR forvar = numeric-expression TO numeric-expression STEP numeric-expression

...
EXIT FOR   [optional]
...

NEXT forvar
The simple numeric variable (not a numeric array element) in the NEXT statement must
be the same as the numeric variable appearing in the FOR statement. The STEP part is
optional. If missing, the increment is 1.

IF Statement
IF condition THEN simple-statement ELSE simple-statement

If the condition is “true,” then the simple-statement following the keyword THEN will be
executed, following which control will pass to the next line.
If the condition is “false,” and the ELSE clause is present, its simple-statement will be
executed, following which control will pass to the next line. If the ELSE clause is not pre-
sent, then control will pass directly to the next line.

IF Structure
IF condition1 THEN

...
ELSEIF condition2 THEN

... 
ELSEIF condition3 THEN

...
ELSE

...
END IF

The IF structure can have 0 or more ELSEIF parts and 0 or 1 ELSE. If ELSE is present, it
must follow any ELSEIF part. The keyword ELSEIF can be spelled ELSE IF.
If condition 1 is “true,” the statements immediately following are executed, up to the first
ELSEIF, ELSE, or END IF, following which control jumps to the statement following the
END IF.
If condition 1 is “false,” control passes to the first ELSEIF part following the IF line. If con-
dition 2 is “true,” the statements immediately following it are executed, up to the next
ELSEIF, ELSE, or END IF, following which control passes to the statement following the
END IF line. If condition 2 is “false,” this process is repeated.
If there are no more ELSEIF parts, then control is passed to the ELSE part, and the state-

B. True BASIC Statements 157



ments following the ELSE line are executed, up to the END IF line. If there is no ELSE part,
control is passed to the statement following the END IF line.

INPUT Statement
INPUT variable, ..., variable
INPUT PROMPT string-constant: variable, ..., variable

When the INPUT statement is executed, the program awaits an input-response from the
user. The input-response consists of quoted-strings and unquoted-strings, separated by
commas.
The items in the input-response are assigned to the variables in the INPUT statement.
String variables can receive any input-item, but numeric variables can receive only input-
items whose characters form a numeric-constant. The rules are similar to those for READ
and DATA statements. 

LET Statement
LET variable = formula

The LET statement computes the formula on the right of the equal sign and then assigns
the value to the variable on the left of the equal sign.

LIBRARY Statement
LIBRARY quoted-string …, quoted-string

The LIBRARY statement names the file or files containing external routines needed by the
entire program.

LINE INPUT Statement
LINE INPUT stringvar$, ..., stringvar$ 
LINE INPUT PROMPT string-constant: stringvar$, ..., stringvar$

A LINE INPUT statement requests one or more lines of input from the user. The first line
is supplied to the the first stringvar$, the second to the second, and so on. All characters in
the response-line are supplied, including leading and trailing spaces, embedded commas,
and quote marks.

LOCAL Statement
LOCAL variable, ..., variable

A LOCAL statement specifies that the variables named in it are local to the routine con-
taining the statement. If an array is named in a LOCAL statement, it must also include its
subscript bounds. The LOCAL statement is normally irrelevant in external routines, since

158 BRONZE Edition  Guide



all variables except parameters are automatically local, but it can be important in internal
routines. The LOCAL statement can be used in conjunction with the OPTION TYPO state-
ment to avoid typographical errors in variable names.

LOOP Statement
The LOOP statement may occur only as the last statement of a DO loop, and is required.
(See the DO Loop.)

MAT INPUT Statement
MAT INPUT array, ..., array

MAT INPUT assigns values from the input-response to the elements of the arrays, in order.
There must be a separate input-response for each array named. For each array, the ele-
ments are assigned values in “odometer” order. (That is, if A is a 2-by-2 array, odometer
order is A(1,1), A(1,2), A(2,1), A(2,2).) The input-response must contain a sufficient number
of values of the appropriate type (numeric or string), separated by commas, in a single input-
response or in a collection of input-responses with all but the last ending with a comma. (See
the INPUT statement for details of input-responses.)

MAT LINE INPUT Statement
MAT LINE INPUT strarray$ ..., strarray$

MAT LINE INPUT assigns response-lines to the elements of the arrays named, in order
from left to right, and within each array in odometer order. The entire line of input is
assigned to an array element, including leading and trailing spaces and embedded commas.

MAT PRINT Statement
MAT PRINT array, ..., array

The MAT PRINT statement prints the elements of each array named to the screen. The val-
ues of each array are printed separately, with a blank line following the printed values for
each array. For two-dimensional arrays, the values for each row start on a new line. This
rule also applies to arrays of three or more dimensions.
Any command may be replaced by a semicolon, in which case the elements of that array are
printed side by side.

MAT READ Statement
MAT READ array, ..., array 

MAT READ assigns values from the DATA list to the elements of each of the arrays, in order.
For each array named, the values are assigned in “odometer” order – that is, the last sub-
script changes most rapidly, then the next to last, and so on.

B. True BASIC Statements 159



A string variable can receive any valid datum. A numeric variable can receive only a datum
that happens to be an unquoted string and a valid numeric-constant.

NEXT Statement
The NEXT statement can be used only as part of a FOR loop and is required.

OPTION ANGLE Statement
OPTION ANGLE DEGREES
OPTION ANGLE RADIANS

The OPTION ANGLE statement allows you to specify the type of angle measure to be used
with trigonometric functions and graphics transforms. In the absence of an OPTION
ANGLE statement, the default angle measure is RADIANS.

OPTION TYPO Statement
OPTION TYPO

The OPTION TYPO statement requires that all non-array variables that appear lexically
after it be declared explicitly. They must be declared in a LOCAL statement, or by appear-
ing as parameters in a SUB, DEF, or PICTURE statement.
An OPTION TYPO statement applies to the rest of the procedure containing it and to all
subsequent procedures in the program or library file.

PAUSE Statement
PAUSE seconds

The PAUSE statement stops the program for a time (in seconds) and then continue.

PICTURE Structure 
PICTURE picture-name (parameter-list) 

...
EXIT PICTURE   [optional]
...

END PICTURE
A PICTURE structure may contain one or more EXIT PICTURE statements.
A PICTURE is drawn with a DRAW statement. Other than that, a PICTURE acts exactly
like a subroutine. The parameter passing mechanism is that of subroutines.
If the PICTURE contains PLOT statements (PLOT, MAT PLOT, or FLOOD), or contains
CALL or DRAW statements to other pictures or subroutines, then the final picture will
reflect all the transforms applied through all the DRAW statements.

160 BRONZE Edition  Guide



PLAY Statement
PLAY string-expression

See Plays the notes in the string. (See Chapter 17 for details.)

PLOT Statements
For convenience, the term point means two coordinates (x and y) separated by a comma,
as in “xcoord, ycoord”.
All PLOT statements in pictures are subject to the effects of the current transform.
All PLOT statements, except for PLOT TEXT, are clipped at the edges of the current win-
dow. That is, the portion of the drawing that is inside the window is shown, while the por-
tion outside the window is not.

PLOT POINTS Statement
PLOT POINTS: point; ...; point
PLOT point

PLOT POINTS plots the points as dots. PLOT x,y is an abbreviation for PLOT POINTS: x,y.

PLOT LINES Statement
PLOT LINES: point; ...; point 
PLOT point; ...; point
PLOT LINES: point; ...; point;
PLOT point; ...; point;

PLOT LINES plots the line-segments that connect the points. A line is drawn from the
previous point to the first point if and only if the beam was left on.
The following two statements are equivalent:

PLOT x1, y1; x2, y2; x3, y3
PLOT LINES: x1, y1; x2, y2; x3, y3

If the PLOT LINES and PLOT statements end with a semicolon, the beam stays on so
that subsequent PLOT LINES or PLOT statements will continue plotting the line without
a break; otherwise, the beam is turned off.

PLOT AREA Statement
PLOT AREA: point; ...; point

PLOT AREA plots the polygon defined by connecting the points and fills it with the cur-
rent foreground color. The last point need not repeat the first point, as the line segment
needed to close the polygon is automatically supplied.

B. True BASIC Statements 161



PLOT TEXT Statement
PLOT TEXT, AT point: textstring$

PLOT TEXT plots the text string in the current color at the point specified in the AT clause.

Vacuous PLOT Statement
PLOT
PLOT LINES
PLOT LINES:

These statements turn off the beam in case a previous PLOT or PLOT LINES statement
ended with a semicolon. They have no effect if the beam is already off.

PRINT Statement
PRINT
PRINT print-list
PRINT USING string: using-list     (see Appendix H for more information)
print-list:: printitem  … separator printitem

printitem  … separator printitem separator
using-list:: usingitem  …, usingitem

usingitem  …, usingitem ;
separator:: , or ;

Items in a print-list can be separated by commas or semicolons, and be followed by a final
comma or semicolon.  Items in a using-list can be separated only by commas, and be fol-
lowed only by a semicolon.
The printitems are printed on the screen. Numeric values are printed with a trailing space
and, for positive numbers, a leading space. String values are printed as is, with no addi-
tional leading or trailing spaces. If the separator between two items is a semicolon, then the
items are printed juxtaposed. If the separator is a comma, then the next item is printed in
the next print zone.
If a USING clause is present, the values are then printed according to the format specified,
without regard to print zones. The string following the word USING determines the format.
If the PRINT statement ends with a semicolon, subsequent printing will occur immediately
following on the same line. If the PRINT statement ends with a comma, then subsequent
printing will occur on the same line but in the next print zone. Otherwise, subsequent print-
ing will start on the next line.

162 BRONZE Edition  Guide



PROGRAM Statement
PROGRAM program-name

The PROGRAM statement, if used, must be the first statement of the main program,
other than comment lines. For ordinary programs it serves no purpose other than to pro-
vide a place for the program name.

RANDOMIZE Statement
RANDOMIZE

The RANDOMIZE statement produces a new seed for the random number generator. It
should not be used more than once in the running of a program.

READ Statement
READ variable, ..., variable

The READ statement assigns to its variables the next datum from the DATA list.
A string variable can receive any valid datum. A numeric variable can receive only a
datum that is unquoted and is a valid numeric-constant.

REM Statement
REM character ... character

The REM statement allows you to add comments to your program. You can use any char-
acters you want in the REM statement. REM statements are ignored.
A REM statement is equivalent to a comment line that begins with an exclamation mark
(!). In addition, a (!) can be used to place comments on the same lines as other True
BASIC statements.

RESTORE Statement
RESTORE

The RESTORE statement resets the data pointer to the start of the data-list, and thus
lets you reuse the data-list.

B. True BASIC Statements 163



SELECT CASE Structure
SELECT CASE select-expression
CASE case-specifier

. . .
CASE case-specifier

. . .
CASE ELSE

. . .
END SELECT

case-specifier:: case-part, …, case-part
case-part:: constant

constant TO constant
IS relational-operator constant

The SELECT CASE structure may have zero or more CASE parts, and zero or one CASE
ELSE parts, but must have at least one of either a CASE or CASE ELSE part. The constants
in a case-specifier must be of the same type (numeric or string) as the select-expression in
the SELECT CASE statement.
The select-expression in the SELECT CASE statement is first evaluated. The case-specifier
in the first CASE part is then examined. If it satisfies any of the case-parts, then the state-
ments following that CASE statement are executed and control passes to the first statement
following END SELECT.
If no case-part in the first CASE statement is satisfied, then the second CASE statement is
examined in a like manner, and so on.
If no CASE statement is satisfied, then the statements following the CASE ELSE statement
are executed. If no CASE statement is satisfied and there is no CASE ELSE part, then an
exception occurs.

SET BACK Statement
SET BACK colornumber 
SET BACK colorname$

SET BACK is an abbreviation for SET BACKGROUND COLOR. SET BACK with color-
number sets the background to the color that has that number. SET BACK with colorname$
sets the background to the color named; see the SET COLOR statement for a list of allowed
color names.

164 BRONZE Edition  Guide



SET COLOR Statement
SET COLOR colornumber
SET COLOR colorname$

SET COLOR with colornumber sets the foreground color to the color that has that number.
Numbers outside this range will have effects that are dependent on the particular machine.
If your machine does not support color, True BASIC may supply a suitable pattern.

SET COLOR with colorname$ sets the foreground color to the color named, which must
be one of the following:

MAGENTA CYAN WHITE
RED BLUE GREEN
YELLOW BROWN BLACK
BACKGROUND

SET MODE Statement
SET MODE mode$

Changes the current screen mode to that specified. If it is a legal but unavailable mode, True
BASIC will set the nearest available mode. If it is not a legal mode, that is, it is not the name
of any mode, True BASIC will set the default mode for that machine.

SET WINDOW Statement
SET WINDOW left, right, lower, upper

Sets the window coordinates for graphics in the current window.

SOUND Statement
SOUND frequency, seconds

The SOUND statement sounds a note with the specified frequency and duration.

STOP Statement
STOP

Stops execution of the program.

165B. True BASIC Statements



SUB Structure
SUB identifier (parm 1, ... , param n)

...
EXIT SUB  [optional]
...

END SUB
The subroutine may contain one or more EXITSUB statements. A CALLstatement
invokes the subroutine; that is, starts it running. The arguments in the CALL must
match the parameter in the SUB statement in number, position, type, and number of
dimensions. Parameter passing is by reference; that is, changes to the parameter within
the subroutine will cause simultaneous changes to the arguments in the CALL statement.

WHEN Structure
WHEN EXCEPTION IN 

... ! Protected part
USE
...    ! Executed if an exception is in a protected part

END WHEN

This subroutine may be used to “trap” run-time errors called exceptions. Examples might
be division by 0 or attempting to open a file that doesn’t exist.

If an exception of any type occurs in the protected portion, the recovery statements between
the USE statement and the END WHEN statement are executed. If no exception occurs in
the protected part, the recovery statements are ignored.

The functions EXLINE, EXLINE$, EXTEXT$, and EXTYPE can be used to determine the
exact nature of an exception.

166 BRONZE Edition  Guide



APPENDIX

Built-in Functions C

This appendix lists most of True BASIC’s functions.  Complete explanations may also be
found in the Help facility; type HELPor select the menu item HELP that appears at the top
of the screen. Choose FUNCTIONS from the list of topics displayed. (See Appendix F)

Mathematical Functions
Function Result

ABS(x) Absolute value
ACOS(x) Arccosine
ANGLE(x,y) Angle between x-axis and (x,y)
ASIN(x) Arcsine
ATN(x) Arctangent
CEIL(x) Ceiling (-INT(-x))
COS(x) Cosine
COSH(x) Hyperbolic cosine
COT(x) Cotangent
CSC(x) Cosecant
DEG(x) Translates radians to degrees
EPS Smallest nonzero positive number
EXP(x) Exponential function
FP(x) Fractional part of x
INT(x) Integer part
IP(x) Greatest integer <= x
LOG(x) Natural logarithm
LOG10(x) Common logarithm (base 10)
LOG2(x) Logarithm to the base 2
MAX(x,y) Larger of two numbers
MAXNUM Largest positive number

167



Mathematical Functions (continued)
Function Result

MIN(x,y) Smaller of two numbers
MOD(x,y) Remainder when x is divided by y
PI Value of pi
RAD(x) Translates degrees to radians
REMAINDER(x,y) Remainder of x divided by y
RND Random number between 0 and 1
ROUND(x,n) Rounds x to n decimal places
SEC(x) Secant
SGN(x) Sign of x
SIN(x) Sine
SINH(x) Hyperbolic sine
SQR(x) Square root
TAN(x) Tangent
TANH(x) Hyperbolic tangent
TRUNCATE(x,n) Truncates x to n decimal places

Date and Time Functions
Function Result

DATE Year and day of year as a number
DATE$ Year, month, and day of month as a string
TIME Seconds since midnight
TIME$ 24-hour clock time as a string

String to Number Functions
Function Result

CHR$(x) Character represented by ASCII number x
ORD(x$) Ordinal position of x$ in ASCII character set
NUM(x$) Numeric value of IEEE 8-byte string
NUM$(x) IEEE 8-byte equivalent of numeric value
STR$(x) Changes number to a string
VAL(x$) Changes string containing digits to a number

168 BRONZE Edition  Guide



String Transforming Functions
Function Result

LCASE$(x$) Change letters to lowercase
UCASE$(x$) Change letters to uppercase
LTRIM$(x$) Remove leading blanks
RTRIM$(x$) Remove trailing blanks
TRIM$(x$) Remove leading & trailing blanks
REPEAT$(x$,n) x$ repeated n times

String Search Functions
Function Result

LEN(x$) Number of characters in x$
POS(x$,y$,n) First occurrence of y$ in x$ after character n
POSR(x$,y$) Ditto POS but starting from the end
CPOS(x$,y$) First occurrence in x$ of any character in y$
CPOSR(x$,y$) Ditto CPOS but starting from the end
NCPOS(x$,y$) First occurrence in x$ of any character not in y$
NCPOSR(x$,y$) Ditto NCPOS but starting from the end

Array Functions
Function Result

DET(a) Determinant of the square matrix a
DOT(a,b) Dot product of vectors a and b
LBOUND(a,n) Lower bound of dimension n for array a
UBOUND(a,n) Upper bound of dimension n for array a
SIZE(a,n) Number of element in dimension n of array a

MAT Functions that can appear only in MAT assignment statements
Function Result

CON Array of ones
IDN Identity matrix
INV(a) Inverse of array a
NUL$ Array of empty strings
TRN(a) Transpose of array a
ZER Array of zeroes

C. Built-in Functions 169



The descriptions in the alphabetical list use the following terms:

(numeric-expression) numeric expression

(rnumeric-expression) rounded numeric expression

(string-expression) string expression

(redim) array redimensioning expression

(arrayarg) array argument (array name with optional parentheses)

ABS Function
ABS(numeric-expression)

Returns the absolute value of the argument.

ACOS Function
ACOS(numeric-expression)

Returns the value of the arccosine function.  The result is given in radians or degrees depend-
ing on whether the current OPTION ANGLE is RADIANS (default) or DEGREES.

ANGLE Function
ANGLE(numeric-expression, numeric-expression)

ANGLE(x,y) returns the counterclockwise angle between the positive x-axis and the point
(x,y).  Note that x and y cannot both be zero.  The angle will be given in radians or degrees
depending on whether the current OPTION ANGLE is RADIANS (default) or DEGREES.
The angle will always be in the range -180 < ANGLE(x,y) <= 180 (assuming that the cur-
rent OPTION ANGLE is DEGREES). 

ASIN Function
ASIN(numeric-expression)

Returns the value of the arcsine function.  The result is given in radians or degrees depend-
ing on whether the current OPTION ANGLE is RADIANS (default) or DEGREES.

ATN Function
ATN(numeric-expression)

ATN(x) returns the arctangent of x, which is the angle whose tangent is x.  The angle will
be given in radians or degrees according to whether the current OPTION ANGLE is RADI-

170 BRONZE Edition  Guide



ANS (default) or DEGREES.  The angle will always be in the range -90 < ATN(x) < 90
(assuming that the current OPTION ANGLE is DEGREES).

CEIL Function
CEIL(numeric-expression)

Returns the least integer that is greater than or equal to numeric-expression.  For exam-
ple, CEIL(1.9) = 2, CEIL(13) = 13, and CEIL(-2.1) = -2.

CHR$ Function
CHR$(rnumeric-expression)

Returns the character whose ASCII decimal number is rnumeric-expression (see Appendix
A).  If rnumeric-expression is not in the range 0 to 255, inclusive, exception 4002 occurs. 

CON Array Constant
CON redim
CON

CON is an array constant that yields a numeric array consisting entirely of ones.  CON can
appear only in a MAT assignment statement. 

COS Function
COS(numeric-expression)

Returns the value of the cosine function.  The argument is assumed to be in radians or
degrees depending on whether the current OPTION ANGLE is RADIANS (default) or
DEGREES.

COSH Function
COSH(numeric-expression)

Returns the value of the hyperbolic cosine function.

COT Function
COT(numeric-expression)

Returns the value of the cotangent function.  The argument is assumed to be in radians or
degrees depending on whether the current OPTION ANGLE is RADIANS (default) or
DEGREES.

C. Built-in Functions 171



CPOS Function
CPOS(string-expression, string-expression)
CPOS(string-expression, string-expression, rnumeric-expression)

Returns the position of the first occurrence in the first argument of any character in the sec-
ond argument.  If no character in the second argument appears in the first argument, or
either string is empty, then CPOS returns 0.
If a third argument is present, then the search for the first occurrence starts at the charac-
ter position in the first string given by that number and proceeds to the right.  The first form
of CPOS is equivalent to the second form with the third argument equal to one.

CPOSR Function
CPOSR(string-expression, string-expression)
CPOSR(string-expression, string-expression, rnumeric-expression)

Returns the position of the last occurrence in the first argument of any character in the sec-
ond argument.  If no character in the second argument appears in the first argument, or
either string is empty, then CPOSR returns 0.
If a third argument is present, then the search for the last occurrence starts at the charac-
ter position in the first string given by that number and proceeds to the left (that is, back-
wards).  The first form of CPOSR is equivalent to the second form with the third argument
equal to the length of the first argument.

CSC Function
CSC(numeric-expression)

Returns the value of the cosecant function.  The argument is assumed to be in radians or
degrees depending on whether the current OPTION ANGLE is RADIANS (default) or
DEGREES.

DATE Function
DATE

DATE, a no-argument function, returns the current date in the decimal numeric form
YYDDD, where YY is the last two digits of the year and DDD is the day number in the year.
If your computer cannot tell the date, DATE returns -1. 

DATE$ Function
DATE$

DATE$, a no-argument string-valued function, returns the current date in the character

172 BRONZE Edition  Guide



string form “YYYYMMDD”.  Here YYYY is the year, MM is the month number, and DD is
the day number.  If your computer cannot tell the date, then DATE$ returns “00000000”. 

DEG Function
DEG(numeric-expression)

Returns the number of degrees in numeric-expression radians.  This function is not affected
by the current OPTION ANGLE. 

DET Function
DET (numarr)
DET

Returns the value of the determinant for the square numeric matrix named as its argument.

DOT Function
DOT(arrayarg, arrayarg)

DOT computes and returns the dot product of two arrays, which must be one-dimensional,
numeric, and have the same number of elements.  (The subscript ranges need not be the
same, however.)  If both arrays have no elements, then DOT returns 0. 

EPS Function
EPS(numeric-expression)

EPS(x) returns the smallest positive number that can “make a difference” when added to or
subtracted from x. 

EXLINE Function
EXLINE

EXLINE returns the line number in your program where the most recent error occurred. If
your program does not have line numbers, EXLINE returns the ordinal number of the line
in the file. 

EXLINE$ Function
EXLINE$

EXLINE$ returns a string that gives the location in your program where the most recent
error occurred. It gives the number of the line and the routine in which the error occurred.
If the error occurred deeply in nested subroutine calls, EXLINE$ returns the geneology of
the error; i.e., it includes the names of the intervening subroutines and the line numbers of
the CALL statements.

C. Built-in Functions 173



EXP Function
EXP(numeric-expression)

Returns the natural exponential of the argument.  That is, EXP(x) calculates e^x, where e
= 2.718281828..., the base of the natural logarithms.

EXTEXT$ Function
EXTEXT$

EXTEXT$ returns the error message associated with the most recent error, if any, pro-
vided that the error was trapped in an error handler (see Chapter 18.) If an error is not
trapped, True BASIC prints the error message and stops the program. 

EXTYPE Function
EXTYPE

EXTYPE returns the error number of the most recent error, provided that the error was
trapped by an error handler (see Chapter 18.) Some of the error numbers are given in
Appendix D, along with the associated error messages. 

FP Function
FP(numeric-expression)

Returns the fractional part of the argument.

IDN Array Constant
IDN redim
IDN

IDN is an array constant that yields an identity matrix, which is a square numeric matrix
consisting of ones on the main diagonal and zeroes elsewhere.  IDN can appear only in a
MAT assignment statement. 

INT Function
INT(numeric-expression)

Returns the greatest integer that is less than or equal to numeric-expression. 

INV Array Function
INV(numarr)

Returns the inverse of its argument, which must be a square two-dimensional numeric
matrix.  INV can appear only in a MAT assignment statement.

174 BRONZE Edition  Guide



IP Function
IP(numeric-expression)

Returns the greatest integer that is less than or equal to numeric-expression without regard
to sign, that is, towards zero. 

LBOUND Function
LBOUND(arrayarg, rnumeric-expression)
LBOUND(arrayarg)

If there are two arguments, LBOUND returns the lowest value (lower bound) allowed for
the subscript in the array and in the dimension specified by rnumeric-expression.  If there
is no second argument, arrayarg must be one-dimensional array, and LBOUND returns the
lowest value (lower bound) for its subscript.  

LCASE$ Function
LCASE$(string-expression)

Returns the value of string-expression with all ASCII uppercase letters converted into low-
ercase.  Characters outside the range of the ASCII uppercase letters are unchanged. 

LEN Function
LEN(string-expression)

Returns the length (that is, the number of characters) of the argument string-expression.
All characters count, including control characters and other nonprinting characters. 

LOG Function
LOG(numeric-expression)

Returns the natural logarithm of numeric-expression, which must be greater than 0.  The
natural logarithm of x may be defined as that value v for which e^v = x, where e =
2.718281828.... 

LOG10 Function
LOG10(numeric-expression)

Returns the common logarithm of numeric-expression, which must be greater than 0.  The
common logarithm of x is defined as that value v for which 10^v = x. 

C. Built-in Functions 175



LOG2 Function
LOG2(numeric-expression)

Returns the logarithm to the base 2 of numeric-expression, which must be greater than 0.
The logarithm to the base 2 of x is defined as that value v for which 2^v = x. 

LTRIM$ Function
LTRIM$(string-expression)

Returns the value of string-expression but with leading blank spaces removed.  Trailing
spaces, if any, are retained. 

MAX Function
MAX (numeric-expression, numeric-expression)

Returns the larger of the values of the two arguments. 

MAXLEN Function
MAXLEN (strvar)

Returns the maximum length (maximum number of characters) for the string variable or,
if strvar refers to an array, the maximum length for each string in the array.  If there is no
determinable maximum length, MAXLEN returns MAXNUM.

MAXNUM Function
MAXNUM

A no-argument function, MAXNUM returns the largest number that can be represented in
your computer.

MAXSIZE Function
MAXSIZE (arrayarg)

MAXSIZE always returns 2^31.

MIN Function
MIN (numeric-expression, numeric-expression)

Returns the smaller of the values of the two arguments.  (Note: -2 is smaller than -1.) 

176 BRONZE Edition  Guide



MOD Function
MOD(numeric-expression, numeric-expression)

Returns x modulo y, provided y is not equal to zero. 

NCPOS Function
NCPOS(string-expression, string-expression)
NCPOS(string-expression, string-expression, rnumeric-expression)

Returns the position of the first occurrence in the first argument of any character that is
not in the second argument.  If all characters in the first argument appear in the second
argument, or the first argument is empty, then NCPOS returns 0.  If the second argument
is empty but not the first, then NCPOS returns 1.
If a third argument is present, then the search for the first non-occurrence starts at the char-
acter position in the first string given by that number and proceeds to the right.  If the sec-
ond argument is empty but not the first, then NCPOS returns the starting position.
The first form of NCPOS is equivalent to the second form with the third argument equal to
one. 

NCPOSR Function
NCPOSR(string-expression, string-expression)
NCPOSR(string-expression, string-expression, rnumeric-expression)

Returns the position of the last occurrence in the first argument of any character that is not
in the second argument.  If all characters in the first argument appear in the second argu-
ment, or if the first argument is empty, then NCPOSR returns 0. If the second argument is
empty but not the first, then NCPOSR returns the length of the first string.
If a third argument is present, then the search for the last non-occurrence starts at the char-
acter position in the first string given by that number and proceeds to the left (that is, back-
wards).  If the second argument is empty but not the first, then NCPOSR returns the start-
ing value.
The first form of NCPOSR is equivalent to the second form with the third argument equal
to the length of the first argument.

NUL$ Array Constant
NUL$ redim
NUL$

NUL$ is an array constant that yields a string array consisting entirely of empty strings.
NUL$ can appear only in a MAT assignment statement.  

C. Built-in Functions 177



NUM Function
NUM (strex)

NUM returns the numerical value that is stored as a string, which must contain exactly
eight characters, using the IEEE eight-byte format. Normally, the string will have been
previously constructed with the NUM$ function.  

NUM$ Function
NUM$ (numex)

NUM$ returns a string of length eight that contains the numberical value using the IEEE
eight-byte format. Normally, the NUM function must be used to convert the string back to
a number. 

ORD Function
ORD(string-expression)

Returns the ordinal position in the ASCII character set of the character given by string-
expression, which must be either a single character or an allowable two- or three-character
name of certain ASCII characters as described in Appendix A,   except that ORD("") = –1
("" denotes the null string.) ORD is the opposite of the CHR$ function in that
ORD(CHR$(n)) = n for all n in the range 0 to 255.  However, CHR$(ORD(a$)) = a$ only if
the value of a$ is a single ASCII character. 

PI Function
PI

A no-argument function, PI returns the value of pi, the ratio of a circle’s circumference to
its diameter (approximately equal to 3.14159265). 

POS Function
POS(string-expression, string-expression)
POS(string-expression, string-expression, rnumeric-expression)

Returns the position of the first character of the first occurrence of the entire second
string in the first string.  If the second string does not appear in the first string, or if the
first string is empty while the second is not, then POS returns 0.  If the second string is
empty, then POS returns 1.
If a third argument is present, then the search for the second string starts at that charac-
ter position in the first string given by that number and proceeds to the right. If the sec-
ond string is empty, POS returns the starting position. The first form of POS is equiva-
lent to the second form with the third argument equal to one.

178 BRONZE Edition  Guide



POSR Function
POSR(string-expression, string-expression)
POSR(string-expression, string-expression, rnumeric-expression)

Returns the position of the first character of the last occurrence of the entire second string
in the first string.  If the second string does not appear in the first string, or if the first string
is empty but the second is not, POSR returns 0.  If the second string is empty, then POSR
returns the length of the first string plus one.
If a third argument is present, then the search for the last occurrence starts at the charac-
ter position in the first string given by that number and proceeds to the left (that is, back-
wards). If the second string is empty, POSR returns the starting position.
The first form of POSR is equivalent to the second form with the third argument equal to
the length of the first argument plus one. 

RAD Function
RAD(numeric-expression)

RAD(x) returns the number of radians in x degrees.  This function is not affected by the cur-
rent OPTION ANGLE. 

REMAINDER Function
REMAINDER(numeric-expression, numeric-expression)

REMAINDER(x,y) returns the remainder obtained by dividing x by y; y must not be equal
to 0.

REPEAT$ Function
REPEAT$(string-expression, rnumeric-expression)

Returns the string consisting of rnumeric-expression copies of string-expression. 

RND Function
RND

A no-argument function, RND returns the next “pseudo-random” number in the sequence.
These numbers, which have no obvious pattern, fall in the range 0 < = RND < 1.  If the pro-
gram containing RND is rerun, True BASIC produces the same sequence of RND values. If
you want your program to produce unpredictable results, include a RANDOMIZE statement
early in the program.

C. Built-in Functions 179



ROUND Function
ROUND(numeric-expression, rnumeric-expression)
ROUND(numeric-expression)

ROUND(x,n) returns the value of x rounded to n decimal places.  Positive values of n round
to the right of the decimal point; negative values round to the left.  ROUND(x) is the same
as ROUND(x,0). 

RTRIM$ Function
RTRIM$(string-expression)

Returns the value of string-expression but with the trailing blank spaces removed. Leading
spaces, if any, are retained. 

RUNTIME Function
RUNTIME

A no-argument function, RUNTIME returns the number of seconds of processor time used
since the start of execution. It may not return a meaningful value on some computers.

SEC Function
SEC(numeric-expression)

Returns the value of the secant function.  The argument is assumed to be in radians or
degrees depending on whether the current OPTION ANGLE is RADIANS (default) or
DEGREES.

SGN Function
SGN(numeric-expression)

SGN(x) returns the “sign” of x, which will be –1, 0, or +1.

SIN Function
SIN(numeric-expression)

Returns the sine of the angle numeric-expression.  The angle is measured in radians unless
OPTION ANGLE DEGREES is in effect, in which case the angle is measured in degrees. 

SINH Function
SINH(numeric-expression)

Returns the value of the hyperbolic sine function.

180 BRONZE Edition  Guide



SIZE Function
SIZE(arrayarg, rnumeric-expression)
SIZE(arrayarg)

If there are two arguments, SIZE returns the number of elements in the array named in the
first argument and in the dimension specified by rnumeric-expression.  If there is no sec-
ond argument, then SIZE returns the total number of elements in the entire array.  

SQR Function
SQR(numeric-expression)

SQR(x) returns the positive square root of x, where x must be greater than or equal to zero. 

STR$ Function
STR$(numeric-expression)

Returns the number converted to a string or might be produced by the PRINT statement.

STRWIDTH Function
STRWIDTH$(rnumeric-expression, string-expression)

Returns the length of the string, in pixels, with reference to the current font, font-style, and
font-size in the current physical window. If the value of the first argument is not the ID
number of a physical window, an error occurs.

TAB Function
TAB(rnumeric-expression)
TAB(rnumeric-expression, rnumeric-expression)

TAB can appear only in PRINT statements.  Strictly speaking, TAB is not a function, as it
does not return a value. 
TAB(c) causes the printing cursor to “tab” over to the start of the print position (column) c.
TAB(r,c) causes the printing cursor to be positioned on the screen at row r and column c of
the current window.

TAN Function
TAN(numeric-expression)

TAN(x) returns the tangent of x.  Here, x is assumed to be in degrees if OPTION ANGLE
DEGREES is in effect, and in radians otherwise. 

C. Built-in Functions 181



182 BRONZE Edition  Guide

TANH Function
TANH (numeric-expression)

Returns the value of the hyperbolic tangent function. 

TIME Function
TIME

A no-argument function, TIME returns the number of seconds since midnight.  At midnight,
TIME returns 0.  If your computer does not have a clock, then TIME returns -1.

TIME$ Function
TIME$

A no-argument function, TIME$ returns a string that contains the time as measured by the
24-hour clock and is displayed in the form “HH:MM:SS”.  

TRIM$ Function
TRIM$(string-expression)

The value of the argument returned with leading and trailing blank spaces removed.

TRN Array Function
TRN(numarr)

Returns the transpose of its argument, which must be a two-dimensional numeric array.
TRN can appear only in a MAT assignment statement. 

TRUNCATE Function
TRUNCATE(numeric-expression, rnumeric-expression)

TRUNCATE(x,n) returns the value of x truncated to n decimal places.  Positive values of n
truncate to the right of the decimal point; negative values truncate to the left.  TRUN-
CATE(x,0) is the same as IP(x).
UBOUND Function

UBOUND(arrayarg, rnumeric-expression)
UBOUND(arrayarg)

The two-argument form returns the largest value (upper bound) allowed for the subscript
in the dimension specified by rnumeric-expression in the array named.  The one-argu-
ment form returns the largest value (upper bound) for the subscript in a one-dimensional
array. 



UCASE$ Function
UCASE$(string-expression)

Returns the value of string-expression with all lowercase letters in the ASCII code (see
Appendix A) converted into their uppercase equivalents.  Characters outside the range of
the ASCII lowercase letters are unchanged. 

USING$ Function
USING$(string-expression, expr  …, expr)

expr:: numeric-expression
string-expression

USING$ returns the string of characters that would be produced by a PRINT USING
statement with string-expression as the format string and with the exprs as the numeric
or string expressions to be printed. 

VAL Function
VAL(string-expression)

Returns the numerical value given by string-expression, provided it represents a numeri-
cal constant in a form suitable for use with the INPUT or READ statement.  The string
can contain leading and trailing spaces, but not embedded ones. 

ZER Array Constant
ZER redim
ZER

ZER is an array constant that yields a numeric array consisting entirely of zeros.  ZER
can appear only in a MAT assignment statement. 

183C. Built-in Functions



184 BRONZE Edition  Guide



APPENDIX

Explanations of Error Messages D

This appendix contains a partial list of True BASIC error messages, in alphabetic order.
Error messages referring to statements or features not introduced in this book are omitted.

The number following some messages is the error number for errors (exceptions) that occur
when the program runs.  These numbers can be used with the WHEN structure and
EXTYPE function .

Argument for SIN, COS, or TAN too large. (-3050)
The argument for the sine, cosine, or tangent function is so large that range reduction results
is almost complete loss of precision.

Argument types don’t match.
You’re calling a routine with some arguments, but earlier in your program you defined or called
the same routine with different arguments.  Either you’re giving a different number of argu-
ments in the calls, or their types are different – that is, you’re passing strings instead of num-
bers, or vice versa. Check this call against preceding calls, and against the routine’s definition. 

Array too large (5001)
You’ve tried to redimension an array to a size larger than the original DIM statement.
Change the DIM statement, or use MAT REDIM.

ASIN or ACOS argument must be between 1 and -1. (3007)
The arcsine and arccosine functions are not defined for arguments larger than one in abso-
lute value.

185



Badly formed using string. (8201)
The using string in PRINT USING statement is incorrectly formed.

Badly formed input line (nonfatal). (8102)
Your reply to an INPUT statement is badly formed. Most likely you have not properly
matched up opening and closing quote marks. You will be requested to reenter the entire
input line.

Badly formed input line from file. (8105)
The reply to an INPUT statement from a file is badly formed.  Most likely you have not prop-
erly matched up opening and closing quote marks. 

Can’t invert singular matrix. (3009)
You are using the matrix INV function, but the matrix you want to invert is singular.
Singular matrices simply have no inverses. 

Can’t open PRINTER (9101)
You have tried to open the printer but True BASIC has been informed that the attempt has
failed, either because the printer isn’t attached or has not been turned on. (This condition
cannot be detected on all machines.)

Can’t output to INPUT file. (7302)
You may not write data to a file which was opened with ACCESS INPUT. If you must out-
put to this file, change the OPEN statement to use ACCESS OUTIN. 

Can’t SET WINDOW in picture. (11004)
Pictures may not reset window or screen coordinates. Move the OPEN SCREEN or SET
WINDOW statement to outside the picture. 

Can’t use ANGLE(0,0). (3008)
ANGLE(0,0) is not defined.  Make sure that at least one of its arguments is nonzero. 

Can't use #0 here. (nonfatal) (7002)
You've tried to use #0 as a channel number for a file or window other than the default out-
put window.

Can't use READ or WRITE for TEXT file. (-8503)
The file is a text file; the allowed commands are PRINT, INPUT, and LINE INPUT.

186 BRONZE Edition  Guide



Can’t use this statement here.
You’ve used part of a True BASIC structure, but in the wrong place. For instance, you might
have placed a CASE part outside of any SELECT CASE statement, or ELSE IF statement
outside of any IF-THEN statement. True BASIC also prints this message if you add an extra-
neous statement between the SELECT CASE line and its first CASE part. Refer to the
proper chapters of this guide to see how the structured statements are formed. 

Channel is already open. (7003)
You've tried to open a file or window using a channel number currently in use.

Channel isn't a window. (-11005)
You've used a window instruction with a channel number that refers to a file.

Channel isn't open. (7004)
You've tried to use a channel number (for a file or window) without using the OPEN state-
ment.

Channel number must be 1 to 1000. (7001)
All channel numbers must be in the range 1 to 1000, except for #0, which refers to the out-
put window.

Constant too large: constant in routine.
The numeric constant displayed is too large for your computer to handle. Type PRINT
MAXNUM to see the largest possible number on your computer, and then change your pro-
gram to use a smaller number.

Data item isn't a number. (8101)
You've used a numeric variable in a READ statement but the matching DATA item is not
a number.

DET needs a square matrix. (6002)
The DET function can only be used on a square matrix, since the determinant is mathe-
matically defined only for such matrices.

Disk full. (9006)
You are writing output to a file, and the disk has become full.  

Diskette removed, or wrong diskette. (9005)
You had opened a file, but, while True BASIC was using it, you removed the diskette and
inserted another one.  Don’t switch diskettes while they’re in use! 

D. Explanations of Error Messages 187



Division by zero. (3001)
One of your expressions tried to divide some quantity by zero.  If you want to substitute the
largest possible number and continue (without an error), enclose the expression in a WHEN
statement:

WHEN ERROR IN
LET x = (1+2+3)/0

USE 
LET x = Maxnum

END WHEN

Maxnum is a True BASIC function which gives the largest positive number available on
your computer. 

Do you want to save this file?
True BASIC gives you this reminder when you try to close an Editing window or Quit your
True BASIC session without saving your current file. Choose “Save” if you do want to save
the file (replacing the current saved copy), “Discard” if you want to discard your changes, or
“cancel” if you want to do something else (for example, save the file with a different name).  

Doesn’t belong here.
The cursor points to some word in your program which doesn’t make sense. Look to see what
kind of statement you are using, and then look up the proper form of that statement in this
book. Then correct your program and continue. 

Ending doesn’t match beginning.
You are using a structured statement, such as FOR-NEXT or IF-THEN-ELSE, and the end-
ing statement doesn’t properly match the beginning of the structure. Most likely you have
forgotten the ending statement for some structure within this one. Or you may have begun
a FOR loop using one index variable, but used another variable on the NEXT statement.
Read the statements inside the structure carefully to see what you’ve left out. 

Error in PLAY string. (-4501)
The string given in your PLAY statement doesn’t follow True BASIC’s rules. 

Expected “thing”.
The cursor points to a spot where True BASIC expected some word or punctuation, but found
something else. This message may jog your memory enough so that you can repair the state-
ment. Otherwise, look up the statement in this manual, and then fix your program. 

188 BRONZE Edition  Guide



Expected a relational operator.
The cursor points to a spot where you must put a relational operator, such as = or <. Finish
writing out the comparison which must be there. (Note that True BASIC does not allow test-
ing statements like IF A THEN ..., as some other BASICs do. Change such statements to IF
A<>0 THEN ....) 

IDN must make a square matrix. (6004)
Identity matrices must be square. Therefore, when you use the IDN(x,y) function, you must
make sure that x = y. 

Illegal array bounds. (6005)
You’ve redimensioned an array in a MAT REDIM statement or with a redim-expression in
a MAT statement where the upper bound is less than the lower bound minus one (e.g., MAT
A = Zer(-5) or MAT REDIM X(10 to 5). True BASIC allows the lower bound to exceed the
upper bound by one – thus defining an array with no elements. 

Illegal array bounds for name in routine.
You’ve defined an array in a DIM, LOCAL, SHARE, or PUBLIC statement with an upper
bound less than the lower bound minus one. (True BASIC allows the lower bound to exceed
the upper bound by one, thus defining an array with no elements.)

Illegal data.
Your DATA statement is not properly written.  Put commas between data items, but don’t
put a comma at the end of the list of items.  Make sure that all quoted items are properly
enclosed in quote marks: items such as “abc”def are not allowed.  

Illegal expression.
The cursor points to something in an expression that doesn’t follow True BASIC’s rules.
Check to make sure that you haven’t given two operators in a row (such as “1++2”), that you
haven’t written down a number improperly (such as “1,000”), and that all your variable
names follow True BASIC’s rules. 

Illegal keyword.
The cursor points to a word that doesn’t make sense in that location. For instance, you may
have forgotten to add LINES, AREA, or CLEAR in a BOX statement.  Look up the state-
ment in this book, and correct your program. 

Illegal line number.
You might have a non-numbered line in a line-numbered program, or vice versa, or a GOTO
or GOSUB to a nonexistent line number, or one in a control structure.  You might have a

D. Explanations of Error Messages 189



badly formed line number (e.g., more than six digits).  Or you might have a line with a num-
ber less than or equal to the previous line. 

Illegal number.
The cursor points to some spot where a number is required, but you’ve given something else.
If you’ve written a number there, make sure that you’ve followed True BASIC’s rules on
numeric constants. Sometimes True BASIC is very finicky about what it will accept as a
number: for instance, only integer constants are allowed as array bounds in DIM state-
ments, and as line numbers. 

Illegal option.
The only options supported by True BASIC are OPTION ANGLE, OPTION BASE, OPTION
NOLET, and OPTION TYPO.  Make sure you’ve spelled ANGLE, BASE, DEGREES, RADI-
ANS, NOLET, or TYPO properly. (True BASIC also supports OPTION ARITHMETIC,
OPTION COLLATE, and OPTION USING; the first two are ignored.)

Illegal parameter.
You’ve written a SUB or DEF or PICTURE line, defining a routine.  Something is wrong
with one of the parameters in the parameter list.  You may have listed one parameter
twice, or used something more complicated than a simple variable name.

Illegal statement.
Each statement must begin with some True BASIC keyword, such as LET or SELECT.
Check to make sure that you’ve spelled the keyword properly.  

Illegal statement: need LET for assignment, or try the NOLET command.
This is a wordier version of the “Illegal statement” error message if it looks like an assign-
ment.  Unless you use OPTION NOLET, True BASIC requires that you use the word LET
when assigning to a variable.

Improper NUM string. (-4020)
The string you’ve given to the NUM function doesn’t represent an IEEE 64-bit floating
point number.  Check to make sure that you’ve correctly created, or read in, the string. 

Improper ORD string. (4003)
The ORD function requires either a one-character string, or a string giving the official
name of an ASCII character. No leading or trailing spaces are allowed. See Appendix A
for a list of all the legal names for ASCII characters. 

190 BRONZE Edition  Guide



INV needs a square matrix. (6003)
Matrix inversion is defined only for square matrices. You are trying to use the INV func-
tion on a non-square matrix. Make sure that your matrix is two-dimensional, with the
same size in each dimension. 

LBOUND index out of range. (4008)
You are using a call such as Lbound(A,3) and the array A doesn’t have three dimensions.
Check to make sure that the dimension given lies between 1 and the number of dimen-
sions in the array. 

LOG of number <= 0. (3004)
Logarithms are only defined for positive numbers. 

Mismatched array sizes. (6001)
You’re using a MAT statement that requires arrays of the same size, but the arrays are dif-
ferent sizes. For example, matrix addition requires the two arrays added together to have
the same sizes. Matrix multiplication requires that the second dimension of the first matrix
must equal the first dimension of the second matrix.

Mismatched string array sizes. (6101)
You’re using a MAT statement with concatenation of string arrays, and the arrays are not
the same size.

Missing end statement.
Your program doesn’t end with an END statement. All True BASIC programs must contain
END statements. Add an END statement and try again. 

MOD and REMAINDER can’t have 0 as 2nd argument. (3006)
The MOD and REMAINDER functions do not allow zero as their second argument, since
this is equivalent to dividing by zero. Check to make sure you’re giving the arguments in
the right order. 

Must be a function name.
You’ve written a DEF or FUNCTION line, but no proper function name follows the DEF
or FUNCTION. 

D. Explanations of Error Messages 191



Must be a number.
True BASIC allows numeric expressions almost anywhere that simple numbers are allowed,
but there are a few exceptions.  For instance, CASE tests may not use numeric expressions.
Only numeric constants are allowed.  If you must use an expression, rewrite the SELECT
CASE structure as an IF-THEN-ELSE structure. 

Must be a picture name.
Your DRAW statement names something other than a picture.  Change the DRAW state-
ment so it refers to a picture, and try again.

Must be a string constant.
True BASIC allows string expressions almost anywhere that string constants are legal, but
there are a few exceptions.  For instance, CASE tests may not use string expressions.  If you
must use a string expression, rewrite the SELECT CASE structure as an IF-THEN-ELSEIF
structure.

Must be a subroutine name.
The CALL statement can only be used to call subroutines.  Change the statement so it uses
a subroutine name.

Must be a variable.
You’ve used an expression, or a routine name, where only a variable will do.  For example,
you must use variables in LET and INPUT statements.  Look up the statement in this book
to make sure you are using it properly. Also make sure that the variable you’re using isn’t
already used as a subroutine, picture, function, or array. 

Must be an array.
There are many places in True BASIC where you must give an array’s name, instead of an
ordinary variable. For instance, the MAT statements work only on arrays.  Various func-
tions, such as Lbound and Size, also work only on arrays.  Make sure that you’re spelling
the array’s name correctly and that you’ve named the array in a DIM statement. 

Name can’t be redefined.
You can’t use the same name for two different things. Thus, if you have a variable named
X, you cannot also have a subroutine or array named X. Rename one of the things, so every-
thing has its own unique name. True BASIC also prints this message when you try to use
a “reserved word” as a variable. (True BASIC “reserves” very few names. In addition to all
no-argument function names, True BASIC reserves only ELSE, NOT, PRINT and REM.)

192 BRONZE Edition  Guide



Negative number to non-integral power. (3002)
You’re trying to compute n^x, but n is negative and x is not an integer. The results are math-
ematically meaningless.

No CASE selected, but no CASE ELSE. (10004)
You have executed a SELECT CASE statement, but no CASE test has succeeded.  Since you
didn’t have a CASE ELSE part to catch this problem, True BASIC prints this error mes-
sage.  Check to make sure that the expression you’ve selected is reasonable.  Add a CASE
ELSE part to handle all cases other than ones caught by the tests.  If you want to ignore
anything besides those things tested for, add a CASE ELSE part with no statements in it. 

No main program.
Your current file contains functions, pictures, and/or subroutines, but doesn’t contain a main
program.  Go back and write a main program! 

No such color. (-11008)
You’re using the SET COLOR statement with some color name that True BASIC doesn’t
recognize. You may give color names in upper- or lowercase, but may not use extra spaces
in the names. 

No such file. (9003)
You’re trying to use a file which doesn’t exist.  You can get this error message from various
commands (such as OLD), or from within a program.  Check to make sure you spelled the
program’s name properly, and to make sure you have inserted the correct disk in your com-
puter.  Use the FILES command to see if that file exists on a disk.

No such file. Do you want to create it?
You have tried to REPLACE a file which doesn’t yet exist.  This gives you the chance to cre-
ate a file with the name you specified.  Answer “yes” to create the file, or “no” or “cancel” to
cancel this command. If you’re typing the reply, you can abbreviate it to one letter. 

No such function or subroutine.
You’ve named a function, subprogram, or picture in some command, but this routine doesn’t
exist.  Check to make sure you spelled the name properly.

No such line numbers.
You’ve given a range of line numbers in a command, but no lines have those numbers. 

D. Explanations of Error Messages 193



Out of memory. (5000)
Your problem requires more memory than is attached to your computer.  On some platforms,
you may be able to increase the memory allocated to True BASIC or you might be able to
turn on “virtual memory.” If these simple measures fail, you may need to purchase addi-
tional memory (RAM). 
If this is not an option, here are a few suggestions for memory conservation:
Use smaller arrays. Arrays can take up a surprising amount of space, especially if they have
more than one dimension. If you have big arrays, see if you can solve your problem by using
smaller arrays.
Compile your program, and use the compiled version.  
Check for “run-away” calls. You may have accidentally written a procedure that calls itself.
This is perfectly legal, and often useful.  But each call requires some amount of space, and
such an accident can cause this error. 

Overflow. (1002)
You’ve computed a number bigger than the one your computer can handle. PRINT
MAXNUM to see the largest number that your computer can use.  If you wish to have over-
flows silently turned into the largest possible number, enclose your computation in a WHEN
structure: 

WHEN ERROR IN
LET x = 10^(10^10)

USE
LET x = Maxnum

END WHEN 

Overflow in DET or DOT. (1009)
You have generated an overflow in the course of evaluating the DET or DOT function.

Overflow in INPUT (nonfatal). (1007)
You have entered as input a number that is too large.  You will be required to reenter the
entire input line.

Overflow in MAT operation. (1005)
You have generated an overflow in the course of evaluating a MAT operation.

Overflow in numeric constant. (1001)
You have used a numeric constant that is just too large, as in LET x = 1e1000.

194 BRONZE Edition  Guide



Overflow in numeric function. (1003)
You have generated an overflow in the course of evaluating a function, such as EXP or TAN.

Overflow in READ. (1006)
An overflow was generated in the course of reading a number from a data statement.

Overflow in VAL. (1004)
You have generated an overflow in the course of evaluating the VAL function.

Please try “CHANGE old, new”.
When changing a phrase in the command window, you must give both the old phrase and
its replacement.  If either phrase contains a comma or quote mark, enclose that entire
phrase in quote marks. 

Please try “DO filename”.
You must give a filename when using the DO command in the command window.  Give the
command again, specifying the name of the file to execute. 

Please try “ECHO” or “ECHO TO filename” or “ECHO OFF”.
You probably gave the ECHO command without the keyword TO. 

Please try “INCLUDE filename”.
You must give a filename when using the INCLUDE command.  Retype the command, giv-
ing the name of the file to include. 

Please try “OLD filename”.
You must give a file name when using the OLD command in the command window.  Retype
the command, giving the name of the file to call up. 

Please try “RENAME new” or “RENAME old, new”.
You gave the RENAME command in the command window without specifying a filename.
Give one name to change the current program name.  Or give two names (old and new) to
change a saved file’s name. 

Please try “SAVE filename” or “REPLACE filename”.
You must give a filename when saving a file in the command window.  Retype the command,
giving a filename. 

D. Explanations of Error Messages 195



Please try “UNSAVE filename”.
You must give a filename when trying to unsave a file in the command window.  Retype the
command, giving the name of the file to unsave. 

Please type line numbers as 100 or 100-150.
You’ve given a command such as DELETE, with a line number or block of line numbers, but
True BASIC can’t understand what you said.  Type a command such as DELETE 100 to
delete line 100, or DELETE 100-120 to delete lines 100 through 120.

Program stopped.
You have selected Stop from one of the menus.  The program has stopped.  

Reading past end of data. (8001)
You’ve executed a READ statement, but have run out of DATA items to read.  Did you
remember to include a DATA statement?  Check to make sure that you have as many data
items as you expect.  You may find the MORE DATA test handy for dealing with variable
amounts of data. 

REPEAT$ count < 0. (4010)
You’re using the REPEAT$(s$,n) function, but n is less than zero. Check to make sure that
you’ve typed the right variable name. 

Screen bounds must be 0 to 1. (-11003)
The bounds given on an OPEN SCREEN statement must lie in the range 0 to 1 (inclusive).
No matter how big your screen is, the left and bottom edges are defined to be 0; the right
and top edges are defined to be 1. 

SIZE index out of range. (4004)
You’re trying to take Size(A,3), for instance, when the array A has fewer than three dimen-
sions.  Check the relevant DIM statement to see how many dimensions the array has.  The
second argument must lie between 1 and this number. 

SQR of negative number. (3005)
You are trying to take the square root of a negative number.  This is not possible. 

Statement outside of program.
The cursor points to a statement outside of your main program, and not included within any
external routine. Check to make sure you haven’t accidentally moved the END statement
so that it is no longer at the end of your program. 

196 BRONZE Edition  Guide



String given instead a number (nonfatal). (8103)
You’ve executed an INPUT statement which is trying to input a number. However, the reply
given isn’t a number – it only makes sense as a string. If you’re inputting from the keyboard,
and want to avoid this message, you should convert your input statement so it reads a string,
and then use the Val function to convert the result to a number. (You can enclose the call to
Val within an error handler to suppress the error message.) If this exception occurs, you will
be requested to reenter the entire input line.

Subscript out of bounds. (2001)
You’ve given an array subscript which lies outside the array’s bounds. Try printing the sub-
script and then using Lbound and Ubound to find the array’s bounds. 

System error.
An error has occurred in the True BASIC system itself.  Record the system error and con-
tact customer support by FAX or e-mail. Thank you.

The BYE command is just “BYE”.
When you want to leave True BASIC in the command window, just type “BYE”.  Don’t add
anything else. 

The CONTINUE command is just “CONTINUE”.
When you want to continue running a breakpointed program, just type “CONTINUE”.  Don’t
add anything else. 

The FORGET command is just “FORGET”.
When you want to “forget” the history or recent commands, delete loaded routines, and
recover as much memory as you can, just type “FORGET”.  Don’t add anything else. 

The NOLET command is just “NOLET”.
When you want to allow the keyword LET to be omitted from LET statements, just type
“NOLET”.  Don’t add anything else. 

The RUN command is just “RUN”.
When you want to run your program from the command window, just type “RUN”.  Don’t
add anything else.

This must first appear in a DIM or DECLARE DEF.
The cursor points to something that is evidently an array or a function. But True BASIC
can’t tell which it is.  Be sure to add a DIM or DECLARE DEF line before this line, so True
BASIC will know what it is.

D. Explanations of Error Messages 197



Too few input items (nonfatal). (8002)
You’ve executed an INPUT statement, and the input reply doesn’t contain as many items
as the INPUT statement requested. You will be requested to reenter the entire input line.
If you want to spread out input items over several lines, be sure to end all lines but the last
with a comma. 

Too many input items (nonfatal). (8003)
You’ve executed an INPUT statement, and the input reply line contains more items than
the INPUT statement requested.  You will be requested to reenter the entire input line.

Trouble using disk or printer. (9002)
True BASIC is having trouble using one of your disks or your printer.  This message is given
for various reasons on different computers.  Check to make sure that the power is turned
on, that a diskette is inserted in your disk drive, that your printer has sufficient paper and
that it’s not jammed, that the connecting cables are securely attached, and so forth.  

Try “LOAD lib, lib, ...”.
You have probably used incorrect punctuation in a LOAD command. 

Type is wrong for name in routine.
You’ve tried calling a routine named name within another routine named routine.  However,
you got the arguments wrong in this call.  They don’t match the parameter list.  You must
give the same number of arguments as parameters, and they must be given in the same
order.  Check for passing numbers to strings, or vice versa.  Also make sure that you’re not
trying to use a function as a subroutine, or vice versa.

UBOUND index out of range. (4009)
You’ve tried calling something like Ubound(A,3), where A is an array with less than 3 dimen-
sions.  Check the DIM statement for A to see how many dimensions it has, or if you might
have used UBOUND without specifying a dim.

Undefined routine name in routine.
The routine named name has tried to use a function, subprogram, or picture named name.
Unfortunately, this function, subprogram, or picture is nowhere defined.  Check to see that
you spelled the name correctly, and that you included a LIBRARY statement for the file
which contains this routine.
True BASIC says “in MAIN program” if the error occurred in your main program.

198 BRONZE Edition  Guide



Unknown variable.
You are using OPTION TYPO to check for spelling mistakes, and it has found a variable
name that you haven’t declared anywhere. If True BASIC has found a typing mistake, just
correct the spelling. Otherwise, add a LOCAL statement that lists this variable, or include
the variable in its correct DECLARE PUBLIC or SHARE statement. 

VAL string isn’t a proper number. (4001)
You’ve called the Val function, but the string you gave doesn’t properly represent a number.

What? (Please type HELP or select the menu item: HELP for True BASIC)
You’ve typed a command that True BASIC doesn’t understand.  If you want further help
from the computer, just type HELP in the command window or use the Help menu for more
instructions.  When the HELP window appears, choose COMMANDS from the topics list.
(Also, see Appendix F for more about the HELP facility.)

Window minimum = maximum. (-11001)
You’ve executed a SET WINDOW statement that sets the vertical or horizontal window
maximum equal to the minimum.  True BASIC doesn’t allow this, as it wouldn’t let you see
anything in that window.  Remember that the order of edges for the SET WINDOW com-
mand is left, right, bottom, top.

Wrong number of arguments.
A function, subprogram, or picture was called with the wrong number of arguments.  

Wrong number of dimensions.
You’re trying to use an array, but have given the wrong number of dimensions.  Check this
use against the array’s DIM statement, and make sure that both have the same number of
subscripts.  If you’re passing an array to a routine, check the routine’s parameters.
Remember that a two-dimensional array must be indicated as A(,) in the parameter list, a
three-dimensional array by A(,,) and so forth. 

Wrong type.
You’re trying to use a string where a number is needed, or a number where a string is needed.
Check to make sure you’re not trying to assign a number to a string variable, or vice versa.
Remember, too, that string concatenation is written using an ampersand (&) in True BASIC,
and not a plus sign (+). 

D. Explanations of Error Messages 199



200 BRONZE Edition  Guide

You have two routines called name in routine.
In the routine named routine, you’ve defined two different routines named name.  Since
different things must have different names, you must change the name of one of them.  Be
sure to go through all calls to that routine, and change those names too.
True BASIC says “in MAIN program” if the error occurred in your main program (before the
END statement). 

Zero to negative power. (3003)
You are trying to compute 0^n, where n < 0.  This is mathematically undefined, and so True
BASIC gives an error. 



APPENDIX

You may have noticed the directory “TBDo”, which contains several so-called “DO pro-
grams.”  Actually, they are not regular programs, but are subroutines.  They are
designed to operate on the text file in the current editing window, but can be made to do
just about anything.

You can make your own DO programs.  Follow these simple steps:

1. Create a library file, carefully choosing its name.

2. On the first lines of the library file, enter

EXTERNAL
SUB xxxxx (current$(), options$)

3 Now write what you want to do, which may involve modifying the lines or the
current file.

4. At the end of the file, enter

END SUB

Note:  the actual name of the subroutine is irrelevant!  A DO program is always identi-
fied by the name of the file containing it!

Now save this file in the directory TBDo.  When True BASIC starts up, the name or your
new do program file will appear in the Run menu along with the names of all the other
do programs.

You can invoke a do program in two ways.  You can select the menu item “Do ...” in the
“Run” menu, or you can type the command “do filename” on the command line.  (Of
course, you’ll actually type the file name you have selected.)

If you use the menu selection method, you may have to navigate the file system to find
the directory TBDo.  Then you’ll also be asked for the the command line parameters.
Whatever you enter will then be assigned to the second argument in the calling

211

Making Your Own DO Programs                  E



sequence, options$.  If you use typed commands, anything you type following the do
command itself and a comma will be similarly assigned.  (For the typed command, you’ll
automatically use the TBDo directory; see the discussion of aliases in Chapter 15.)

Here is a simple example:  Suppose you want a do program that will change all upper
case letters into lowercase, or all lower case letters into uppercase.  Write the following
subroutine:

EXTERNAL
SUB xxxxx (current$(), options$)

LET options$ = ltrim$(lcase$(options$))[1:1]
FOR i = 1 to ubound(current$())

IF options$ = “u” then
LET current$(i) = ucase$(current$(i))

ELSE IF options$ = “l” then
LET current$(i) = lcase$(current$(i))

ELSE
PRINT “Use either ‘upper’ or ‘lower’”
EXIT SUB

END IF
NEXT i

END SUB

Now save it with the name “ChangeCase” in the directory TBDo.

To use your new DO program to change all uppercase letters to lowercase in your cur-
rent program, type the command

do changecase, lower

Conversely, if you want to change to all uppercase, type the command
do changecase, upper

That’s all there is to it.

If you put your very own DO program in the directory (folder) TBDo,  its name will
appear in the Run menu the next time you start True BASIC.  If you put it into a differ-
ent directory, you can access it by selecting “Do ...” from the Run menu, using the Finder
to locate it, and then clicking on “Open”.  In any case, you will be asked if there are any
command-line parameters; whatever you enter will be supplied as the value of options$
in the call to the DO program.

212 BRONZE Edition  Guide



Several DO programs are already in the directory (folder) TBDo.  There are three buil-
t-in ones that exist outside the TBDo folder is empty.  They are:

Do Format
Do Upper
Do Lower

Do Format formats your program by capitalizing some key words, and indenting the
insides of loops and other structures.

Do Upper and Do Lower operate only on text that has been selected, and changes all
letters in the selected region to uppercase (Do Upper) or lowercase (Do Lower.)

The remaining DO programs are found in the TBDo directory.  Three of them deal with
adding line numbers to your program (DoNumber), removing them (DoUnNum), or
changing them (DoReNum.)  The parameters for DoNum allow you to specify the start-
ing line number, and the line number spacing.  If you leave the parameters blank, you’ll
get 1000 as the starting line number, and 10 as the spacing.  If you would prefer to start
with, say, 10000 and have a spacing of 100, you could use

10000, 100

as the parameter values.

The parameters for DoReNum are the same as those for DoNum.

DoSort will sort your current file using the ASCII sorting sequence (all uppercase let-
ters come before all lowercase letters!)  You would never want to do this with a real pro-
gram, but this might be useful if your current file happens to be a list of names.

DoSaveText allows you to take the text in your current Source Code window and con-
vert the line-endings for use on different operating systems.  The line-ending marks for
the most popular operating systems are:

Windows, DOS, OS/2: Carriage Return + Line Feed

Macintosh: Carriage Return

Unix, Linux: Line Feed

You can select one of the following parameters to specify the platform:
DOS
Windows
OS\2
Unix
Macintosh

For Linux, use Unix.

213



DoXRef will produce a cross-reference of your current program file.  All keywords will
be indentified, and located by giving the line numbers of the line in which they appear.
Try it on a program of your own, but start with a small program as the DoXRef output
is lengthy.  The output will be sent to the printer unless you specify a file name as a
parameter.

DoJoin and DoMakeApp have to do with preparing TrueApps, subjects and proce-
dures that are discussed in How-To files that can be downloaded from the True BASIC
website or found on the True BASIC Annual-CD’s.

The DO programs currently in the directory TBDo happen to be compiled, although
they need not be.  The sourse code for all except DoMakeApp can be found in the sub-
directory sources.  (The names of the source files are slightly different; for example, the
source code for DoNum is called NUMBER.TRU.)  You can change the source code as
you see fit, compile it, and re-save it in TBDo, renaming it if desired.  Thus, you can cus-
tom-fit any of the DO programs to suit your own purposes.

214 BRONZE Edition  Guide



215

APPENDIX

PRINT USING Statement 

True BASIC normally prints numbers in a form convenient for most purposes. But
on occasion you may prefer a more elaborate form. For example, you may want to
print financial quantities with two decimal places (for cents) and, possibly, with
commas inserted every three digits to the left of the decimal point. PRINT USING
provides a way to print numbers in this and almost any other form.

Here is an example of the PRINT USING statement.

PRINT USING format$: x, y, z

Format$ is a string of characters that contains the instructions to PRINT USING
for “formatting” the printing of x, y, and z. This string is called a format string. It
may be a string variable (as shown above), a quoted-string, or a more general string
expression.

PRINT USING also allows one to print strings centered or right-justified, as well as
left-justified. (The normal PRINT statement prints both strings and numbers left-
justified within each print zone.)

The function USING$ duplicates the PRINT USING statement almost exactly but
returns the result as a string rather than printing it on the screen. For example, the
following two statements yield the same output as the preceding PRINT USING
statement.

LET outstring$ = using$(format$, x, y, z)
PRINT outstring$

The USING$ function allows you to modify or save the string outstring$ before
printing it. You can also use this function with WRITE and PLOT TEXT state-
ments.

F



216 BRONZE Edition  Guide

We will first examine how to format numerical output.

Formatting Numbers
The basic idea of a format string is that the symbol “#” stands for a digit position. For
example, let us compare the output resulting from two similar PRINT statements, the
first a normal PRINT statement and the second employing USING.

PRINT x
PRINT USING "###": x

In the following table, the symbol “|” is used to denote the left margin and does not
actually appear on the screen.

x PRINT x PRINT USING "###": x
- ------- --------------------
1 | 1 |  1
12 | 12 | 12
123 | 123 |123
1234 | 1234 |***

We notice several things. Without USING, the number is printed left-justified with a
leading space for a possible minus sign, and occupying only as much space as needed.
With USING, the format string “###” specifies a field length of exactly three charac-
ters. The number is printed right-justified in this field. If the field is not long enough to
print the number properly, asterisks are printed instead, the unformatted value (here,
of x) is printed on the next line and printing continues on the following line. If all you
need to do is to print integer numbers in a column but with right-justification, then the
preceding example will suffice.

Printing financial quantities so that the decimal points are aligned is important. Also,
you may want to print two decimal places (for the cents) even when they are “0”. The
following example shows how to do this. (In order to print negative numbers, the for-
mat string must start with a minus sign.)

x PRINT x PRINT USING "-##.##": x
-- ------- -----------------------
1 | 1 |  1.00
1.2 | 1.2 |  1.20
-3.57 |-3.57 |- 3.57
1.238 | 1.238 |  1.24
123 | 123 |******
0 | 0 |   .00
-123 |-123 |******



Notice that two decimal places are always printed, even when they consist of zeroes. 

Also, the result is first rounded to two decimals. If the number is negative, the minus
sign occupies the leading digit position. If the number is too long to be printed properly
(possibly because of a minus sign), asterisks are printed instead, the unformatted
value is printed on the next line, and printing continues on the following line.

Financial quantities are often printed with a leading dollar sign ($), and with commas
forming three-digit groups to the left of the decimal point. The following example
shows how to do this with PRINT USING.

x PRINT USING "$#,###,###.##": x
-- ------------------------------
0 |$         .00
1 |$        1.00
1234 |$    1,234.00
1234567.89 |$1,234,567.89
1e6 |$1,000,000.00
1e7 |*************

Notice that the dollar sign is always printed and is in the same position (first) in the
field. Also, the separating commas are printed only when needed.

You might sometimes want the dollar sign ($) to float to the right, so that it appears
next to the number, avoiding all those blank spaces between the dollar sign and the
first digit in the preceding example. The following example shows how to do this.

x PRINT USING "$$$$$$$#.##": x
-- ----------------------------
0 |      $ .00
1 |      $1.00
1234 |   $1234.00
1234567.89 |$1234567.89

Digit positions represented by “$” instead of “#” cannot surround or be next to commas.

In the previous two examples, no negative amounts can be printed since the format
string does not start with or contain a minus sign.

H. PRINT USING Statement 217



The format string can also allow leading zeroes to be printed, or to be replaced by aster-
isks (*). You might find the latter useful if you are preparing a check-writing program.

x PRINT USING "$%,%%%,%%%.##": x

-- ------------------------------
0 |$0,000,000.00
1 |$0,000,001.00
1234 |$0,001,234.00
1234567.89 |$1,234,567.89
x PRINT USING "$*,***,***.##": x
-- ------------------------------
0 |$*********.00
1 |$********1.00
1234 |$****1,234.00
1234567.89 |$1,234,567.89

You can also format numbers using scientific notation. Because scientific notation has
two parts, the decimal-part and the exponent-part, the format string must also have
two parts. The decimal-part follows the rules already illustrated. The exponent-part
consists of from three to five carets (^) that must immediately follow the decimal-part.
The following example shows how.

x PRINT USING "+#.#####^^^^": x
-- -----------------------------
0 |+0.00000e+00
123.456 |+1.23456e+02
-.001324379 |-1.32438e-03
7e30 |+7.00000e+30
.5e100 |+5.00000e+99
5e100 |************

Notice that a leading plus sign (+) in the format string guarantees that the sign of the
number will be printed, even when the number is positive. Notice also that the last
number cannot be formatted because the exponent part would have been 100, which
requires an exponent field of five carets. Notice also that if there are more carets than
needed for the exponent, leading zeroes are inserted. Finally, notice that trailing
zeroes in the decimal part are printed.

218 BRONZE Edition  Guide



Floating Characters
You’ll notice that one of the previous examples includes several “$”, but that only one of
them is actually printed. It is printed just to the left of the left-most non-zero digit, but
always within the positions given by the sequence of “$”. We say that the sequence of
“$” defines a floating region and that the spot where the “$” is printed floats within this
region.

Besides the “$”, the plus sign (+) and the minus sign (-) can also define floating regions. 

The rules are:

1. You can use either zero, one, or two different floating characters (“+” and “-” cannot
both appear, and neither can commas.)

2. You can repeat the first (or only) floating character an arbitrary number of times,
but not the second.

3. Zero to two different floating characters generate a sequence of zero to two charac-
ters called a header, as follows:

The Floating Header

First Second Positive Negative
$ + "$+" "$–"
$ – "$ " "$–"
$ none "$" error
+ $ "+$" "–$"
+ none "+" "–"
– $ " $" "–$"
– none "  " "–"

none none "" error

Notice that the header contains the same number of characters as the number of
different floating characters.

4. The zero to two character header will be printed as far to the right as possible
within the floating region.

5. The numerical value’s leading digits can overflow into the floating region, thereby
“pushing” the header to the left.

6. If the numerical value exceeds the total space provided, the entire space is filled
with asterisks.

H. PRINT USING Statement 219



The following example illustrates some of these rules.

PRINT x PRINT USING "$$$$$$$-#,###.##": x
------- ---------------------------------
| 0 | $ .00
| 1 | $ 1.00
|-1 | $- 1.00
| 4321.5 | $ 4,321.50
|-4321.5 | $-4,321.50
| 1.23456789e+7 | $ 12345,678.90
|-1.23456789e7 | $-12345,678.90
| 1000000000 | $ 1000000,000.00
|-1000000000 | $-1000000,000.00

Notice that the “$” is never printed outside the floating region. A place is allocated for
the minus sign. The leading digits of the numerical value can overflow into the floating
region, which does not (and cannot) contain commas.

Formatting Strings
Strings can also be formatted through PRINT USING or the function USING$,
although there are fewer options for strings than for numbers. Strings can be printed
in the formatted field either left-justified, centered, or right-justified. As with num-
bers, if the string is too long to fit, then asterisks are printed, the actual string is
printed on the next line, and printing continues on the following line. The following
example shows several cases.

USING              String to be Printed
string       "Ok"         "Hello"     "Goodbye"
------       ------       -------     ---------
"<####"      |Ok          |Hello      |*******
"#####"      | Ok         |Hello      |*******
">####"      |   Ok       |Hello      |*******

Notice that if centering cannot be exact, the extra space is placed to the right.

Any numeric field can be used to format a string, in which case the string is centered.
This is especially valuable for printing headers for a numeric table. The following
example shows how you can format headers using the same format string we used ear-
lier for numbers.

220 BRONZE Edition  Guide



s$ PRINT USING "$#,###,###.##": s$
------------- -------------------------------
"Cash" |    Cash
"Liabilities" | Liabilities
"Accounts Receivable" |*************

Multiple Fields and Other Rules
A PRINT USING format string can contain several format items. For example, to print
a table of sines and cosines, we may want to use:

LET format$ = "-#.###  -#.######  -#.######"
PRINT USING format$: x, sin(x), cos(x)

The value of x will then be printed to three decimals, while the values of the sine and
cosine will be printed to six decimals. Notice also that spaces between the format items
will give equal spaces between the columns in the printed result.

If there are more format items than there are values (numbers or strings) to be
printed, the rest of the format string starting with the first unused format item is
ignored. If there are fewer format items than values to be printed, the format string is
reused, but starting on the next line. Thus,

PRINT USING "  -#.#####": 1.2, 2.3, 3.4

will yield:

1.20000
2.30000
3.40000

Literals in Format Strings
We have just seen that spaces between format items in a format string are printed.
That is, if there are four spaces, the four spaces are printed. The same is true for more
general characters that may appear between format items. The rule is simple: you can
use any sequence of characters between format items except the special formatting
characters. The characters you use will then be printed.

The special formatting characters are:

#   %   *   <   >   ̂    .  +   -   ,   $

H. PRINT USING Statement 221



The following example illustrates this use.

PRINT USING "#.## plus #.## equals #.##": 1.2, 2.3, 1.2+2.3

will yield:

1.20 plus 2.30 equals 3.50

If there are fewer values than format items, the unused format items are ignored, but
the last intervening literal string is printed. Thus,

PRINT USING "#.## plus #.## equals #.##": 1.2, 2.3

will yield

1.20 plus 2.30 equals 

If you need to have one of the special formatting characters appear in the output – for
example, if you want to have a final period, as in the last example – you can simply add
a one-character field to the format string and add the quoted-string “.” to the PRINT
statement. Thus,

LET x = 1.2
LET y = 2.3
PRINT USING "#.## plus #.## equals #.## #": x, y, x+y, "."

will yield

1.20 plus 2.30 equals 3.50 .

The PRINT USING statements found in True BASIC allow you to format your calcu-
lated results or data in many easy-to-understand formats. Investing time in learning
the many capabilities of these statements will pay rich dividends.

222 BRONZE Edition  Guide



APPENDIX

Text Files
A text file consists of lines that you can create on the keyboard and display on the screen
using the True BASIC Editor (or any other application that can create and read “text-only”
files). You can also create a text file entirely from within your program. True BASIC puts
information into text files in the same way it displays information on the screen or printer,
and it gets information from them just as it gets input from the keyboard. Thus, you use the
same PRINT and INPUT statements — along with an appropriate channel number — with
text files. 

Text files are easy to understand and use. In fact, the PRINT and INPUT statements work
just as they normally do when used with the screen and the keyboard — all the same rules
apply. Because you can create and view text files with any screen editor, you can see the file
structure and understand how it interacts with your programs. Text files often provide input
data to a program or store output for later display or printing.

Text files, however, are not as efficient as the other types of files for large amounts of data.
It is often hard to output information (such as strings or arrays) to a text file in a format that
programs can easily read. Also, you may lose some numeric precision when you store numeric
information in text files. 

To understand the loss of numeric precision within text files (and the major difference
between text files and internal files), let’s take a brief look at what happens when a program
takes input from the keyboard and displays it on the screen. At the keyboard, you type char-
acters that True BASIC interprets based on a standard character set. If you input a string
value, True BASIC stores the actual characters you type (less leading and trailing spaces)
in internal memory; each character occupies one byte of memory. When you use a PRINT
statement to display a string value, you get exactly what is stored in memory.

If you input a numeric value, however, True BASIC converts the characters you type into
the number they represent and stores that value in an internal format. In that internal for-
mat, numeric values have a precision of at least 14 significant digits, and each value occu-
pies eight bytes of memory. True BASIC performs all calculations using the full precision
of the internal numeric format.

223

TRUE BASIC File Types                                   G



When a PRINT statement displays a numeric value, however, you may not see the value
to its full precision. Unless you specify otherwise with a PRINT USING statement, the
PRINT statement displays characters representing the numeric value according to the
rules described in Chapter 3 “Output Statements.” For example, the program:

LET x = 296445886        ! Population
LET y = 1.37             ! Growth rate
PRINT x * y              ! New population
END

displays the value:
4.0613086e+8 

even though the internal value is calculated to be 406130863.82.

If you use a PRINT statement to store this value in a text file, the same series of charac-
ters that represent the value on the screen would be used to represent it in the file. A sub-
sequent INPUT statement would retrieve the value with its reduced precision. While this
may not be a problem for many applications, you should be aware of it.

Let’s look now at a simple example that gets information from one text file and prints some
of that information to another file. The INPUT and PRINT statements work just as they
normally do except that you specify a channel number to indicate the file to be used:
OPEN #1: NAME “WAGES”, ORG TEXT, ACCESS INPUT
OPEN #2: NAME “NAMES”, ORG TEXT, CREATE NEWOLD
RESET #2: END

DO WHILE MORE #1          ! While there is more to read
INPUT #1: name$, age, salary
PRINT #2: name$, “Age:”; age

LOOP

END

Each time the INPUT statement in this example is executed, it reads a line from the first
file, treating it as if it had been typed at the keyboard. The line must have just the right num-
ber of items, of the right type (i.e., using numbers for numeric variables), separated by com-
mas. If the value to be assigned to the name$ variable contains a comma, the string must
be enclosed in double quotes. For example, the following line in the file would be legal:
“Williams, Pat”, 34, 28500

while this one would cause an error:
Williams, Pat, 34, 28500

because True BASIC would interpret Williams as the value of name$, and attempt to
assign the string value Pat to the numeric variable age.

224 BRONZE Edition  Guide



Likewise, if a line in the file contains too few or too many items or the types do not match, an
error occurs, since there is no way of “re-asking” the file for input.

Lines being input from a file may end with a comma to indicate that there is more input on
the next line. Along with the INPUT statement, you may use the LINE INPUT, MAT
INPUT, and MAT LINE INPUT statements with text files. However, the various forms of
the INPUT PROMPT statement are not allowed, since a file cannot be prompted.

If you attempt to use the INPUT statement with a file opened with the ACCESS OUTPUT
option, an error occurs. You’ll also get an error if the file pointer is at the end of the file (i.e.,
if there is no more information to input). Remember that you can use the SET POINTER
or RESET statements to move the pointer to the beginning of the file, and you can use the
MORE or END logical clauses to test for more data in the file (see earlier section).

The PRINT statement in the example above:
PRINT #2: name$, “Age:”; age

also follows all the conventions for a PRINT statement used to display values on the screen,
including commas and semicolons. The file has a margin and a zonewidth, whose default val-
ues are 80 and 16, respectively, as they are for logical windows on the screen. You may change
these settings with the SET MARGIN and SET ZONEWIDTH statements as follows:

SET #3: MARGIN 70
SET #3: ZONEWIDTH 10

Similarly, your program can find out the current margin and zonewidth of a file with the
ASK MARGIN and ASK ZONEWIDTH statements:
ASK #2: MARGIN m
ASK #2: ZONEWIDTH z

Since there is no cursor in a file, the SET CURSOR statement does not make any sense when
applied to a file. Similarly the two-argument version of the TAB function is forbidden with
text files. You may, however, use the TAB function with a single argument:
PRINT #2: name$; Tab(45); “Age:”; age

You may also use the MAT PRINT or PRINT USING statements to print to a text file.
Here’s an example of the PRINT USING statement used with a text file:
LET form$ = “###########################>   Age: ##”
PRINT #2, USING form$: name$, age

If you attempt to use the PRINT statement with a file that has been opened with the
ACCESS INPUT option, an error occurs. You’ll also get an error if you attempt to overwrite
the existing contents of a text file. To avoid attempts to overwrite, erase the contents of a file
with the ERASE statement or reset the pointer to the end of the file with a SET POINTER
or RESET statement before printing to it.

As shown in the above example, it is easy to copy all or part of one file to another. 

I. True BASIC File Types 225



Here’s another example that changes all letters in a file to lowercase:
DIM line$(1000)
OPEN #3: NAME “Program5.Tru”

LET i = 0
DO WHILE MORE #3       ! Read lines into array

LET i = i + 1
LINE INPUT #3: line$(i)

LOOP

ERASE #3               ! Erase the file

FOR j = 1 to i         ! Rewrite in lowercase
PRINT #3: Lcase$(line$(j))

NEXT j
END

The program reads the file into an array, erases the file, and then writes lowercase versions
of the lines back into the file.

A word of caution about using the MAT PRINT and MAT INPUT statements with text files:
while both work with text files, the MAT PRINT statement does not write information in a
format that will work with the MAT INPUT statement. The MAT INPUT statement
expects items of a row to be separated by commas, but the MAT PRINT statement separates
the items of a row by spaces. There are two ways to solve this problem: 

(1) Create the file’s contents by printing individual elements, putting a comma after each
item except the last:

...
FOR i = 1 to Ubound(array) - 1

PRINT #7: array(i); “, “;
NEXT i
PRINT array(Ubound(array))
...

(2) Use the LINE INPUT statement to input an entire line from the file and then “parse”
the line into its component items using the ExplodeN subroutine provided in the Str-
Lib library.

LIBRARY “C:\TBSilver\TBLIBS\STRLIB.TRC”  ! Use appropriate
path name
...
LINE INPUT #4: line$
CALL ExplodeN(line$, array(),” “)
...

You should also be cautious when printing strings to text files for later input. Remember that
the INPUT statement requires double quotes around strings containing commas or leading

226 BRONZE Edition  Guide



or trailing spaces. To overcome this problem you could print such strings with enclosing
quotes or, better yet, print just one string value per line and then use the LINE INPUT state-
ment to read the entire line. The latter solution is the best if your strings contain double-
quote marks, as you would have to repeat the double quotes within the string for the INPUT
statement to read the string correctly!

Internal Files — Stream, Random, Record, & Byte
The important differences between text files and the other types of data files are the state-
ments you use to get data to and from the files and the way in which the files store numeric
values. 

Within text files, both numeric and string values are stored as series of characters. Numeric
values are converted to strings of digits that represent the value (with possible loss of full
precision). Any application that can read text can print or display such files. Because the for-
mat of text files is the same as for keyboard input or displays to the screen, text files use the
normal INPUT and PRINT statements with the addition of channel numbers. 

The remaining file types are all internal files — numeric and string values are stored in the
same internal format used by the computer’s memory when it runs your programs. String
values are stored internally as characters just as they are displayed, with one byte per char-
acter. Numeric values, however, are stored in the standard IEEE eight-byte format that can-
not be displayed. Because of the storage format, internal files require READ and WRITE
statements to input and output data. While internal files cannot usually be displayed
directly on the screen or printer, they do have several advantages:

• The numeric values retrieved from an internal file are read with exactly the same pre-
cision as the values written to the file. With a text file, numeric values may lose preci-
sion when the PRINT statement converts them from the computer’s internal format to
a sequence of characters; any greater precision is lost and cannot be retrieved when
that sequence of characters is input from the file. 

• Reading and writing operations are faster with internal files, because there is no need
to convert numeric values between internal and display formats. 

• True BASIC internal files may be used with programs on any computer type. The inter-
nal format is the same no matter where you run your programs. Also, the ability to read
a file as a byte file lets you read any file created by any application on any computer.
Text files, however, must often be translated when they are moved between operating
systems because of the variations in how operating systems view end-of-line charac-
ters within text files. 

• Three types of internal files — random, record, and byte — permit the more efficient
random access of records within the files. With random access you can jump directly to
any part of the file, rather than having to work through the file from start to finish. Text

I. True BASIC File Types 227



and stream files permit only sequential access — the items in the file must be retrieved
in exactly the same order in which they were stored.

Internal files come in four types: stream, random, record, and byte files, all of which are
explained below. Random and record files are organized by records. A record is a storage
location of fixed-length within a file. All the records within a file are numbered so that you
can move easily to any record in the file with a SET RECORD statement. The exact struc-
tures of random and record files are explained below. 

As noted above, you use WRITE and READ statements with internal files. The exact usage
of these statements varies depending on the type of file, as described below.

The OPEN, CLOSE, ERASE, and UNSAVE statements work for internal files just as they
do for text files. Remember, however, that the default organization for a newly created file
is text, so you must specify the type of file when you are creating a new internal file. The SET
and ASK statements have several additional forms that are described with the different file
types below. 

Stream Files
A stream file is simply a sequence of values. These values must be read back in the same
order in which they were written to the file. For example:
OPEN #1: NAME “VALUES.STR”, CREATE NEW, ORG STREAM
WRITE #1: Pi, Exp(1), “This is a string.”, 3.14
...
SET #1: POINTER BEGIN
READ #1: a, b, c$
READ #1: d
! At this point, a  is exactly equal to PI
! b  is exactly equal to EXP(1)
! c$ is the string “This is a string.”
! d  is exactly equal to 3.14

Notice that the WRITE and READ statements need not have the same number of variables
— there is no concept of a line of data as in text files or a record as in random and record files.
The one requirement is that the type (numeric or string) of a variable in the READ state-
ment must match the type of the next value in the file. If the type is wrong, an error occurs. 

Although it is up to the programmer to keep track of the type and purpose of the values in a
stream file, you can “peek” at the next value’s type with an ASK DATUM statement. For
example:
ASK #1: DATUM type$
SELECT CASE type$
CASE “NUMERIC”

READ #1: n

228 BRONZE Edition  Guide



CASE “STRING”
READ #1: s$

CASE else
! type$ = “NONE” if at the end of the file
! type$ = “UNKNOWN” if can’t tell

END SELECT

Random Files
Random files are composed of records. All the records within a single file have the same max-
imum length which is called the record size of that file.

Each record in a random file may contain any number of string and/or numeric values, pro-
vided that the cumulative length of the items (and their associated “bookkeeping” as
explained below) does not exceed the file’s record size. In fact, different records within the
same file may contain different numbers and types of items.

Any record whose actual length is less than the record size of the file will be automatically
“padded” to the proper record size before being written to the file. This padding will be
ignored when the values are subsequently retrieved from the file. Thus, you need not worry
about padding records yourself.

Although True BASIC will automatically move the file pointer to the next record each time
a record is read, allowing you to easily process a random file from beginning to end, you can
also move the file pointer to any existing record within the file arbitrarily. The record to
which the file pointer currently points may be retrieved and/or overwritten as necessary.

Before you can write records to a new or empty random file, you must first set the file’s record
size. You may do this using a RECSIZE option in the OPEN statement, as in:
OPEN #1: NAME “NEWDATA.RDM”, ORG RANDOM, RECSIZE 50, CREATE
NEW

or by using a SET RECSIZE statement after the file has been opened, as in:
OPEN #1: NAME “NEWDATA.RDM”, ORG RANDOM, CREATE NEW
SET #1: RECSIZE 50

Note, however, that you may set or change the record size only for a new or empty file — if
the file contains any records you must erase it (with the ERASE statement) before you can
change the record size.

If a file already exists and contains one or more records, it already has a record size which
you cannot change without first erasing the file. You may use the ASK RECSIZE statement
to find out the record size of a file as follows:
OPEN #1: NAME “DATA”, ORG RANDOM, CREATE OLD
ASK #1: RECSIZE rsize

Here, the record size of the file named DATA would be assigned to rsize.

I. True BASIC File Types 229



If you attempt to write more bytes to a random file record than its defined record size, an
error results. The record size must be large enough to hold both the data that will be stored
in each record and some additional “bookkeeping” information. 

This bookkeeping information keeps track of the kinds of information in each record (remem-
ber that random files allow an arbitrary number of values of arbitrary types within each
record) and indicates the end of the record. Although you need not worry about this infor-
mation when using the file, it does require storage space, and you must account for it when
you set the record size for a new random file (or if you need to figure out how much you can
write to new records in an existing random file).

A string item stored in a random file record will occupy one byte for each character in the
string plus four bytes of bookkeeping information. On the other hand, a numeric value stored
in a random file record will always occupy exactly nine bytes — eight bytes for the internal
representation of the number and one byte for bookkeeping. In addition, you must always
allow one byte in the record size for the end-of-record marker.

As an example, consider a situation in which you plan on storing two strings and three num-
bers in each record. First, you need to know the maximum length of the strings that you will
store. Let’s assume that the first string will never be longer than 30 characters and the sec-
ond string will never exceed 14 characters. Thus, you need to reserve 30 + 4 bytes for the first
string and its bookkeeping information and 14 + 4 bytes for the second string and its book-
keeping information. Each of the three numeric values will occupy 8 + 1 bytes with its book-
keeping information. And don’t forget to reserve 1 byte for the end-of-record marker. By
adding all of these requirements together, you know the proper record size for this random
file is 34 + 18 + 9 + 9 + 9 + 1 = 90.

If the records in the random file will contain varying numbers and types of items, calculate
the length based on the longest record you will need. If you attempt to write more bytes to a
random file record than its defined record size, an error results. 

———————————————————————————————————————

x Note: True BASIC does not know how you arrived at a random file’s
record size; it simply checks to be sure total size of the record does not
exceed the established record size. You might exceed a record size
because you attempted to write more items than you had planned on,
or because a string in the record is longer than you planned. True
BASIC won’t know the difference; it will simply report that the record
size was exceeded. You may want to use the DECLARE STRING state-
ment to define a maximum length for string variables used in random
file records. This lets True BASIC provide more specific diagnostics
should a problem arise.

——————————————————————————————————————— 

230 BRONZE Edition  Guide



Each READ and WRITE statement reads or writes one complete record in a random file.
Because individual records may contain different numbers and types of values, the pattern
of the READ statement must mirror the pattern of the WRITE statement that produced the
record; otherwise, an error will occur. In the following example, each record contains three
values: a string value, a numeric value, and another string value:
! A new RANDOM file
OPEN #1: NAME “STUFF”, CREATE NEW, ORG RANDOM, RECSIZE 100
...
WRITE #1: name$, age, occupation$

Later on, perhaps in a different program, you can retrieve that information, as follows:
! File already exists
OPEN #1: NAME “STUFF”, ORG RANDOM
...
! True BASIC figures out the RECSIZE by looking at the file.
! CREATE option not needed, or use CREATE old.
...
! The READ statement must mirror the earlier WRITE
READ #1: person$, a, occ$

The READ statement typically reads all the values in the record, and the variable types
must match the value types in the record. However, if the record contains many items and
you want only the first few, you may use a SKIP REST clause in the READ statement  as
follows:
READ #1: person$, a, SKIP REST

The SKIP REST clause instructs True BASIC to ignore the remaining values in the record.

Remember that the records within a random file need not have the same shape — they may
have different numbers and types of values of varying lengths (as long as they don’t exceed
the record size). For example, a random file that contains a student’s grade record might con-
tain different information in the first few records:
OPEN #5: NAME “SMYTHE”, ORG RANDOM, ACCESS INPUT
READ #5: last$, first$, middle$, class ! First record
READ #5: street_address$ ! Second record
READ #5: city$, state$, zip$ ! Third record

PRINT “Grade Report for “; first$ & last$; “.  Class of”;
class 
DO WHILE MORE #5

READ #5: course$, grade, credits ! Remaining records
PRINT course$; tab(20); grade, credits; “credits”

LOOP
...

I. True BASIC File Types 231



Random files are so called because they permit random access. That is, you can access any
particular record regardless of the order in which records were created. The records are auto-
matically numbered starting at 1. The file pointer normally moves to the next record after a
record has been read or written — remember that each READ or WRITE statement reads or
writes an entire record in a random file. But you may also jump around to arbitrary records
within a file using the SET POINTER and SET RECORD statements:
SET #3: POINTER SAME ! Go back to the record just read or
written
SET #3: POINTER NEXT ! Skip the current record
SET #3: RECORD r ! Go to record number r

You may also use the keyword RESET as follows:
RESET #3: SAME ! Go back to the record just read or
written
RESET #3: NEXT ! Skip the current record
RESET #3: RECORD r ! Go to record number r

Clearly, the last option is the most powerful one. You may find the current file pointer posi-
tion, or the number of the current record, with the ASK RECORD statement as follows:
ASK #3: RECORD r

As an example, consider a simple computer-based dictionary. Suppose that one random file
contains a list of words and another random file contains the corresponding definitions in
the same order. If you open these two files as #1 and #2, respectively, you could look up words
as follows:
DO

INPUT PROMPT “Word: “: w$
CALL Find (#1, w$, n)           ! Word in record n
IF n = 0 then

PRINT “Word not found”
ELSE

SET #2: RECORD n             ! Find definition
READ #2: def$
PRINT def$

END IF
LOOP

The program-defined subroutine Find searches file #1 for the word and returns its record
number (or 0 if it finds no word). 
SUB Find (#9, word$, rec)

RESET #9: 1 ! Start at beginning of file
ASK #9: FILESIZE last_rec ! How many records?
FOR r = 1 to last_rec

232 BRONZE Edition  Guide



READ #9: next$ ! Examine each record
IF next$ = word$ then EXIT FOR

NEXT r
IF r > last_rec then LET rec = 0 else LET rec = r

END SUM

If the word is found, the program  jumps to the same record number in file #2 and reads the
definition. This is not possible with text files.

Changing an existing record in a random file is just as easy. Simply jump to the record and
use a WRITE statement. You can add to the end of the file by first using:
SET #3: POINTER END

You may also use the MAT READ and MAT WRITE statements to read or write an entire
array from or to a random file. With random files, the MAT WRITE statement puts all the
array elements in the same record, provided the record is long enough. You may then recover
the elements with a MAT READ statement — or with a READ statement that includes a
variable for each element.

Record Files
Record files are like random files, except that you can place only one value — numeric or
string — in a record. Although you will often find that a random file is better suited for a par-
ticular task, record files may be used if you are storing a single item per record.

When used with a record file, a WRITE statement stores each value in a separate record.
And a MAT WRITE statement will use as many records as there are elements in the array.
For example, the WRITE statement in:
!  A new RECORD file
OPEN #2: NAME “STUFF1”, CREATE NEW, ORG RECORD, RECSIZE 50
...
WRITE #2: name$, age, occupation$

will use three records to store the three quantities. Later, you may retrieve these values with:
READ #2: person$, a, occ$

or with:
READ #2: person$
READ #2: a
READ #2: occ$

The READ statement need not mirror the WRITE statement, but the variable type —
numeric or string — must be correct.
In contrast to a random file, calculating the proper record size for a record file is easy. Each
record in a record file contains four bytes of bookkeeping information. However, since the

I. True BASIC File Types 233



size of this information is the same for all records, you do not need to account for it in the
record size (as you would for a random file). Thus, the record size of a record file need only
reflect the length of a number (which is 8 bytes) or the length of the longest string value you
expect to store in a single record. Remember that you may freely mix numeric and string val-
ues in a single record file, so the record size must reflect the length of the longest value you
plan to store in a record.

———————————————————————————————————————

x Note: The bytes actually included in the record size are different for random and
record files. For random files, the record size must include the extra, bookkeep-
ing bytes along with the data bytes. For record files, however, the record size
need include only the length of the data item to be stored. The bookkeeping
bytes are there, but you don’t need to account for them.

———————————————————————————————————————
In all other respects, record files are like random files. They permit random access, and
you may use the same SET and ASK statements to move around and find out informa-
tion about them.

Byte Files
A byte file is not a special kind of file but rather a way of looking at a file. When a file is viewed
as a byte file, it is considered simply as a sequence of bytes with no special format. That is,
True BASIC does not make any assumptions about a byte file, and it will not perform any of
the “housekeeping” tasks that it performs for other files (other than advancing the file
pointer).

You may view any True BASIC file as a byte file by specifying the ORG BYTE option in the
OPEN statement used to open that file. Indeed, you may view any file as a byte file, includ-
ing compiled True BASIC programs, files created by other applications, or files created on
another type of computer or under a different operating system.

As with other internal files, you use READ and WRITE statements to access byte files. The
number of bytes read by a single READ statement depends on the type of variable being
read. 

A READ statement used to access a byte file may have only one variable, which is normally
a string variable, since the contents of the file may be any sequence of bytes. Although byte
files do not recognize records, True BASIC uses the current record size to decide how many
bytes to read to a string variable. 

You may set the record size using a RECSIZE clause in the OPEN statement, as you would
for random or record files, or you may use a SET RECSIZE statement. Similarly, you may
use an ASK RECSIZE statement to find the current record size of a byte file, as you would
for random or record files. Because byte files are reading an arbitrary number of bytes, not

234 BRONZE Edition  Guide



actual records, you may use the SET RECSIZE statement to change the record size of a byte
file as many times as necessary.

Alternatively, you may specify the number of bytes to be read to a specific string variable by
including a BYTES clause in the READ statement. For example:
READ #7, BYTES 32: y$

would read the next 32 bytes in the file associated with channel #7 into the string variable y$.

This method of overruling the file’s record size within an individual READ statement is com-
monly used with byte files, since you may need to read strings of different lengths from a sin-
gle file. Often, you might want to read an entire file to a single string, as follows:
ASK #7: FILESIZE fs
READ #7, BYTES fs: y$

If you use a READ statement with a numeric variable, the next eight bytes in the file will be
read as a numeric value stored in the IEEE eight-byte format. When a numeric value is read,
the file’s record size is ignored. Likewise, the BYTES clause is not allowed in a READ state-
ment that specifies a numeric variable. 

If the file pointer is near the end of the file and the number of bytes remaining is less than
the current record size, a READ statement simply reads all the remaining bytes. If the
pointer is at the end of the file, however, a READ statement causes an error.

The WRITE statement may also be used with string or numeric values. With a string value,
it writes as many bytes as there are characters in the string. Numeric values are written to
byte files in the IEEE eight-byte format.

———————————————————————————————————————

x Note: The IEEE eight-byte representation used to store numeric values in a byte,
random, or record file is identical to the IEEE eight-byte representation pro-
duced by the NUM$ built-in function (see Chapter 18). This means that num-
bers may be read from a byte file as eight-byte string values and converted to
numeric values using the NUM function. This may be a useful alternative to
reading those values directly into numeric variables.

———————————————————————————————————————
Within a byte file, each byte is numbered as if it were a separate record (regardless of the
current “record size”) beginning with 1 at the first byte. Thus, the SET and ASK state-
ments that require or return a record number actually refer to a byte number. For exam-
ple, the statement:
SET #3: RECORD 120

when applied to a byte file, moves the file pointer to byte number 120. A program may read
any consecutive sequence of bytes, and it may overwrite any such portion of the file. You may
also use the WRITE statement to add to the end of the file, provided that the file pointer is
at the end of the file.

I. True BASIC File Types 235



The following examples illustrate some instances when byte files are helpful. The first is a
routine that will copy any file, no matter what its format or content:
SUB FileCopy(from$, to$) ! Copy any file

OPEN #3: NAME from$, ORG BYTE ! Open two files
OPEN #4: NAME to$, CREATE NEWOLD, ORG BYTE
ERASE #4

SET #3: RECSIZE 1024 ! Copy in 1K pieces
DO WHILE MORE #3

READ #3: x$
WRITE #4: x$

LOOP
END SUB

This procedure uses 1024 bytes (1K) as a convenient unit to read and write at one time. (A
record size that is a power of two may allow your program to run faster.) If the file length is
not a multiple of this, the last READ will result in a shorter string x$, but it will cause no
error. The new file will have precisely the same content as the old one.

You may also use byte files to search a file for non-printing characters. Since True BASIC
reads all bytes, including those such as a line feed, each byte can be identified by its charac-
ter code. (See the ORD and CHR$ functions in Chapter 8 “Built-in Functions.”) You could
therefore extract the text from any type of file by examining each byte and keeping only the
printing characters, as follows:
SUB Text_extract (from$, to$)

OPEN #3: NAME from$, ORG BYTE ! Open two files
OPEN #4: NAME to$, CREATE NEWOLD, ORG TEXT
ERASE #4

SET #3: RECSIZE 1 ! One byte at a time
DO WHILE MORE #3

READ #3: x$
IF 32<= Ord(x$) and Ord (x$) <=127 then ! Standard

printing characters
PRINT #4: x$;

END IF
LOOP

END SUB

Note that this example is presented in the simplest form possible. There is plenty of room for
improvement. For instance, you might read larger sequences of bytes and build up an out-
put string in memory, sending it to the file only when it reaches a certain length. Each file
access takes time, and the fewer times your program accesses a file, the more quickly it will
run.

236 BRONZE Edition  Guide



As an illustration of how byte files can store any type of information, consider how you might
store a screen image, such as a complex diagram. The BOX KEEP statement stores the
image displayed within a specified area on the screen into a string variable, which you can
later display with the BOX SHOW statement (as described in Chapter 13 “Graphics”). If you
need to save these strings for later display, you can store them in byte files, as in the follow-
ing program fragment:
SET WINDOW 0,1,0,1
BOX KEEP 0,1,0,1 in keep$
OPEN #5: NAME “Image”, CREATE NEW, ORG BYTE
WRITE #5: keep$

Another program fragment may then retrieve and display the image as follows: 
OPEN #5: NAME “Image”, ORG BYTE
ASK #5: FILESIZE fs ! Number of bytes in file?
READ #5, BYTES fs: keep$ ! Read entire file to
string
SET WINDOW 0,1,0,1
BOX SHOW keep$ at 0,0

Byte files in combination with the built-in PACKB subroutine and the built-in UNPACKB
function provide an efficient means of packing information to conserve storage space. As
you have seen, numeric values stored in internal files always occupy eight bytes — whether
the value is 0 or 3.7836126523e287. Often, however, your programs need to store only inte-
gers within a specific range. Eight bytes is generally much more storage than is necessary
for integers, so storing many integers into an internal file can use much more disk space than
would otherwise be required.

One way to eliminate this waste is to “pack” the integer values into string values, using the
PACKB subroutine, before storing them to the file. 
The PACKB subroutine allows you to represent an integer value as a specific series of bits
within a string variable. For instance, the following program fragment writes a list of inte-
gers into a byte file. 
It assumes that each integer fits into 16 bits (integers from 0 to 65,535) and there are n of
them in the array list:
LET x$ = “”
LET j = 1

FOR i = 1 to n
CALL Packb(x$,j,16,list(i))
LET j = j+16

NEXT i

WRITE #1: x$

I. True BASIC File Types 237



Each integer is packed into x$ using the PACKB subroutine. Once all the numbers have
been packed into x$, x$ is written to the byte file.
Rather than maintaining the variable j as the starting bit position within the string x$, you
may find it simpler to use the following trick:
CALL Packb(x$,Maxnum,16,list(i))

If the starting bit position provided to the PACKB subroutine is beyond the end of the string
value, the resulting series of bits will begin next to the last bit in the current string value. In
other words, by specifying a ridiculously large value as the starting bit position, you pack the
integer value in list(i) into the 16 bits immediately following the end of the current
value of x$. This eliminates the need for the variable j to keep track of the bit position.

You could recover the resulting list from the byte file using the UNPACKB function as fol-
lows:
ASK #1: FILESIZE fs
READ #1, BYTES fs: x$
LET j = 1
FOR i = 1 to Len(x$)/2

LET list(i) = Unpackb(x$,j,16)
LET j = j+16

NEXT i

The first two lines are the standard way of reading an entire byte file into the string. The
first statement discovers how many bytes are in the file, and the second reads them all with
a single READ statement.

You would save storage and gain speed by packing each number into two bytes (16 bits). Such
packing is particularly important for storing large amounts of information. For example, if
you have one million “yes/no” replies, they can be packed into one million bits, or 125,000
bytes. A byte file is the only reasonable way of storing such information.

238 BRONZE Edition  Guide



APPENDIX

Introduction
The BASIC to True BASIC Converter (BtoTB) helps you convert programs written in other
versions of BASIC into True BASIC. Other versions of BASIC include BASICA for the IBM
PC and compatibles, Microsoft Compiled BASIC, GWBASIC, several versions of Microsoft
QuickBASIC, Macintosh QuickBasic, and Microsoft Visual Basic. We use the word “Basic”
to refer to any Basic-like languages other than True BASIC. 

For simple programs as much as 85% of the original code will be converted to equivalent
True BASIC code. For that code not directly convertible, the expanded PDF manual that is
found in the same directory with the BtoTB Converter suggests other ways to rewrite your
original code into True BASIC and achieve your original purpose.

Start the BtoTB Converter by double-clicking on its icon. An application with two win-
dows and three buttons appears. 

239

BASIC to True BASIC Converter                    H



Click on the CONVERT button and a file selection dialog box will appear. 

When you have selected the file you wish to translate, click Open and you will be pre-
sented with a file saving dialog box in whichyou can specify a new title. The BtoTB
Converter will suggest a default name based on the original file name.

As soon as the original file and the results file have been created, the Converter will begin
the translation. You will see the original code in the left window and the True BASIC code
in the right window.

A status message area is below the two windows and tells when the conversion is fin-
ished. The Cancel button and Quit button allow you to interrupt or stop any procedure.

Versions of Basic
Early versions of Basic, such as BASICA on the IBM PC, contained many statements for
working with that particular hardware. Most of these are no longer used. Furthermore,
many of the syntax rules have evolved toward the ANSI Standard for BASIC, upon which
True BASIC is based. As an example, early versions of Basic used WHILE and WEND to
contain a loop structure. While those keywords are retained for historical reasons, most
Basic programs are

now written using the DO and LOOP keywords, just as in True BASIC. Modern versions
of Basic allow creating Graphical User Interface (GUI) elements, such as push buttons
and scroll bars. True BASIC also allows these but through use of a subroutine library and

240 BRONZE Edition  Guide



subroutine calls, rather than through statements in the language. For such statements,
BtoTB merely suggests the subroutine to be called, but does not attempt to develop the
actual calling sequence.

Line Numbers
BtoTB accepts Basic programs that are line-numbered or not. The resulting True BASIC
program has line numbers. If the original program is line-numbered, the resulting True
BASIC program will have line numbers that correspond, and GOTO and similar state-
ments will be left untouched. (The original line numbers must be spaced far enough apart
to permit inserting additional statements.) For a non-line-numbered program, the GOTO
and similar statements will be converted to GOTO a line number in the converted pro-
gram. BtoTB does not attempt to convert the possibly “spaghetti code” of an old-fashioned
line-numbered Basic program into the more modern “structured” form.

While it is theoretically possible to do this, the result is actually more difficult to under-
stand. Therefore, all GOTO and similar statements are left as is. This manual describes
several simple cases for which manual conversion from GOTOs to structured constructs is
easily done and is recommended. BtoTB does not convert graphical user interface ele-
ments (buttons, windows, scroll bars, etc.) since the logic used to manage these elements
in True BASIC is entirely different from the approach of other versions of Basic. Neither
does it attempt to convert use of record files, as the logic used by True BASIC (and ANSI
BASIC) is altogether different from most other versions of Basic. Finally, the BtoTB can-
not convert data structures as there is no equivalent capability in True BASIC.

BtoTB works by reading a Basic program in a text file one line at a time, making the nec-
essary syntactical changes and rewriting the line to an intermediate file. Statements that
are the same in Basic and True BASIC are rewritten without change. Some Basic state-
ments that do not exist in True BASIC are modified to work equivalently. In some cases
this will involve invoking functions or calling subroutines located in the supporting
libraries. Other Basic statements, for which there is no direct or simple True BASIC
equivalent, are not converted, but are marked so that they will generate a True BASIC
compiler error.

A second pass copies the converted program from the intermediate file to the file you
named, filling in the forward jump references as it goes. The second pass also inserts any
needed special internal function definitions and fills in the DECLARE DEF statements.
(The right hand window shows the results of the first pass only.)

Whether the original Basic program is line-numbered or not, line numbers are included in
the result if there are GOTO or similar statements present. 

J. Basic to True BASIC Converter 241



General Caveats
Although many features of the various versions of Basic are found also in True BASIC,
sometimes in a slightly different form, many others are not found in True BASIC. One
reason is that most versions of Basic allow access to the specialized features of a particu-
lar machine. In contrast, True BASIC has, as one of its valuable features, cross-machine
portability.

BtoTB handles some of the machine-specific features through subroutines located in the
library files DEFLIB.TRU. A direct conversion of a particular feature from Basic to True
BASIC, through possible, may not be desirable. For example, many versions of Basic
determine the graphics mode on DOS machines by “peeking” at a certain byte. True
BASIC does this with the ASK MODE statement.

The smart user will use BtoTB to make the mechanical conversion of from 80% to 90% of
the program. The result should then be scrutinized carefully and parts recoded by hand.
A knowledge of the features of True BASIC and its libraries is essential to an efficient
and correct conversion.

The BtoTB Converter is designed so that it can be updated to include other conversion
routines that users find helpful. We welcome your ideas and suggestions. Direct your
messages to support@truebasic.com .

Reference Materials
The process of program conversion is not trivial and it is important that you have proper
reference material for the task.

You will find a major portion of the True BASIC Reference information in your online
HELP facility.  Our website shows other available texts. 

Translating a file
To minimize confusion, create a BtoTB directory or folder. In it place the original Basic
file you wish to translate to True BASIC and the BtoTB application program. As noted
earlier, the original source code file is a text file. Text files on the DOS/ Windows operat-
ing system and those on the MacOS operating system are slightly different. A DOS file
ends each line with a return and a linefeed character.

MacOS files end with only a return. If you are using a MacOS computer, the  BBEdit Lite
text editor (also included in your MacOS Bronze Edition Utility directory) makes it very
easy to convert and save files from DOS to MacOS, by adding or removing the line feed
character at the end of each line.

242 BRONZE Edition  Guide



Testing the Converted Program
When you have finished your conversion, start up your copy the True BASIC Language
System by clicking on the True BASIC icon.

When True BASIC is up and running, open the converted program. You should also make
sure that the file DEFLIB.TRC is in the same directory, as the converted program may
need one or more subroutines in it.

You can now modify the converted program using the True BASIC screen editor.

When you select Run from the Run menu, the converted program should run and give the
same results as the old Basic program.

If you are not so lucky, the True BASIC may discover syntax errors, displaying them in
its Error Window. Double-clicking on a particular error will place the editing window cur-
sor at the offending code. BtoTB inserts “***” for some statements it cannot convert,
which will lead to a compiler error.

General Considerations
The purpose of BtoTB is to produce a True BASIC program that is as functionally equiva-
lent to the original Basic program as practical, but may not be the most concise or most
efficient. For example, it makes no attempt to convert GOSUB statements to CALL state-
ments. Some features not directly available in True BASIC are provided by subroutines.
For example, the SCREEN and COLOR statements in BASICA are converted to calls to
subroutines in True BASIC, since the treatment of color is different. Still other features of
Basic have no counterpart in True BASIC and are left as is. For example, there is no True
BASIC equivalent to the STRIG ON statement.

Line Numbers
Basic programs are assumed to be either line-numbered or not. BtoTB makes the distinc-
tion between the two by examining the first line of the file. If it starts with a line-number,
BtoTB assumes that all lines (except line continuations) start with line-numbers. In this
case, the line-numbers must be in order and must contain sufficient room between line-
numbers to permit inserting True BASIC statements. (True BASIC does not allow multi-
ple statements on a line and must put them on separate lines.) The first line number
must be large enough to allow for the Preamble, which is about 30 lines long.

If the first line does not contain a line number, BtoTB makes the assumption that line-
numbers, if present, are treated merely as statement labels. In this case there is no
restriction that line numbers be in order. It generates its own line numbers that will bear
no relation to the line number labels. Line number labels and other statement labels are
converted to ordinary line numbers.

J. Basic to True BASIC Converter 243



BtoTB has two passes to handle forward references. The first pass does most of the con-
version, and places the result in a temporary file. The second pass fills in the forward
label references, if any, and places the result in the output file you named.

Finally, if there is no use of GOTO or similar statements in the entire file, BtoTB removes
the line numbers.

———————————————————————————————————————

x IMPORTANT NOTE: You may get the cryptic message: Illegal line num-
ber at line -1. This message is generated when the compiler can not
determine if a program has line numbers. The error occurs when a
blank line exists in a line numbered program. ALL lines must have line
numbers, even if they are blank.

——————————————————————————————————————— 

Preamble
BtoTB places a preamble at the beginning of each file of True BASIC programs. The
preamble may contain a LIBRARY statement that names DEFLIB.TRC as the file con-
taining subroutines needed by the converted program. It also places there, and at the
beginning of each program unit, a DECLARE DEF statement containing the names of the
actual functions needed, if any, and an OPTION BASE 0 statement. If no functions from
DEFLIB.TRC are needed, the DECLARE DEF statement is not added. The second pass
also inserts the actual code, if needed, of the several internal functions in True BASIC
that refer to files. (The reason is that True BASIC does not allow file reference numbers
to be passed to external functions; subroutines are needed instead.) Because there is often
no way for BtoTB to determine the scope of such functions, however, you may find it nec-
essary to move or copy these routines before the program will run correctly. The names of
these functions are: LOF, LOC, EOF, and FREEFILE. (See Section 6 of the BtoTB PDF
manual for alternate ways to code these in True BASIC.)

Numeric Accuracy
BtoTB properly handles the conversions between quantities of type integer and quantities
of type single- or double-precision. All arithmetic in True BASIC is performed using dou-
ble-precision floating point numbers with about fifteen decimal digits of accuracy. BtoTB
treats both single- and double-precision numbers in Basic as equivalent. The correspond-
ing conversion functions (CSNG, CDBL) are thus omitted.

BtoTB treats both long and short integer types in Basic as double precision in True
BASIC. It properly inserts a ROUND function whenever a non-integer quantity is

244 BRONZE Edition  Guide



assigned to an integer variable, or whenever an intermediate calculation, such as integer
divide or mod, requires that the result be an integer. For example,

LET a% = b!

is converted to the True BASIC

LET a_i = round(b)

If you know that b always has an integer value, you should remove the round function.

BtoTB properly deals with two or more different variables having the same name. For
example, x, x!, x%, x#, and x& are all different in a Basic program. They are changed to
True BASIC variables as follows:

Basic True BASIC
x x
x% x_i
x! x_s
x# x_d
x& x_li

The type of x without a suffix is determined by the DEF type statements; the default type
is single precision.

For string variables, when the DEF type statements specify that variable names starting
with “a” are string type, a and a$ are treated by Basic as the same. Consequently, BtoTB
merely adds the “$” to the former.

Hexadecimal and Octal constants are converted to decimal integers.

Booleans
BtoTB properly handles Boolean expressions, including the IMP and EQV operators. For
the NOT operator, parentheses surround the entire clause since NOT NOT is allowed in
Basic but not in True BASIC.

If a logical expressions lack a relational operator, BtoTB adds a “<>0”.

It does not convert Boolean-valued expressions that appear in arithmetic statements.
That is,

LET x = y < z

is legal in Basic (x is assigned 0 or -1, according as y < z is true or false), but not in True
BASIC. Instead, it is converted to:

LET x = y *** z

J. Basic to True BASIC Converter 245



The straightforward representation in True BASIC might be:
IF y < z then LET x = 0 else LET x = 1

This is an example of a change that must be done by hand.

BtoTB does not handle logical expressions involving logical operators and numbers, or
bit-by-bit logical operations. For example,

IF (PEEK(123) AND &H30) <> &H30 THEN ...

will generate an error message and be left in its original form.

A determination must be made as to the purpose of the IF statement. In the example
above, it is designed to determine the type of graphics card.

330 DEF SEG=0
340 IF (PEEK(&H410) AND &H30) <> &H30 THEN COLS = 3:GOTO 360
350 WIDTH 80:COLS=8
360 DEF SEG

An alternative way in True BASIC might be:
ASK MODE mode$
IF mode$ = “MONO” then
SET MARGIN 80
LET cols = 8
ELSE
SET MARGIN 40
LET cols = 3
END IF

which is slightly longer but more understandable.

Arrays
BtoTB expects an array dimension statement to occur before (i.e., in a lowernumbered
line) any reference to it. Some versions of Basic allow you to dimension arrays at a higher-
numbered line than a reference to it, as long as the DIM statement is executed first.
Other versions of Basic allow automatic dimensioning of arrays. True BASIC requires
that all arrays be dimensioned, and that the DIM statement appears in a lower-numbered
line than any reference. BtoTB does not insert DIM statements where needed; they must
be inserted later by hand. Or, you can insert a complete set of DIM statements into the
original Basic program. In any event, the True BASIC compiler will provide a suggestive
error message when an attempt is made to use an undimensioned array.

Some versions of Basic allow you to use the same variable name for a numeric value and
an array, but True BASIC does not. If the variable name is the same as a previously
dimensioned array name, BtoTB will attach “_t” to the variable name. The variable name
will not be changed if there is an undimensioned array having the same name. Instead,
the error will be caught by the True BASIC compiler.

246 BRONZE Edition  Guide



More detailed documentation, in the Adobe Acrobat® PDF format, is included with your
copy of the BtoTB Converter. In it, you will find additional information on how to translate
functions and statements such as:

Defined Functions GOTO Statements
IF-THEN Statements INKEY$ Function
Line Continuations INPUT & INPUT$
Variable & Array Types KEY Statements
Global and Local Variables LOC Function
Program Units LOF Function
FILE Input & Output PEEK and POKE
Text Files Share and Static
Record Files TYPE Structures
Binary Files VAL Function
Statements VIEW Statement
Functions Windows
GOSUB & RETURN Buttons
CLOSE Edit Fields
COMMAND$ Menus
Relative Graphics CSRLIN & POS
DRAW Statement Event Handling
EOF Function File Dialogs
Error Handling

The BtoTB Converter is included with the Bronze Edition so that you can quickly convert
other BASIC programs that you might have used in the past into True BASIC code that will
continue tobe useful and functional in the future.

The BtoTB Converter and accompanying documentation is in the UTILITY directory that
is part of your original True BASIC CD.

J. Basic to True BASIC Converter 247



INDEX

249

ABS function, 170
Absolute value (See ABS function)
ACCESS clause (See Open-clause)
Accuracy (See Numbers)
ACOS function, 167, 170, 185
Addition (See Arithmetic operators)
Aliases, 116
Alt keys, 201
Ampersand (See Concatenation)
AND (See Logical operators)
ANGLE function, 170
Animation, 117, 124-125
Applications

creating, 204-205, 210, 214
launching, 18, 213

Arccosine function (See ACOS)
Arcsine function (See ASIN function)
Arctangent function (See ATN function)
Arguments

arrays as, 170, 173-175, 177, 181-
182, 197

expressions as, 153-154, 170
to functions, 110, 133, 153-154,
170-182, 185, 192, 200

numbers as, 106, 108, 153-154, 170-
177, 179-182, 185, 197, 199-200

and parameters, 105-106, 153-154,
166, 199

strings as, 110, 170, 172, 175, 177-
179, 182

to subroutines, 105-106, 128, 153,
166

Arithmetic operators
addition (+), 10, 31, 33, 35-38, 60-
63, 83, 91, 101, 118, 123, 142, 152,
162-167, 173, 191-194, 205, 210-13

division (/), 35-37, 140, 166, 168,
179, 188

exponentiation (^), 35-37
multiplication (*), 35-37, 62, 101,
126, 136, 191

subtraction (-), 35-37, 101
Arrays

as arguments, 170-177, 181, 197
arithmetic, 101
assignments, 101, 150, 159, 169,

171, 174, 177, 182-183
dimensioning, 94, 97, 99-101, 154,
159, 169, 175, 181-182, 191, 194,
197, 199-200

elements of, 94-97, 100-101, 157,
159, 169, 173, 181, 189

inputing, 85, 90, 100-101, 148, 150,
159, 195

functions, 169, 174, 182
as parameters, 154, 200
printing, 90, 95, 99-100, 148, 150,
159

redimensioning, 101, 170-171, 174,
177, 183, 185, 189

shape of, 101
shared, 189
variables, 93, 108, 112, 157

ASCII characters
codes, 168, 171, 183
order of, 53, 145
set of, 53, 145, 168, 178

ASIN function, 167, 170, 185
ASK statements

ACCESS statement, 150
BACK statement, 149
BACKGROUND COLOR statement
(See ASK BACK statement)

COLOR MIX statement, 149
COLOR, 149
CURSOR, 149
DIRECTORY, 149
ERASABLE, 150
FILESIZE, 150
FILETYPE, 150
FREE MEMORY, 147
MARGIN, 148, 150
MAX COLOR, 149
MAX CURSOR, 149
MODE, 149
NAME, 29, 39-40, 44-45, 149-150
ORG, 150
ORGANIZATION (See ASK ORG
statement)

PIXELS, 149
POINTER, 150
RECORD, 150

RECSIZE, 150
RECTYPE, 150
SCREEN, 149
SETTER, 150
TEXT JUSTIFY, 149
WINDOW, 149
ZONEWIDTH, 148, 150

Assignment statements, 25, 169, 171,
174, 177, 182-183

Asterisk operator (See Arithmetic
operators)

ATN function, 170

Background color
current, 152
determining, 149
setting, 149, 164

Backspace key, 24, 28
Binary files (See Files)
Binding your program (See also

Bound programs)
Blank lines, 12, 28, 42, 51, 65, 67
Blinking cursor, 67
Boolean expressions (See

Expressions)
Bound programs, 7
BOX KEEP string format (See Image

string formats)
BOX statements

AREA, 120-121, 123, 149, 152
CIRCLE, 121-122, 149, 152
CLEAR, 124-125, 149, 152
DISK, 149
ELLIPSE, 121, 149, 152
KEEP, 124-125, 149, 152
LINES, 120-121, 149, 152
SHOW, 124-125, 149, 152

Breakpoints
BREAK command, 186
continuing after, 141, 186, 198
creating, 141-143, 151, 186, 204-205
executing, 141
finding, 204

BYE command, 198
Byte file (See Files)



CALL statement, 45, 105-106, 112,
128, 153, 166, 192

Caret operator (See Arithmetic oper-
ators)

CASE statement, 164, 187, 193
CAUSE ERROR statement, 151
CAUSE EXCEPTION statement, 151
CD command, 16-17, 37
CEIL function, 171
CGA (See Color graphics adapter)
Chaining programs, 149
CHANGE command, 75
Channel numbers

closing, 84
with files, 83-84, 86, 88, 187
with printers, 68, 84, 86
with windows, 187

Characters
ASCII values, 145-146
nonprinting, 175
number in a string (See LEN func-
tion)

CHECKED, 131, 143
CHR$ function, 168, 171, 178
CLEAR statement, 125, 152-153
Clicking, 18-21, 24, 26-27, 71-72
Clipboard, 71-73, 151
Clipping, 161
Clock, 168, 182
CLOSE BOX, 84, 118, 131-133
Colors

background (See Background color)
customizing (See SET COLOR MIX
statement)

foreground (See Foreground color)
names, 123-124, 164-165, 194
numbers, 124
simulated, 165

Comma (See Print separators)
Command keys, 201
Command line arguments (See

Bound programs)
Command window, 18-19, 68-69, 141,

196, 198, 200, 205-207
Commands (See also individual com-

mands)
using, 18, 69, 141, 196, 200

Comments, 12, 27-29, 61, 65-66, 163
Communications ports (in SILVER)

Compiling programs
compiled files, 130, 210, 213-214
compiled libraries, 210, 215
compiled program, 116, 195, 209-15

CON array constant, 171
Concatenation, 40, 192, 200, 210
Conjunction, 56
Constants

array and matrix, 99, 171, 174, 177,
183, 190, 195

numeric, 33-34, 39, 99-100, 164,
171, 174, 183, 187, 190, 192, 195

string, 38-40, 43, 65, 99, 177, 183,
192

COPY command, 73
Copying text (See Text)
COS function, 171
Cosecant function (See CSC function)
COSH function, 167, 171
Cosine function (See COS function)
COT function, 167, 171
Cotangent function (See COT func-

tion)
Counters, 53, 60
CPOS function, 169, 172
CPOSR function, 169, 172
CREATE clause (See Open-clause)
Cross-referencing (See XREF utility)
CSC function, 167, 172
Cursor

moving with keys, 18-20, 24, 28, 85,
190, 205

moving with mouse, 19-20, 24, 75
positioning within program, 149
turning on and off, 20, 24, 181, 205

Cutting text (See Text)

Data
numeric, 89-90
reusing stored data, 88
storing, 86

DATA statement, 73-74, 77-80, 84,
136, 153, 190, 195, 197

DATE function, 172
DATE$ function, 172
Debugging

with breakpoints (See Breakpoints)
DEBUG statement, 205

and OPTION TYPO, 112, 141, 147-

148, 159-160, 190, 200
tools, 141
tracing (See TRACE utility)

Decision structures, 12, 52, 57, 59,
61, 63, 66

DECLARE statements
DEF, 112, 115, 133, 153
SUB, 112

DEF statement (See FUNCTION
statement)

DEF structure (See FUNCTION
structure)

Defined functions (See Functions)
DEG function, 167, 173
Deleting

characters, 24, 205
text (See Text)

DET function, 169, 173, 188, 195
Detached handler (See Error han-

dlers)
Determinant, 169, 173, 188
DIM array, 154
DIM statement, 94-95, 97, 154, 185,

193, 197, 199-200
Directories

in aliases (See Aliases)
changing, 15, 20, 26
creating, 15
current, 20, 149
subdirectories, 20, 66

Disjunction, 56
Disk drives

current, 20
Disks and diskettes

reading, 210
writing, 188

Division (See Arithmetic operators)

DO...LOOP structure, 47, 52-53, 55,
57, 72, 79, 133, 147, 154, 156, 159

DO statement, 55, 72, 80, 103, 154,
156

DO utilities, 213-14
DO command, 186, 196
DO programs, 7, 210-14

DOT function, 173, 195
Dot product, 169, 173
Double-clicking, 18
DOWN arrow, 19-20

250 BRONZE Edition  Guide



Dragging, 19, 28, 67-68
DRAW statement, 125-126, 128, 154-

155, 160, 192

ECHO command, 69, 196
Editing

Edit menu, 19, 71-75, 201-202, 204
find and change, 74-75
keep and include, 75, 196
select all, 76, 204
source window, 18-21, 23, 26-27, 29,
68, 74, 76, 140, 142, 188, 205

Editing Window, 18-21, 23, 26-27, 68,
74, 76, 140, 142, 188, 205

EGA (See Enhanced graphics array)
ELSE statement, 164
Empty PLOT statement (See PLOT

statement)
Empty string (See Null string)
End of data, 197
END statement, 26, 47, 65, 87, 111-

113, 140, 155, 192, 197, 201
END statements

DEF, 155-156
IF, 59, 155
PICTURE, 155-156
SELECT, 155
SUB, 105, 155-156
WHEN, 166

Enter key (See Return key)
EPS function, 173
Error handlers

entering, 151
exiting, 151

Errors
intercepting (See Error handlers)
messages, 44, 59, 79, 85, 88, 99,
139-140, 174, 185, 187, 189, 191,
193-195, 197-199, 201, 206

overflow, 195
runtime, 139-144
system, 198
window, 139-140, 206

Esc key, 19
Exception messages (See Error mes-

sages)
Exclamation point (See Comments)
EXE files (See Executable files)
EXIT statements

DEF, 156
DO, 156
FOR, 156
PICTURE, 156
SUB, 156

EXLINE function, 173
EXLINE$ function, 173
EXP function, 174
Exponentiation (Arithmetic operators)
Expressions

as arguments, 153-154, 170
array redimensioning, 170
numeric, 40, 170, 183, 192
rounded numeric, 170
string, 40, 136, 170, 183, 192

Extended memory (See Memory)
External procedures, 113, 116, 155-

156
EXTERNAL statement, 113, 156
EXTEXT$ function, 140, 166, 174
EXTYPE function, 140, 166, 174, 185

File menu, 14, 19-21, 23, 26-27, 29,
31, 68, 84, 201-204

File selectors (See Files)
Files

byte, 83, 227
channels (See Channel numbers)
closing, 84, 86
compiled, 130, 195
creating, 7, 9, 12, 15, 23, 27, 33, 69,
82-83, 85-89, 118, 131, 194

deleting, 150, 196, 204
editing, 18-19, 25, 28-29, 31, 53, 67,
69, 71, 79, 162, 196

erasing, 86-87, 90-91
input, 86, 91
lengths, 150
libraries, 45, 113-114, 126, 133,
156, 158, 160, 199, 210

listing names of (See FILES com-
mand)

margin, 148, 150
moving, 76, 91
multiple, 68
naming, 7, 20, 23, 29, 69, 85-88,
106, 133, 145, 158, 163, 194-196

numbers (See Channel numbers)
opening, 20, 39, 53, 66, 83-89, 91,

166, 187-188
organizing, 148
output, 21, 69, 84, 86, 88, 91, 186,
188, 206

printing, 7, 30, 38, 42-43, 50-51, 58,
65, 67-69, 86-91, 96, 206

random, 229
record, 91, 233
recsize, 150
renaming, 31, 34, 72, 75, 196, 201
saving, 26-27, 29, 31, 39, 72, 75, 82,
85, 128, 188, 196

stream, 228
text, 83, 85-87, 89, 91, 187, 223
zonewidth, 148

FILES command, 194
Finding, 73-74, 141
Fixing program errors (See

Debugging)
FLOOD statement, 121, 156
Floor function (See INT function)
FOR statement, 47-49, 95, 103, 144,

156-157
FOR...NEXT structure, 47-50, 52-53,

60, 62, 78-80, 95, 99, 110, 116, 125,
140, 147, 154, 156-157, 160, 189

Foreground color
current, 152, 156, 161
determining, 149

FORGET command, 198
Format string, 183
FORMAT utility, 66-69, 140-141, 205
Formatting (See FORMAT utility)
FP function, 174
Free memory (See Memory)
FUNCTION structure, 149
Functions

built-in, 7, 49, 57-58, 62, 98, 101,
106, 108, 116, 129, 140, 167, 169,
171, 173, 175, 177, 179, 181, 183

external, 110-113, 115-116, 126,
148, 153

internal, 111-112, 126, 153
invoking, 7, 153-154
multi-line, 108, 154
numeric, 149, 195
one-line, 107-108
string, 40
as structures, 61, 140, 148-149,
154, 185

Index 251



user-defined, 131, 133, 154

G_Click, 130-133
G_Create, 131, 133
G_Free, 132
G_Hide, 132
G_Move, 131, 134
G_Show, 132
G_ShutDown, 131, 133-134
G_StartUp, 130, 133-134
GET statements
GET_MOUSE subroutine, 129, 149
Global variables (See Variables)
Graphics

animation, 117, 124-125
drawing lines, 117-118, 120-121,
126, 149, 152, 161

drawing shapes, 120-121, 124-125,
152, 155, 190

pictures, 141, 155-156, 160, 192
transformations, 126, 128

GRAPHICS mode, 122, 124
Graphics modes (See Screen modes)
GraphLib library, 128-129

Help
files, 197
HELP command, 200
Help menu, 200, 205

Highlighting text (See Text)
Hyperbolic cosine function (See

COSH function)
Hyperbolic sine function (See SINH

function)
Hyperbolic tangent function (See

TANH function)
Hyperbolic functions, 167-168, 171,

180, 182

Identifiers, 153-154, 166
IDN array constant, 169, 174, 189
IEEE 8-byte format, 178
IF statement, 59, 63-64, 142, 144,

155, 157, 187
IF structure, 60, 62-63, 66-67, 147,

155, 157
INCLUDE command, 75, 196
Increments, 48
Indentation, 12, 48, 51, 66-67, 140

Index variable (See Variables)
Infinite loops (See Loops)
Inner product (See Dot product)
INPUT PROMPT, 43-44, 85-86, 90,

96, 115, 158
INSERTION point, 28-29, 72-76
INT function, 174
INV array function, 174
IP function, 175
Input

from files, 43, 83-91, 186
formatted, 85-86, 88
graphical, 20, 37, 64, 68, 72, 75,
121, 129, 149

items, 44, 84-85, 88, 199
key, 84, 87, 149, 197
line, 29, 41, 44-45, 77, 82-86, 88-91,
97, 100, 148, 150, 158-159, 186-
187, 195, 198-199

matrix, 85, 90, 100-101, 148, 150,
159, 195

prompt, 42-44, 68, 85-86, 90, 96,
115, 158

INPUT statement, 29-31, 38, 40-45,
77, 84-85, 90, 101, 148, 158-159,
183, 186, 193, 197-199

INPUT PROMPT statement, 44
Insertion point, 28-29, 72-76
Installation, 13-17, 19, 210, 213
INT function, 174
Integer division (See DIVIDE)
Integer part function (See INT func-

tion and IP function)
Internal color numbers (See Colors)
Internal files (See Files)
Internal format
Internal procedures (See Functions

and Subroutines)
INV array function, 169, 174, 186,

191
IP function, 175

Joining lines, 28

KEEP command, 75
Keyboard

equivalents, 71, 201
Keywords, 7, 25, 58-59, 65, 67, 84, 87,

99, 121-122, 140, 157, 190-191,
196, 198

LBOUND function, 175
LCASE$ function, 175
LEN function, 175
LET statement, 25, 29, 31, 34, 54-55,

60, 158, 169, 171, 174, 177, 182-
183, 198

Libraries
accessing, 45, 113, 128, 130, 133,
158, 199, 210

creating, 210, 214
files (See Files)

LIBRARY statement, 45, 113, 128,
130, 133, 158, 199

Limits, 97
LINE INPUT statement, 41, 44-45,

77, 82-83, 85-86, 89-90, 97, 100,
148, 150, 158-159, 187

LINE INPUT PROMPT statement,
90, 158

Line numbers (See also NUM,
UNNUM, and RENUM utilities),
12, 69, 76, 85, 173, 190, 194, 196

Lines
blank, 12, 28, 42, 48-51, 65-67, 85,
100, 159

blocks of, 67, 71, 196
commenting, 28-29, 65, 72-73, 78,
163, 214

continuations, 37
copying, 73
deleting, 28, 72, 196
indenting, 12, 51, 66-67
joining, 28
marking, 30, 117
moving, 52, 68, 72, 76, 100
selecting, 67-68, 72-73, 141, 187
splitting, 28

LIST command, 68
LOAD command, 199
LOCAL statement, 110, 112, 141,

154, 158-160, 200
Local variables (See Variables)
LOG function, 175
LOG10 function, 175
LOG2 function, 176
Logical expressions (See Expressions)
Logical operators

AND, 56
NOT, 56
OR, 56

252 BRONZE Edition  Guide



LOOP statement, 54-55, 84, 154, 156,
159

Loops
DO (See DO...LOOP structure)
FOR (See FOR...NEXT structure)
infinite, 81
nested, 50-51

Lower bounds (See Subscripts)
LTRIM$ function, 169, 176
LTRIM$ function, 176

Main program, 105-106, 110-113,
163, 193, 197, 199, 201, 210

Margins
determining, 148, 150
in files, 148, 150
setting, 43, 148, 150

MAT assignment statement, 171,
174, 177, 182-183

MAT constants, 171, 174, 177, 183
MAT statements

INPUT, 85, 100-101, 148, 150, 159
LINE INPUT, 85, 100, 148-150, 159
PLOT AREA, 129-130, 149-150
PLOT LINES, 129, 149-150
PLOT POINTS, 129, 149-150
PRINT, 99-100, 148, 150, 159
READ, 99-101, 148, 150, 159
REDIM, 101, 150, 185, 189
WRITE, 150

Math coprocessor (See Coprocessor)
Mathematical functions, 167-168
MAX function, 176
MAXLEN function, 176
MAXNUM function, 167, 176, 187-

188, 195
MAXSIZE function, 176
Memory

available, 97
increasing, 194
reclaiming, 198

MENU TYPE, 75
Menu bar, 18-19
Menu item

TEXT, 14, 73
Menus

equivalents (See Keyboard)
items, 19, 141, 194, 201
operation, 201

MIN function, 176
Minus operator (See Arithmetic oper-

ators)
MOD function, 177
Modes (See Screen modes)
Modules

structure, 150
Mouse

button, 18-20
clicking, 18-21, 24, 26-27, 71-72
cursor, 19, 24, 67, 72
double-clicking, 7, 18, 28, 72, 139-
140

dragging, 18-20, 28, 68
pointer, 19, 24, 67, 72
operation of, 18-20, 26, 68, 71-72

MS-DOS (See DOS)
Multiplication (See Arithmetic opera-

tors)
Music, 75, 79-81, 135-137

NCPOS function, 169, 177
NCPOSR function, 169, 177
Negation, 56
Nested loops, 50-51
NEXT statement, 38, 47-48, 54, 58,

125, 156-157, 160, 189
NOLET command, 191, 198
Nonfatal exceptions, 186-187, 195,

197, 199
NOT (See Logical operators)
NUL$ array constant, 177
Null string, 109-112, 172, 178-179
NUM function, 178, 191
Num lock, 205
NUM$ format (See IEEE 8-byte for-

mat)
NUM$ function, 178, 191
Numbers

accuracy of, 61
as arguments, 108, 170, 172-173,
175, 181, 185, 199-200

in arrays, 94-95, 97, 99-101, 157,
169, 171, 173-174, 181-183, 191

as constants (See Constants)
converting to strings (See STR$
and NUM$ functions)

decimal, 171
display of, 38, 42, 47-50, 62-63, 66-
67, 89, 93-95, 99-100, 108, 162, 187

in expressions (See Expressions)
hexadecimal, 145
rounding, 170, 180
as variables (See Variables)

Numeric coprocessor (See
Coprocessor)

Odometer order, 159
OLD command, 196
ON GOSUB statement, 147
ON GOTO statement, 147
OPEN statements

with files, 84, 87, 186-187
PRINTER, 68, 84, 86, 186
SCREEN, 149, 187, 197

Operators
arithmetic (See also Arithmetic
operators), 35-37

logical (See also Logical operators),
56

string (See Concatenation)
OPTION statements

ANGLE, 126-128, 147-148, 155,
160, 170-173, 179-181, 190

ARITHMETIC, 148, 190
BASE, 148, 190
COLLATE, 148, 190
NOLET, 148, 190-191
TYPO, 112, 141, 147-148, 159-160,
190, 200

USING, 148, 190
OR (See Logical operators)
ORD function, 178, 191
Order of evaluation (See Expressions)
ORG clause (See ORGANIZATION

clause)
ORGANIZATION clause (See Open-

clause)
Output

command window, 18, 21, 69, 206
echoing to file, 69, 196
echoing to printer, 68-69
to files, 21, 69, 84, 86, 88, 91, 186,
188, 206

full screen, 188
listing program, 7, 20, 68-69, 77,
79, 88, 93, 140-141, 153

printing graphics, 69, 115, 129-132,
printing matrices, 90, 95, 99-100,
148, 150, 159, 198

Index 253



Output Window, 18, 21, 27, 30, 43,
68-69, 84, 117, 129, 133, 143, 153,
187, 206

PACKB subroutine, 151
Parameters

and arguments, 105-106, 153-154,
166, 199

arrays as, 141, 154, 200
expressions as, 153-154
to functions, 105, 107, 109-111, 141,
154

numbers as, 106, 153-154, 166, 199
passing by reference, 153, 166
passing by value, 154
passing mechanism, 160
to subroutines, 105-106, 109, 111-
112, 154, 160, 166

Pasting text (See Text)
Paths, 210
PAUSE statement, 125, 160
PC-DOS (See DOS)
PEEK function, 43
PI function, 178
PICT file (See Files)
Pictures

PICTURE statement, 141, 155-156,
160

PICTURE structure, 125-126, 149,
155, 160, 193

transformations on (See
Transformations)

Pixels
in current window, 149
determining color of, 149

PLAY statement, 79, 135, 161, 189
PLOT statements (See also MAT

statements)
abbreviated form, 117-118, 161-162
AREA, 122, 129, 161
LINES, 161-162
POINTS, 161
TEXT, 162

Plus operator (See Arithmetic opera-
tors)

Pointer (See Mouse)
Points (See PLOT statements)
POS function, 178
POSR function, 179
Precision (See Numbers)

Preface bytes (See Assembly lan-
guage)

Preprocessors (See DO utilities)
Print separators, 30, 41-43, 47, 51-52,

68, 87, 90, 100, 159, 162
PRINT statement, 25-26, 30, 38-39,

41-43, 47-49, 51-52, 54-55, 58, 68,
99, 159, 162, 181

PRINT USING statement, 43, 55,
162, 183, 186

Print zones, 41, 52, 162
Printers

opening a channel to, 68, 84, 86,
186

ports (See Ports)
trouble-shooting, 68, 199

PRIVATE statement, 150
Procedures (See Functions and

Subroutines)
PROGRAM statement, 163
Programs

closing, 84
compiled, 130, 195, 210-211, 213
creating, 7, 9, 12, 23, 27, 118
deleting, 75
editing, 10, 18-21, 25-31, 50, 53, 67,
69, 71, 78-79, 85, 105, 112, 114,
130, 162, 188, 194, 196

extensions, 20
formatting, 65-67, 69, 71, 140-141
listing names of (See FILES com-
mand)

naming, 7, 23
opening, 20, 27, 39, 48, 50, 53, 66,
69, 72, 83, 87, 90-91, 93, 97, 129,
135, 139

printing, 7, 30, 38, 42-43, 50-51, 58,
65, 67-69, 88, 90-91, 96

renaming, 72
running, 7, 11, 13, 15, 17, 19-21, 23-
30, 33-34, 37-42, 44-45, 47, 54-55,
59-60, 62, 65, 68, 72-73, 78, 83-84,
88-90, 94, 101, 105, 109-110, 116-
118, 128-129, 135, 139-144, 163,
185-186, 198, 213-214

saving, 26-27, 29, 31, 39, 128, 210
stopping, 21, 61, 74, 82, 84-85, 110,
140-143, 155, 160, 174, 186, 197

PUBLIC statement, 189

Quitting, 13, 31, 132, 188, 201-204
Quote mark, 30, 39, 44, 65, 79, 158,

186, 190, 196

RAD function, 179
Raising to a power (See Arithmetic

operators)
Random files (See Files)
RANDOMIZE statement, 61-62, 163,

179
READ statement, 74-75, 77-79, 99,

159, 163, 183, 188, 197
Reclaiming memory (See Memory)
Record files (See Files)
RECSIZE clause (See Open-clause)
RECTANGLE, 120-121, 132, 152
Redimensioning, 170
Relational operators, 52, 189
REM statement, 163
REMAINDER function, 179
RENAME command, 196
Renaming files (See Files)
REPEAT$ function, 179
Repeating statements (See Loops)
Reserved words, 193
RESET statement, 87, 91
Resolution (See Graphics resolution

and Pixels)
RESTORE statement, 81, 163
RETURN (See CHAIN statement)
Return key, 19, 21, 23-24, 28, 30, 37,

45, 59, 73-74, 205
RETURN statement, 45
RND function, 61-62, 179
ROTATE transformation (See

Transformations)
ROUND function, 180
RTRIM$ function, 180
RUN command, 21, 69, 198
Run menu, 21, 24, 67, 141, 143, 204-

206, 209-210
Running programs (See Programs)
RUNTIME function, 180

SAVE command, 29
Saving

files (See Files)
images (See BOX KEEP statement)
programs (See Programs)

254 BRONZE Edition  Guide



screens, 124
workspaces (See STORE command)

SCALE transformation (See
Transformations)

Scientific notation (See Exponential
notation)

Scope, 10
Screen

clearing, 124-125, 153
coordinates, 187
editor, 11, 83, 85
modes (See Screen modes)
scrolling, 18

Screen modes (See also individual
modes)

default, 122, 165
determining, 149
graphics, 122-124

Scripts
files (See Files)
startup, 134

Scroll bar
Searching and replacing (See

CHANGE and TRY commands)
SEC function, 180
Secant function (See SEC function)
SELECT CASE structure, 64, 103,

147, 164, 192
Selecting text (See Text)
Semicolon (See Print separators)
SENSITIVE, 74-75, 130, 132
SET statements

BACK, 149, 164
BACKGROUND COLOR (See SET
BACK statement)

COLOR MIX, 124, 149
COLOR, 122-124, 149, 164-165, 194
CURSOR, 149
DIRECTORY, 149
MARGIN, 43, 148, 150
MODE, 149, 165
NAME, 149
POINTER, 150
RECORD, 150
RECSIZE, 150
TEXT JUSTIFY, 129, 149
WINDOW, 119-124, 126-130, 149,
165, 187, 200

ZONEWIDTH, 43, 148, 150
SGN function, 108, 180
SHARE statement, 200
Shared variables (See Variables)
SHEAR transformation (See

Transformations)
SHIFT transformation (See

Transformations)
Signum function (See SGN function)
Simple-statement, 157
SIN function, 180
Sine function (See SIN function)
SINH function, 180
SIZE function, 181
Slash operator (See Arithmetic oper-

ators)
SOUND statement, 137, 165
Source window, 27-29, 75
Splitting lines, 28
Square root function (See SQR func-

tion)
SQR function, 181
Stand-alone programs (See

Applications)
Startup file (See Scripts)
Step size, 48-49
Stopping a program run (See

Programs)
STOP statement, 61-62, 165
STR$ function, 168, 181
Strings

as arguments, 172, 175, 177, 182
in arrays, 94, 169-170, 176-177,
182, 192

concatenating (See Concatenation)
as constants (See Constants)
converting to numbers (See VAL
and NUM functions)

expressions (See Expressions)
formatting, 55, 178, 183
joining (See Concatenation)
maximum length, 53, 176
quoted, 43, 79, 88, 153, 186
substrings, 40
unquoted, 153, 160
as variables (See Variables)

Structures (See individual struc-
tures)

STRWIDTH function, 181

SUB structure, 148, 155, 166
Subdirectories (See Directories)
Subroutines

built-in, 151
external, 110-113, 126, 156
internal, 111, 126
invoking, 45, 104-106, 112, 128,
153, 166, 173, 192

as structures, 103, 166, 192
Subscripts

lower bound, 175
range of, 173
upper bound, 182

Substrings (See Strings)
Subtraction (See Arithmetic opera-

tors)
Switching directories (See

Directories)
Switching disk drives (See Disk

Drives)
Switching files (See Files)
Switching modes (See Screen modes)

TAB function, 43, 181
TAN function, 181
Tangent function (See TAN function)
TANH function, 168, 182
TD_LINEINPUT, 45
Text

changing, 75
copying, 71, 73
cursor (See Cursor)
cutting, 71-72
deleting, 71, 205
files (See Files)
finding, 7, 15, 28, 33-34, 42, 49, 54-
55, 59, 67, 69, 71, 73-75, 80, 83, 87,
89, 93, 95, 101, 103, 105-107, 111,
119, 123, 125, 130-132, 139, 141,
169, 185-187, 189, 192-194, 196-
198, 201, 204, 209-215

including, 75, 196

justification (See SET TEXT JUS-
TIFY statement)

keeping, 75
modes (See Screen modes)
output, 38, 129, 153
pasting, 71, 73

Index 255



selecting, 28, 71-73, 75, 205
TEXTEDIT, 11, 121-122, 124-125,

130-134, 151
text editor

LINE, 18, 73, 85, 187
TIME function, 182
Time, setting, 34, 141
TIME$ function, 182
Timing a program (See Programs)
TRACE utility
Transformations

and BOX statements, 127, 155
combining, 128
and DRAW statements, 126-128,
155, 160

on pictures, 126, 128, 160
ROTATE, 126-128, 154
SCALE, 154-155
SHEAR, 126-127, 154-155
SHIFT, 126, 128, 154

Transpose (See TRN array function)
Trigonometric functions, 160
TRIM$ function, 182
TRN array function, 169, 182
TRUNCATE function, 182

UBOUND function, 182
UCASE$ function, 183
Undo command, 71, 204

UNPACKB function, 151
Unquoted strings (See Strings)
UNTIL (See DO loop)
Upper bounds (See Subscripts)
USE statement, 166
USING (See PRINT USING state-

ment)
USING$ function, 183

VAL function, 183, 195, 198, 200
Variables

global, 109-110, 112
index, 47-51, 189
local, 110-112, 116, 141, 158-159,
200

numeric, 38-39, 43, 49, 60, 78-79,
93-94, 144, 157-158, 160, 163,
188, 191, 200

public, 200
shared, 105, 109, 111-112, 116, 200
string, 38-40, 43, 65, 79, 94, 124,
158, 160, 163, 176, 191, 200

Vectors (See Arrays)

WHEN ERROR IN, 188, 195
WHEN structure, 140, 151, 166, 185,

195
WHILE (See DO loop)
WINDOW statement, 119-120, 126-

127, 165, 187, 200
Windows

activating, 19, 117
clearing, 149, 153
closing, 84, 131, 133, 142, 188, 204
coordinates, screen, 187
coordinates, window, 119, 126-127,
165

framing, 128
opening, 27, 123, 139, 141, 187,
205

switching, 19
WITH (See CHAIN statement and

DRAW statement)

ZER array constant, 183
Zonewidth, 43, 148, 150

256 BRONZE Edition  Guide

01/2002


	Table of Contents
	Using this Guide
	1: Introduction to Programming
	2: Why True BASIC?
	3: Installation and Using the TB Editor
	4: Writing and Running Your First Program
	5: Modifying and Saving Programs
	6: Constants, Variables and Expressions
	7: More on  Input and Output
	8: Loop Structures
	9: Decision Structures
	10: Formatting & Printing Your Program
	11: Editing Hints & Shortcuts
	12: Using & Storing Data
	13: Arrays & Matrices
	14: Functions & Subroutines
	15: Libraries
	16: Graphics
	17: Sound & Music
	18: Correcting Errors & Debugging
	Appendices
	A: ASCII Character Set
	B: TB Statements
	C: Built-In Functions
	D: Error Messages
	E: Making your own DO Programs
	F: PRINT USING Statement
	G: True BASIC File Types
	H: BASIC to True BASIC Converter

	Index

