

Introduction
The B-Tree library provides you with a ready-to-use B-tree data structure which you
can incorporate into your True BASIC programs through simple calls to the library.
You can use these routines for any application that requires the storage and
retrieval of data, including spreadsheets, databases, filing systems, and a host of
other possibilities.

We also include True BASIC source code for these routines. You can use this code to
learn more about the implementation of B-tree structures or modify it to more
closely suit your specific needs.

Use the demo programs to experiment with the power and functionality of indexed
record management. The program entitled Compact.tru is a useful utility for the
maintenance of library data files.

The files supplied are:

BTreeLib.trc The compiled library code
BTreeLib.tru The library source code
BTManage.tru A sample data base manager
Compact.tru A file maintenance utility
BT_NewDb.tru Creates a new Data Base called NameAdPh.
BT_Add.tru Adds new data to the Data Base.
BT_AddCh.tru Adds or changes data in the Data Base.
BT_Chng.tru Changes data already in the Data Base.
BT_Del.tru Removes data from the Data Base.
BT_Keys.tru Displays the key of each entry in the Data Base.
BT_Find1.tru Display selected keys contained in the Data Base.

TRUE BASIC REFERENCE INFORMATION:

The B-Tree Library

© 2001 - True BASIC Inc. 05047-0501 USA. All rights reserved.

BT_Find2.tru Display selected keys contained in the Data Base.
BT_Find3.tru Display selected keys contained in the Data Base.
BT_Tutor.tru B-tree tutorial in text form.

The library file BTreeLib.tru and BTreeLib.trc are in the directory TBLibs. The
remaining demo programs are in the directory

:tkdemos:B-tree
or

\b-tree toolkits.

B-trees
A B-tree is a method of storing data in, and, of course, retrieving data from,
permanent storage on a diskette or some other device.

Although many methods have been devised for such processes, the use of B-trees is
advantageous for a number of reasons. B-trees are fast, accurate, space efficient, and
relatively easy to visualize. Thus, B-trees are useful to advanced and beginning
programmers alike.
Because of their versatility and power, B-trees are widely used by applications
developers for a wide variety of data handling. Similarly, because of their elegance
and conceptual clarity, B-trees are widely studied by students of computer science.
It was with these reasons in mind that the True BASIC B-Tree Library was
developed.

However, the purpose of this chapter is to teach neither the applications of B-trees
nor the theory of B-trees. Rather, the intent of this chapter is to teach the use of the
routines which comprise the B-Tree Library. The various applications of these
routines is left to your own imagination.

For a thorough discussion of the history and theory of B-tree structures, the
interested user is referred to Chapter 9 of File Structures: A Conceptual Toolkit by
Michael J. Folk and Bill Zoellick (Addison-Wesley, 1987). This highly readable
chapter covers the evolution and implementation of B-tree structures and includes
references to further reading on the subject.

2 The TB-Tree Library

01/01

Getting Started
When working with the TB-Tree Library, you may find it useful to use the True
BASIC load command to install the BTreeLib.trc library in your computer’s
memory. This will reduce the time it takes a program to begin execution.

If, however, memory conservation is a consideration, you can, of course, reference the
BTreeLib.trc library like any other, that is by using a library statement within
your program.

Should you find it necessary to modify the library file, simply compile the altered
source code, save it, and use that compiled file instead. Remember to always save a
copy of the original source, in case your changes don’t work as expected!

Using This Library
Before we discuss in detail the specific routines which comprise the B-Tree Library,
we need to introduce a few terms fundamental to the functioning of a B-tree.

B-trees consist of an element, or node, for each item of information stored in them.
In the implementation of a B-tree used by this Toolkit, each node consists of two
items, a key and its data.

The key is a string value by which the node is identified. For this reason, it is
important that the same key value not be used to identify two nodes. Keys may be
up to 100 characters long and may contain any characters you choose [excluding
loval$ (or chr$(0)) and hival$ (or chr$(127))], so creating unique names is not
difficult.

The data is a string associated with the key. The data string is commonly used to
hold the information to be stored. Since the data is identified by its associated key,
there is no reason why two keys cannot identify identical data strings. There is no
limit on the length of data strings, so you can store a large amount of data at each
node. You will find that it is quite easy to store several data items in a single data
string. Data strings may include any characters you choose to use.

The Toolkit stores B-trees in standard True BASIC files. Thus, the rules which
concern standard True BASIC files also apply to the Toolkit’s data files. If you are
uncertain about these rules, refer to Chapters 9 & 18 for details. Note especially
that in the parameter lists of the subroutines which follow, the #1 is used only as a
parameter. It will be replaced by whatever channel number you specify in that
position when you call that subroutine. Thus, it is possible to operate on several
open data files at the same time.

Using This Library 3

01/01

The Routines
The following routines are all True BASIC subroutines. Thus, they are all invoked
with the call statement.

BTOpen (dbasename$, fsize, #1)
BTOpen will first scan the proper directory for the existence of a B-Tree data file
named dbasename$. If it exists, it will be opened. If it does not yet exist, it will be
created first and then opened. Once opened it will be associated with the channel
number specified by #1, and its current size in bytes is returned in fsize. A data file
must be opened before its contents may be accessed.

When a database is created, it is initialized to have no key values, one index page
(which is also the root page), and no data values. Notice that you are not required to
set a maximum key or data record size, a maximum number of records, or a
maximum file size; B-Tree data files will grow dynamically as records are added.

Note, however, that although you need never specifically create or initialize a data
file, it is always possible to inadvertently create an unwanted data file with TBOpen
by passing an incorrect dbasename$. See the routine SUB IfExists in the sample
program BTManage for an easy way to avoid this problem.

BTClose (#1)
BTClose simply executes the standard True BASIC CLOSE statement for the
channel number specified, and is provided solely as a mnemonic. Since B-Tree data
files are essentially standard True BASIC files, they can be closed like any other file.

Add (key$, data$, #1, added)
Add adds the specified key$ and its associated data$ record to the open data file
referenced by #1. If key$ already exists in the specified file, no addition will occur.
Data$ may be as long as desired, and key$ may be up to 100 characters long.

If an addition occurred and was successful, added will be returned equal to 1. If for
some reason the addition failed, added will be returned equal to zero.

Update (key$, newdata$, #1, updated)
Update searches the open data file referenced by #1 for the existence of key$. If that
key value exists, newdata$ replaces the data that was previously stored there.
Newdata$ may be any length desired.

4 The TB-Tree Library

01/01

If the update was successful, updated will be returned equal to 1, otherwise updated
will equal zero.

Please note that, although newdata$ is associated with key$ and thereby retains its
sequential position in the pointer list, the actual data contained in newdata$ is
added to the end of the entire data file, and no attempt is made by the Toolkit to
reuse the storage occupied by the previous data item. This is important to remember
for two reasons.

First, it means that a ‘compactor’ routine should be used to periodically reclaim
space previously used by updated or deleted data items. This will ensure that the
data file consists of only pertinent and current data. Such a routine is not difficult to
write. For an example, see the sample program Compact.tru in the B-Tree
directory.

Second, it means that original data which has been deleted or updated since the last
‘compaction’ can be recovered. It is, however, the programmer’s responsibility to
ensure that each data item in this case has enough information to identify it, since
the key associated with it is lost.

Delete (key$, #1, deleted)
If key$ exists in the file referenced by #1, that key is made into a ‘tombstone.’ If key$
does not exist in the specified file, no action is taken. If a deletion occurred and was
successful, deleted will be returned equal to 1, otherwise deleted will equal zero.

A tombstone is simply a key that has a negative, or invalid, pointer value, and
tombstoned keys appear non-existent to the access routines. This means that that
key can be reused by a subsequent addition. This approach also makes it easy for a
compactor program or routine to reclaim the space used by old data items. The
tombstone method is also useful because it is extremely fast and maintains the B-
tree’s balance. For a discussion of the internal handling of deleted keys, refer to the
above discussion of the Update routine.

Find (key$, #1, found)
Find determines if the specified key currently exists in the specified data file. If it
does exist found will be returned equal to 1, otherwise found will equal zero.

LoadKeys (keys$(), #1)
LoadKeys builds a sorted array containing the keys currently contained in the open
data file referenced by #1.

The Routines 5

01/01

InitNext
InitNext must be called before using GetNext to begin a sequential scan. It simply
clears the list of pointers used internally for sequential access to the B-tree
structure. Examine the sample programs for numerous examples.

Get (key$, data$, #1, found)
Get retrieves from the open data file referenced by #1 the data item associated with
the specified key$ and returns it in data$. If the key$ exists in the file, then found
will be returned equal to 1, otherwise found will equal zero. If found does equal zero,
the contents of data$ should be ignored.

GetFirst (firstkey$, #1)
If the data file referenced by #1 is not empty, then GetFirst returns the first key in
sorted order in firstkey$. If the file is empty, firstkey$ will equal the null string.

GetNext (next$, #1)
GetNext returns in next$ the key value of the next key in sorted order in the file
referenced by the channel number #1.

Since the keys in the data file are not physically stored in sorted order, a low-level
recursive tree scanning routine builds a list of internal pointers, which is in sorted
order. Since a file may become very long, however, this pointer list could also grow
to be extremely long, and could therefore take a long time to build. To save space
and time, the program maintains a list of only the next fifty keys in sorted order.

This pointer list is initially built by a call to InitNext and is periodically updated.
The update is handled automatically by the Toolkit, but may cause a slight pause
periodically in sequential processing. However, this automated updating means that
InitNext need be called only once, at the beginning of the sequential scan, regardless
of the size of the data file.

It is important to remember that whenever a new sequential scan begins from a non-
contiguous location InitNext must be called. Otherwise, your scan may return keys
left over from a previous scan.

GetLast (lastkey$, #1)
If the data file referenced by #1 is not empty, then GetLast returns the last key in
sorted order in lastkey$. If the file is empty, lastkey$ will equal the null string.

6 The TB-Tree Library

01/01

GetNearest (partial_key$, key$, #1)
GetNearest returns in key$ the value of the key in the file referenced by #1 which is
equal to partial_key$. If no such key value exists, GetNearest returns the next key
from the file referenced by #1 in sorted order which is greater than partial_key$.

This routine can be very useful for perusal of data files and listing intervals of key
values. For example, refer to the sample program BTManage.tru, which offers the
option to list an interval of keys in a file.

File Compaction
The B-Tree Library does not ever actually delete information from the data file.
Instead it simply adds new data to the end of the existing data and remembers to
ignore any old, or inactive, data.

This means that deletion operations can be done very quickly without any need for
the time consuming task of reorganizing the data file. However, it also means that
over time, as deletions and updates are made, the file grows with the retention of
obsolete data items.

While this may at first sound somewhat inefficient, upon closer examination it turns
out to offer two important benefits. As we have already mentioned, it means that
any operation that requires a change of data can be performed as quickly as possible.
Because no data is ever automatically erased from the file, it also means that no
data can be irretrievably lost. In other words, deleted data is available, in case of
error or emergency, until you as the programmer consciously delete it.

This, however, raises the question of how to delete this old data when it is not
needed. There is a utility program on the Toolkit disk called Compact.tru which
may be used to compact data files. While this program is designed to be used as an
independent utility, the method it uses it easily adaptable to inclusion in a
subroutine. In a simple data base manager, like BTManage.tru, such a subroutine
could be used to implement a ‘compact’ command that the user can choose at any
time. In a more complex system, it may be feasible to implement a feature which
automatically compacts the data file after a set number of changes have been made.
The best method of compacting the file will depend on the overall design of the
system.

The Routines 7

01/01

A TB-Tree Tutorial
The following group of programs will show you how to use the B-Tree Library to
store and retrieve data.

The programs will also show some of the advantages of using B-Tree.

When the Sequential or Random access method is used to store data, the stored data
is called a file. When the B-Tree access method is used to store data, the stored data
is called a data base.

We will use the following programs to show how the B-Tree Access Method can be
used to store and retrieve data.

BT_NewDb will create a new Data Base called NameAdPh.
BT_Add will add new data to the Data Base.
BT_Chng will change data already in the Data Base.
BT_Del will remove data from the Data Base.
BT_Keys will display the key of each entry in the Data Base.
BT_Find will display selected keys contained in the Data Base.

The first step in creating and using a data base is to decide what data we are going
to put in the data base.

Lets create a data base to hold names, address, and phone numbers. A logical
name for this data base would be NameAdPh.

We want each entry in the data base to be the name, address, and phone number of a
particular person.

We want the name to consist of the person’s last name followed by their first name,
just as their name would appear in a phone book.

We want the address to consist of the person’s street address, followed by the city,
the state, and the zip code.

A typical entry in the data base might be the following:

Doe John
1234 Easy Street Any Town NY 10101
(000) 555-1234

The next step is to decide how to uniquely identify the entries in the data base. We
need to be able to give each data base entry a unique name.

8 The TB-Tree Library

01/01

Since our data base is going to be small, it will not contain two people with the same
name. We can therefore use the person’s name to identify the entry. The identifier
for the entry is called the entry’s key. The key for the entry above would be the
string “Doe John”.

Now that we are done describing our data base, we are ready to create the data base.
Program Bt-NewDb shows how to create a new data base.

Program BT_NewDb
A program to create a new data base called NameAdPh. We want this program to do
the following:

First, check to see if data base NameAdPh already exists. If NameAdPh already
exists, then display a message and stop.

Next, if NameAdPh does not exist, then create a new data base, giving it the name
NameAdPh.

Lastly, we will display the size of the new data base. The size is the number of bytes
of disk space used by the empty data base.

A detailed explanation of how BT_NewDb works can be found in the comment blocks
within the program as listed below:

!--
! Program .. BT_NewDb |
! This program will create a new Data Base called NameAdPh. |
! The Data Base will be used to store Names, Addresses, & Phone numbers.|
! The B-Tree subroutines used to create the Data Base are stored in |
! the BTREELIB library. |
!--

LIBRARY "BTREELIB"

!--
! The following lines of code check to see if file (NameAdPh) already |
! exists. If the file already exists, then the program will set |
! variable (DataBaseExists$) to "Yes". |
!--

LET DataBaseExists$ = "Yes"

WHEN ERROR IN
OPEN #1: NAME "NameAdPh", ORG byte, CREATE old, ACCESS input

Creating a Data Base 9

01/01

USE
IF EXTYPE = 9003 THEN LET DataBaseExists$ = "No"

END WHEN

CLOSE #1

!--
! If file (NameAdPh) already exists, then the program will display a |
! message, and wait for you to respond by pressing a key. Once a key |
! is pressed, the program will stop. |
!--

IF DataBaseExists$ = "Yes" THEN
CLEAR
SET CURSOR 5, 29
PRINT "NameAdPh already exists."
SET CURSOR 8, 24
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed
CLEAR
STOP

END IF

!--
! The program is now ready to create a new Data Base called (NameAdPh). |
! This is done by calling the B-Tree subroutine (BtOpen). |
! Subroutine (BtOpen) will create a new Data Base called (NameAdPh), |
! and store the size of (NameAdPh) in variable (DataBaseSize). |
! If (BtOpen) fails to create (NameAdPh), then it will set variable |
! (ExType) to 2. |
!--

CALL BtOpen ("NameAdPh", DataBaseSize, #1)

!--
! If file (NameAdPh) already exists, then the program will display a |
! message, and wait for you to respond by pressing a key. Once a key |
! is pressed, the program will stop. |
!--

10 The TB-Tree Library

01/01

!--
! If variable (ExType) is not 0, meaning (BtOpen) failed to create |
! the (NameAdPh) Data Base, then the program will display a message |
! and wait for you to respond by pressing a key. Once a key is |
! pressed, the program will stop. Variable (ExText$) will contain an |
! explanation of what caused the error. |
!--

IF ExType > 0 THEN
CLEAR
SET CURSOR 5, 12
PRINT "Trying to create the data base ";
PRINT "caused the following error:"
SET CURSOR 7, 11
PRINT ExType; ".. "; ExText$
SET CURSOR 11, 12
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed
CLEAR
STOP
END IF

!--
! Getting to this point means that a new Data Base has been created. |
! The following lines of code will display the size (number of bytes) |
! of the empty Data Base, and wait for you to respond by pressing a key.|
! Once a key is pressed, the program will close the Data Base and stop. |
!--

CLEAR
SET CURSOR 5, 22
PRINT "The empty data base takes"; DataBaseSize; "bytes."
SET CURSOR 8, 22
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed

CALL BtClose (#1)
CLEAR
END

Creating a Data Base 11

01/01

BT_NewDb uses two B-Tree commands, (BtOpen) and (BtClose). These commands
actually call B-Tree subroutines. The (Library) command tells the program that the
B-Tree subroutines can be found in the library called BTreeLib.

BTOpen
A B-Tree subroutine which Opens a data base and makes it available to the
program.

Call BTOpen (DataBaseName$, DataBaseSize, #1)

If (DataBaseName$) already exists, then (BtOpen) will Open it and make it
available to the program. If (DataBaseName$) does not exist, then (BtOpen) will
create the structure for a new data base, and then Open it and make it available to
the program. (BtOpen) will store the size of the data base in variable
(DataBaseSize). If (BtOpen) is unable to Open the data base, it will cause a runtime
error having an error number of 2.

BTClose
A TB-Tree subroutine which closes a previously opened data base.

Call BTClose (#1)

Now that we have created a data base called NameAdPh, we are ready to store data
in the data base. Program Bt-Add shows how to add a new entry to the data base.

Program BT_Add
A program to add a new entry to data base NameAdPh. We want this program to do
the following:

First, prompt for the new person’s last name and first name.

Next, check to see if the new person is already in the data base. If they are, then
display a message and stop.

Next, prompt for the new person’s address and phone number.

Next, add the new person to the data base.

Lastly, display a message indicating whether or not the new entry was successfully
added to the data base.

A detailed explanation of how BT_Add works can be found in the comment blocks
within the program, as shown:

12 The TB-Tree Library

01/01

!--
! Program .. Bt-Add |
! This program adds a new entry to the (NameAdPh) Data Base. |
! The entry is a person's Names, Addresses, & Phone number. |
! The entry's identifier or Key is the person's name. |
! The B-Tree subroutines that work with the Data Base are stored in |
! the BTREELIB library. |
!--

LIBRARY "BTREELIB"

!--
! Prior to working with a Data Base, the program must (Open) it. |
! This is done by calling the B-Tree subroutine (BtOpen). |
! Since Data Base (NameAdPh) already exists, the (BtOpen) subroutine |
! will not create a new Data Base as it did in the (Bt-NewDb) program. |
! Instead, it will open the existing Data Base and make it available |
! to the program. |
!--

CALL BtOpen ("NameAdPh", DataBaseSize, #1)

!--
! The following lines of code will prompt for the person's last name |
! and first name. |
! The program will then build the entry's identifier or key, by first |
! converting the names to upper case, and then joining the two names |
! together to form a single string. |
! The names are converted to upper case so that (John Doe) & (JOHN DOE) |
! will produce the same key and thus be the same entry. |
!--

CLEAR
SET CURSOR 2, 2
INPUT PROMPT "Enter the person's last name ":
LastName$
SET CURSOR 4, 2
INPUT PROMPT "Enter the person's first name ":
FirstName$

LET DbKey$ = UCASE$(LastName$) & " " & UCASE$(FirstName$)

Adding New Entries 13

01/01

!--
! The program is now ready to see if this person is already in the |
! Data Base. This is done by calling the B-Tree subroutine (Find). |
! If the person is already in the Data Base, then (Find) will set the |
! variable (AlreadyExists) to 1. |
!--

CALL Find (DbKey$, #1, AlreadyExists)

!--
! If the person is already in the Data Base, then the program will |
! display a message, and wait for you to respond by pressing a key. |
! Once a key is pressed, the program will stop. |
!--

IF AlreadyExists = 1 THEN
SET CURSOR 6, 2
PRINT "This person is already in the Data Base."
SET CURSOR 8, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed
CALL BtClose (#1)
CLEAR
STOP
END IF

!--
! Getting to this point means that the person is not in the Data Base. |
! The following lines of code will prompt for the person's address |
! and phone number. |
!--

SET CURSOR 6, 2
INPUT PROMPT "Enter the street address or box number ... ":
Street$
SET CURSOR 8, 2
INPUT PROMPT "Enter the city ": City$
SET CURSOR 10, 2
INPUT PROMPT "Enter the 2 character state abreviation .. ": State$
SET CURSOR 12, 2
INPUT PROMPT "Enter the zip code ": Zip$
SET CURSOR 14, 2
INPUT PROMPT "Enter the phone number ": Phone$

14 The TB-Tree Library

01/01

!--
! The program is now ready to add this new entry to the Data Base. |
! This is done by calling the B-Tree subroutine (Add). |
! Prior to adding a new entry to a Data Base, the data must be packed |
! into a single data string. When packing the data, if we separate |
! the fields with a certain character (such as the \ character), |
! then we can later unpack the data string and get the fields back. |
! If subroutine (Add) is unable to add the new entry to the Data Base, |
! then it will set variable (AddedOk) to 0. |
!--

LET DataString$ = Street$ & "\" & City$ & "\" & State$ & "\" & Zip$ & "\"
LET DataString$ = DataString$ & Phone$

CALL Add (DbKey$, DataString$, #1, AddedOk)

!--
! The program now displays a message indicating whether or not the new |
! entry was successfully added to the Data Base. |
! After the appropriate message is displayed, the program will wait |
! for you to respond by pressing a key. Once a key is pressed, the |
! program will stop. |
!--

SET CURSOR 16, 2
IF AddedOk = 0 THEN

PRINT "B-Tree subroutine (Add) was unable to add the new entry.";
ELSE
PRINT "The entry was successfully added to the Data Base.";
END IF

SET CURSOR 18, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed

CALL BtClose (#1)
CLEAR
END

Adding New Entries 15

01/01

Bt-Add introduces two new TB-Tree commands, Find and Add.

Find is a TB-Tree subroutine which will check to see whether or not a certain entry
is in the data base. Prior to calling the (Find) subroutine, store the entry’s identifier
in variable (Key$).

Call Find (Key$, #1, Found)

If the entry is in the data base, then (Find) will set variable (Found) equal to 1. If
the entry is not in the data base, then (Find) will set (Found) equal to zero.

Add is a TB-Tree subroutine which will add a new entry to the data base. Prior to
calling the (Add) subroutine, store the entry’s identifier in variable (Key$). Store
the entry’s data (address & phone number) in variable (DataString$).

Call Add (Key$, DataString$, #1, AddedOk)

If the entry is not in the data base, then (Add) will add the new entry to the data
base. If there were no problems with the addition process, then (Add) will set
variable (AddedOk) equal to 1. If for some reason, the addition process failed, then
(Add) will set (AddedOk) to zero.

If the entry was already in the data base, then (Add) will set (AddedOk) equal to
zero, and return to the main program.

Notice that program Bt-Add displays a message and stops, if the entry is already in
the data base. Suppose we want program Bt-Add to either add a new entry, or if the
entry is already in the data base, then change the existing entry. A slight
modification to Bt-Add could accomplish this.

Program BT_AddCh
A program to add or replace a data base entry. This time, we want the program to do
the following:

First, prompt for the person’s last name and first name.

Next, prompt for the person’s address and phone number.

Next, if the person is not in the data base, then add the person to the data base. If
the person is already in the data base, then replace the old entry with the new entry.

Lastly, display a message indicating whether or not the entry was successfully
placed in the data base. If the entry was successfully placed, then have the message
indicate whether it was a new entry or a change to an existing entry.

A detailed explanation of how Bt-AddCh works can be found in the comment blocks
within the program as follows:

16 The TB-Tree Library

01/01

!--
! Program .. Bt-AddCh .. a modification of program Bt-Add. |
! This program either adds a new entry to the (NameAdPh) Data Base, |
! or if the entry is already in the Data Base, then changes the |
! existing entry. |
!--

LIBRARY "BTREELIB"

!--
! First, the program Opens the Data Base. |
!--

CALL BtOpen ("NameAdPh", DataBaseSize, #1)

!--
! Then prompts for the person's name, and builds the entry's key. |
!--

CLEAR
SET CURSOR 2, 2
INPUT PROMPT "Enter the person's last name ": LastName$
SET CURSOR 4, 2
INPUT PROMPT "Enter the person's first name ": FirstName$

LET DbKey$ = UCASE$(LastName$) & " " & UCASE$(FirstName$)

!--
! Then checks to see if the person is already in the Data Base. |
!--

CALL Find (DbKey$, #1, AlreadyExists)

!--
! Unlike program Bt-Add, this program does not display a message and |
! stop, if the entry is already in the Data Base. |
! Regardless of the outcome of the (Find) command, this program goes |
! ahead and prompts for the person's address and phone number. |
!--

Changing an Entry 17

01/01

SET CURSOR 6, 2
INPUT PROMPT "Enter the street address or box number ... ":
Street$
SET CURSOR 8, 2
INPUT PROMPT "Enter the city ": City$
SET CURSOR 10, 2
INPUT PROMPT "Enter the 2 character state abreviation .. ": State$
SET CURSOR 12, 2
INPUT PROMPT "Enter the zip code ": Zip$
SET CURSOR 14, 2
INPUT PROMPT "Enter the phone number ": Phone$

!--
! The program is now ready to add the entry to the Data Base. |
! This time the program will use the B-Tree (Put) subroutine, instead |
! of the B-Tree (Add) subroutine, to place the entry in the Data Base. |
! If the person is a new entry, then (Put) will add the entry to the |
! Data Base, just like the (Add) subroutine would do. |
! If however, the person is already in the Data Base, then (Put) will |
! replace the existing entry with the new entry. |
!--

LET DataString$ = Street$ & "\" & City$ & "\" & State$ & "\" & Zip$ & "\"
LET DataString$ = DataString$ & Phone$

CALL Put (DbKey$, DataString$, #1, AddedOk)

!--
! The program is now ready to display a message indicating whether or |
! not the entry was successfully placed in the Data Base. |
! And if the entry was placed successfully, whether or not the person |
! was already in the Data Base. |
! After the appropriate message is displayed, the program will wait |
! for you to respond by pressing a key. Once a key is pressed, the |
! program will stop. |
!--

18 The TB-Tree Library

01/01

SET CURSOR 16, 2
IF AddedOk = 0 THEN

PRINT "B-Tree subroutine (Put) was unable to place the entry.";
ELSE
IF AlreadyExists = 1 THEN

PRINT "The existing Data Base entry was successfully
replaced.";

ELSE
PRINT "The new entry was successfully added to the Data

Base.";
END IF

END IF
SET CURSOR 18, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed

CALL BtClose (#1)
CLEAR
END

Bt-AddCh introduces one new B-Tree command, the Put command.

Put is a B-Tree subroutine which will either add a new entry to the Data Base, or if
the entry is already in the data base, then replace the existing entry.

Prior to calling the (Put) subroutine, store the entry’s identifier in variable (Key$).
Store the entry’s data (address & phone number) in variable (DataString$).

Call Put (Key$, DataString$, #1, AddedOk)

If the entry is not already in the data base, then (Put) works just like the (Add)
subroutine outlined in the previous program.

If the entry was already in the data base, then (Put) will replace the old entry with
the new entry.

If there were no problems with the addition or replacement process, then (Put) will
set variable (AddedOk) to 1. If for some reason, the addition or replacement process
failed, then (Put) will set (AddedOk) to zero.

Changing an Entry 19

01/01

Program Bt-Chng
Now that we have entries in our data base, we need a program which will allow us to
change one of the entries. Maybe John Doe has moved from Any Town to New Town,
and we want to correct his entry in the data base.

Program Bt-Chng shows how to change one of the data base entries.

We want this program to do the following:

First, prompt for the person’s last name and first name.

Next, check to see if the person is in the data base. If they are not, then display a
message and stop.

Next, retrieve the entry from the data base.

Next, verify that the entry was retrieved successfully. If there was a problem, then
display a message and stop.

Next, display the entry.

Next, prompt for the person’s new address and phone number.

Next, change the data base entry by replacing the old address and phone number
with the new address and phone number.

Lastly, display a message indicating whether or not the Data Base entry was
successfully changed.

A detailed explanation of how Bt-Chng works can be found in the comment blocks
within the program as listed below:

!--
! Program .. Bt-Chng |
! This program changes the data in one of the Data Base entries. |
!--

LIBRARY "BTREELIB"

!--
! First, the program Opens the Data Base. |
!--

CALL BtOpen ("NameAdPh", DataBaseSize, #1)

!--
! Then prompts for the person's name, and builds the entry's key. |
!--

20 The TB-Tree Library

01/01

CLEAR
SET CURSOR 2, 2
INPUT PROMPT "Enter the person's last name ": LastName$
SET CURSOR 4, 2
INPUT PROMPT "Enter the person's first name ": FirstName$

LET DbKey$ = UCASE$(LastName$) & " " & UCASE$(FirstName$)

!--
! Then checks to see if the person is already in the Data Base. |
!--

CALL Find (DbKey$, #1, AlreadyExists)

!--
! If the person is not in the Data Base, then the program will display |
! a message and wait for you to respond by pressing a key. Once a key |
! is pressed, the program will stop. |
!--

IF AlreadyExists = 0 THEN
SET CURSOR 6, 2
PRINT "This person is not in the Data Base."
SET CURSOR 8, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed
CALL BtClose (#1)
CLEAR
STOP
END IF

!--
! Getting to this point means that the person is in the Data Base. |
! The following line of code will retrieve the entry from the Data Base |
! and store the entry's data (address and phone number) in variable |
! (DataString$). If the (Get) subroutine successfully retrieves the |
! entry from the Data Base, then it will set variable (GetOk) to 1. |
! If the (Get) subroutine fails to retrieve the entry, then it will |
! set variable (GetOk) to 0. |
!--

Changing an Entry 21

01/01

Call Get (DbKey$, DataString$, #1, GetOk)

!--
! If the (Get) subroutine failed to retrieve the entry from the Data |
! Base, then the program will display a message and wait for you to |
! respond by pressing a key. Once a key is pressed, the program will |
! stop. |
!--

IF GetOk = 0 THEN
SET CURSOR 6, 2
PRINT "B-Tree subroutine (Get) was unable to retrieve the entry."
SET CURSOR 8, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed
CALL BtClose (#1)
CLEAR
STOP
END IF

!--
! Getting to this point means the (Get) subroutine was able to retrieve |
! the Data Base entry, and store the data in variable (DataString$). |
! When program (Bt-Add) added the entry to the Data Base, it packed the |
! address and phone number fields into a single string. It used the (\)|
! character to separate the Street, City, State, Zip, and Phone number. |
! The following lines of code will use those (\) characters to unpack |
! (DataString$) and extract the individual fields. |
!--

LET PositionSlash1 = POS (DataString$, "\", 1)
LET FirstChar = 1
LET LastChar = PositionSlash1 - 1
LET Street$ = DataString$ [FirstChar:LastChar]

LET FirstChar = PositionSlash1 + 1
LET PositionSlash2 = POS (DataString$, "\", FirstChar)
LET LastChar = PositionSlash2 - 1
LET City$ = DataString$ [FirstChar:LastChar]

22 The TB-Tree Library

01/01

LET FirstChar = PositionSlash2 + 1
LET PositionSlash3 = POS (DataString$, "\", FirstChar)
LET LastChar = PositionSlash3 - 1
LET State$ = DataString$ [FirstChar:LastChar]

LET FirstChar = PositionSlash3 + 1
LET PositionSlash4 = POS (DataString$, "\", FirstChar)
LET LastChar = PositionSlash4 - 1
LET Zip$ = DataString$ [FirstChar:LastChar]

LET FirstChar = PositionSlash4 + 1
LET LastChar = LEN (DataString$)
LET Phone$ = DataString$ [FirstChar:LastChar]

!--
! The program can now display the person's name, address, and phone. |
!--

CLEAR
PRINT TAB (2, 2); "Name "; DbKey$
PRINT TAB (3, 2); "address "; Street$
PRINT TAB (4, 2); "city "; City$
PRINT TAB (5, 2); "state "; State$
PRINT TAB (6, 2); "zip code "; Zip$
PRINT TAB (7, 2); "phone number .. "; Phone$

!--
! The following lines of code will prompt for the person's new address |
! and phone number. If a single character (*) is entered for one of |
! the fields, then the program will NOT change that field in the entry. |
!--

SET CURSOR 9, 2
INPUT PROMPT "Enter the street address or box number ... ": Entry$
IF Entry$ <> "*" THEN LET Street$ = Entry$
SET CURSOR 11, 2
INPUT PROMPT "Enter the city ": Entry$
IF Entry$ <> "*" THEN LET City$ = Entry$
SET CURSOR 13, 2
INPUT PROMPT "Enter the 2 character state abreviation .. ": Entry$
IF Entry$ <> "*" THEN LET State$ = Entry$
SET CURSOR 15, 2
INPUT PROMPT "Enter the zip code ": Entry$

Changing an Entry 23

01/01

IF Entry$ <> "*" THEN LET Zip$ = Entry$
SET CURSOR 17, 2
INPUT PROMPT "Enter the phone number ": Entry$
IF Entry$ <> "*" THEN LET Phone$ = Entry$

!--
! The program is now ready to change the entry in the Data Base. |
! This is done by calling the B-Tree subroutine (Update). |
! Just as in program (Bt-Add), the data must be packed into a single |
! data string prior to calling the B-Tree subroutine. |
! If the (Update) subroutine is unable to change the entry in the |
! Data Base, then it will set variable (ChangedOk) to 0. |
!--

LET DataString$ = Street$ & "\" & City$ & "\" & State$ & "\" & Zip$ & "\"
LET DataString$ = DataString$ & Phone$

CALL UpDate (DbKey$, DataString$, #1, ChangedOk)

!--
! The program is now ready to display a message indicating whether or |
! not the Data Base entry was successfully changed. |
! After the appropriate message is displayed, the program will wait |
! for you to respond by pressing a key. Once a key is pressed, the |
! program will stop. |
!--

SET CURSOR 21, 2
IF ChangedOk = 0 THEN

PRINT "B-Tree subroutine (UpDate) was unable to change the entry.";
ELSE
PRINT "The Data Base entry was successfully changed.";
END IF

SET CURSOR 23, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed

CALL BtClose (#1)
CLEAR
END

24 The TB-Tree Library

01/01

Bt-Chng uses two new B-Tree commands, Get and UpDate.

Get is a TB-Tree subroutine which will retrieve a data base entry. Prior to calling
the (Get) subroutine, store the entry’s identifier in variable (Key$).

Call Get (Key$, DataString$, #1, GetOk)

If the entry is in the data base, then (Get) will retrieve the entry and store the data
in variable (DataString$). If there were no problems with the retrieval process, then
(Get) will set variable (GetOk) to 1. If for some reason, the retrieval process failed,
then (Get) will set (GetOk) to zero.

If the entry is not in the data base, then (Get) will set (GetOk) to zero and return to
the main program.

If the entry was retrieved, then the program will have to unpack (DataString$)
before the individual data items (address & phone number) can be used.

UpDate is a TB-Tree subroutine which will change a data base entry.

Prior to calling the (UpDate) subroutine, store the entry’s identifier in variable
(Key$). Store the entry’s new data (address & phone number) in variable
(DataString$).

Call UpDate (Key$, DataString$, #1, ChangedOk)

If the entry is in the data base, then (UpDate) will replace the old entry with the new
entry. If there were no problems with the updating process, then (UpDate) will set
variable (ChangedOk) to 1. If for some reason, the updating process failed, then
(UpDate) will set (ChangedOk) to zero.

If the entry is not in the data base, then (UpDate) will set (ChangedOk) to zero and
return to the main program.

We can now add and change data base entries, but we do not have a way to remove an
unwanted entry. Program Bt-Del shows how to delete one of the data base entries.

Program Bt-Del
A program to delete a data base entry. We want this program to do the following:

First, prompt for the person’s last name and first name.

Next, check to see if the person is in the data base. If they are not, then display a
message and stop.

Next, retrieve the entry from the data base.

Next, verify that the entry was retrieved successfully. If there was a problem, then
display a message and stop.

Changing an Entry 25

01/01

Next, display the entry.

Next, prompt whether or not the entry is to be deleted.

Lastly, if the answer is No, then stop the program. If the answer is Yes, then delete
the entry from the data base. Display a message indicating whether or not the entry
was successfully deleted.

A detailed explanation of how Bt-Del works can be found in the comment blocks
within the program as listed below:

!--
! Program .. Bt-Del |
! This program deletes one of the Data Base entries. |
! This program is similar to program Bt-Chng, except it removes the |
! the Data Base entry instead of changing it. |
!--

LIBRARY "BTREELIB"

!--
! First, the program Opens the Data Base. |
!--

CALL BtOpen ("NameAdPh", DataBaseSize, #1)

!--
! Then prompts for the person's name, and builds the entry's key. |
!--

CLEAR
SET CURSOR 2, 2
INPUT PROMPT "Enter the person's last name ": LastName$
SET CURSOR 4, 2
INPUT PROMPT "Enter the person's first name ":
FirstName$

LET DbKey$ = UCASE$(LastName$) & " " & UCASE$(FirstName$)

!--
! Then checks to see if the person is already in the Data Base. |
!--

CALL Find (DbKey$, #1, AlreadyExists)

26 The TB-Tree Library

01/01

!--
! If the person is not in the Data Base, then the program displays a |
! message and stops. |
!--

IF AlreadyExists = 0 THEN
SET CURSOR 6, 2
PRINT "This person is not in the Data Base."
SET CURSOR 8, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed
CALL BtClose (#1)
CLEAR
STOP
END IF

!--
! At this point, the program knows that the person is in the Data Base, |
! so it retrieves the entry from the Data Base and stores the entry's |
! data in variable (DataString$). |
!--

Call Get (DbKey$, DataString$, #1, GetOk)

!--
! If (Get) failed to retrieve the entry, then the program displays a |
! message and stops. |
!--

IF GetOk = 0 THEN
SET CURSOR 6, 2
PRINT "B-Tree subroutine (Get) was unable to retrieve the entry."
SET CURSOR 8, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed
CALL BtClose (#1)
CLEAR
STOP
END IF

Deleting an Entry 27

01/01

!--
! Knowing that the entry was retrieved successfully, the program |
! unpacks (DataString$) and extract the individual fields. |
!--

LET PositionSlash1 = POS (DataString$, "\", 1)
LET FirstChar = 1
LET LastChar = PositionSlash1 - 1
LET Street$ = DataString$ [FirstChar:LastChar]

LET FirstChar = PositionSlash1 + 1
LET PositionSlash2 = POS (DataString$, "\", FirstChar)
LET LastChar = PositionSlash2 - 1
LET City$ = DataString$ [FirstChar:LastChar]

LET FirstChar = PositionSlash2 + 1
LET PositionSlash3 = POS (DataString$, "\", FirstChar)
LET LastChar = PositionSlash3 - 1
LET State$ = DataString$ [FirstChar:LastChar]

LET FirstChar = PositionSlash3 + 1
LET PositionSlash4 = POS (DataString$, "\", FirstChar)
LET LastChar = PositionSlash4 - 1
LET Zip$ = DataString$ [FirstChar:LastChar]

LET FirstChar = PositionSlash4 + 1
LET LastChar = LEN (DataString$)
LET Phone$ = DataString$ [FirstChar:LastChar]

!--
! The program then displays the person's name, address, and phone. |
!--

CLEAR
PRINT TAB (2, 2); "Name "; DbKey$
PRINT TAB (3, 2); "address "; Street$
PRINT TAB (4, 2); "city "; City$
PRINT TAB (5, 2); "state "; State$
PRINT TAB (6, 2); "zip code "; Zip$
PRINT TAB (7, 2); "phone number .. "; Phone$

28 The TB-Tree Library

01/01

!--
! This is the part which is different from program Bt-Chng. |
! The following lines of code will prompt whether or not the entry is |
! to be deleted from the Data Base. |
!--

SET CURSOR 9, 2
PRINT TAB (9, 2); "Do you want to delete this entry from the Data
Base ";
PRINT ".. Press Y or N .. ";

LET Choice$ = ""
DO UNTIL Choice$ = "Y" OR Choice$ = "N"

DO WHILE KEY INPUT
GET KEY KeyPressed
LOOP

GET KEY KeyPressed
LET Choice$ = UCASE$(CHR$(KeyPressed))
LOOP

!--
! If the (N) key was pressed, then the program will stop without |
! deleting the entry from the Data Base. |
!--

IF Choice$ = "N" THEN
CALL BtClose (#1)
CLEAR
STOP
END IF

!--
! Getting to this point means that the (Y) key was pressed. |
! The following line of code will delete the entry from the Data Base. |
! If the (Delete) subroutine is unable to remove the entry from the |
! Data Base, then it will set variable (DeletedOk) to 0. |
!--

CALL Delete (DbKey$, #1, DeletedOk)

Deleting an Entry 29

01/01

!--
! The program is now ready to display a message indicating whether or |
! not the Data Base entry was successfully deleted. |
! After the appropriate message is displayed, the program will wait |
! for you to respond by pressing a key. Once a key is pressed, the |
! program will stop. |
!--

SET CURSOR 13, 2
IF DeletedOk = 0 THEN

PRINT "B-Tree subroutine (Delete) was unable to remove the entry.";
ELSE
PRINT "The Data Base entry was successfully deleted.";
END IF

SET CURSOR 15, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed

CALL BtClose (#1)
CLEAR
END

Bt-Del uses one new B-Tree command, the Delete command.

Delete is a TB-Tree subroutine which will remove a data base entry.

Prior to calling the (Delete) subroutine, store the entry’s identifier in variable
(Key$).

Call Delete (Key$, #1, DeletedOk)

If the entry is in the data base, then (Delete) will delete the entry from the data
base. If there were no problems with the deletion process, then (Delete) will set
variable (DeletedOk) to 1. If for some reason, the deletion process failed, then
(Delete) will set (DeletedOk) to zero.

If the entry is not in the data base, then (Delete) will set (DeletedOk) to zero and
return to the main program.

Now that we can Add, Change and Delete entries, we need a program that can show
us which entries are still in the data base. Program Bt-Keys shows how to display
the Key of each entry in the data base.

30 The TB-Tree Library

01/01

Program Bt-Keys
A program to display the data base keys. We want this program to display the key of
each entry in the data base.

A detailed explanation of how Bt-Keys works can be found in the comment blocks
within the program as listed below:

!--
! Program .. Bt-Keys |
! This program displays the Key of each entry in the Data Base. |
!--

LIBRARY "BTREELIB"

DIM KeyArray$(0)

!--
! First, the program Opens the Data Base. |
!--

CALL BtOpen ("NameAdPh", DataBaseSize, #1)

!--
! The next line of code stores the Data Base keys in array (KeyArray$) |
! The (LoadKeys) subroutine stores the keys in alphabetically sequence. |
!--

CALL LoadKeys (KeyArray$(), #1)

!--
! The following lines of code will display the keys. |
!--

CLEAR
PRINT
FOR i = 1 TO SIZE (KeyArray$)

IF KeyArray$(i) <> CHR$(127) THEN PRINT " "; KeyArray$(i)
NEXT i

PRINT
PRINT " Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed

Displaying Keys 31

01/01

CALL BtClose (#1)
CLEAR
END

Bt-Keys uses one new B-Tree command, the LoadKeys command.

LoadKeys is a B-Tree subroutine which will store the data base keys in an
array.

Call LoadKeys (KeyArray$(), #1)

Subroutine (LoadKeys) not only stores the data base keys in array (KeyArray$), it
stores them in sorted order.

The previous program showed us which entries are in the data base, by displaying the
Key of each entry. Suppose we want to display the Key of each entry which has a last
name of Doe? We still need a way to display selected keys. The last series of pro-
grams show how to display selected keys from a data base.

Programs Bt-Find
These programs display selected keys from a data base. We want these programs to
do the following:

Bt-Find1, displays the first Key and last Key of the data base. The first Key is the
Key which would come first, if the Keys in the data base were sorted alphabetically.
The last Key is the Key which would come last, if the Keys in the data base were
sorted alphabetically.

Bt-Find2, prompts for part of a person’s name, such as the person’s last name. Then
display the Key which is nearest to the name specified. Nearest Key means the Key
which would come next, if the Keys in the data base were sorted alphabetically.

Bt-Find3, prompts for a person’s last name. Then display the Key of each entry
which has a last name equal to the name specified.

A detailed explanation of how the Bt-Find programs work can be found in the
comment blocks within the programs as listed below:

!--
! Program .. Bt-Find1 |
! This program displays the first Key and last Key in the Data Base. |
! The first Key is the Key which would come first, if the keys in |
! the Data Base were sorted alphabetically. |
! The last Key is the Key which would come last, if the keys in |
! the Data Base were sorted alphabetically. |
!--

32 The TB-Tree Library

01/01

LIBRARY "BTREELIB"

!--
! First, the program Opens the Data Base. |
!--

CALL BtOpen ("NameAdPh", DataBaseSize, #1)

!--
! The following B-Tree subroutine stores in variable (FirstKey$), |
! the first Key found in the Data Base. |
! If there are no entries in the Data Base, then subroutine (GetFirst) |
! sets variable (FirstKey$) to the Null string. |
!--

CALL GetFirst (FirstKey$, #1)

!--
! If the Data Base is empty, then the program displays a message and |
! stops. |
!--

IF FirstKey$ = "" THEN
CLEAR
SET CURSOR 2, 2
PRINT "There are no entries in the Data Base."
SET CURSOR 4, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed
CALL BtClose (#1)
CLEAR
STOP
END IF

!--
! Getting to this point means that the Data Base is not empty. |
! The following lines of code display the first Data Base Key. |
!--

Displaying Keys 33

01/01

CLEAR
SET CURSOR 2, 2
PRINT "The first Key in the Data Base is .. "; FirstKey$;

!--
! The following B-Tree subroutine stores in variable (LastKey$), |
! the last Key found in the Data Base. |
!--

CALL GetLast (LastKey$, #1)

!--
! The following lines of code display the last Data Base Key. |
!--

SET CURSOR 4, 2
PRINT "The last Key in the Data Base is ... "; LastKey$;
SET CURSOR 6, 2
PRINT "Press any key to end the program ... ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed

CALL BtClose (#1)
CLEAR
END

!--
! Program .. Bt-Find2 |
! This program displays the Key of the the Data Base entry nearest to |
! the name you specify. Nearest Key means the Key which would come |
! next, if the keys in the Data Base were sorted alphabetically. |
!--

LIBRARY "BTREELIB"

!--
! First, the program Opens the Data Base. |
!--

34 The TB-Tree Library

01/01

CALL BtOpen ("NameAdPh", DataBaseSize, #1)

!--
! The following lines of code prompt for part of a person's name. |
! The program uses this name to build the Data Base search Key (DbKey$).|
!--

CLEAR
SET CURSOR 2, 2
INPUT PROMPT "Enter part of a person's name .. ": LastName$

LET DbKey$ = UCASE$(LastName$)

!--
! The following B-Tree subroutine stores in variable (NearestKey$), |
! the Data Base Key which is nearest to the name you specified. |
! Nearest Key means the Key which would come next, if the keys were |
! sorted alphabetically. |
! If the Data Base is empty, or if there is no Key which comes after |
! the name you specified, then the (GetNearest) subroutine sets |
! variable (NearestKey$) equal to the Null string. |
!--

CALL GetNearest (DbKey$, NearestKey$, #1)
!--
! If the Data Base is empty, or the nearest Key was not found, |
! then the program displays a message and stops. |
!--

IF NearestKey$ = "" THEN
SET CURSOR 4, 2
PRINT "Either the Data Base is empty, "
SET CURSOR 6, 2
PRINT "or there is no entry which comes after the name you specified."
SET CURSOR 8, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed
CALL BtClose (#1)
CLEAR
STOP
END IF

Displaying Keys 35

01/01

!--
! Getting to this point means that the (GetNearest) subroutine found |
! the Key nearest to the name you specified. |
! The following lines of code will display the nearest Key and stop. |
!--

SET CURSOR 4, 2
PRINT "The nearest or next name is "; NearestKey$;
SET CURSOR 6, 2
PRINT "Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed

CALL BtClose (#1)
CLEAR
END

!--
! Program .. Bt-Find3 |
! This program displays the Key of each Data Base entry which has a |
! last name equal to the name you specify. The program will display |
! the keys in alphabetical order. |
!--

LIBRARY "BTREELIB"

!--
! First, the program Opens the Data Base. |
!--

CALL BtOpen ("NameAdPh", DataBaseSize, #1)

!--
! The following lines of code prompt for a person's (last) name. |
! The program uses this name to build the Data Base search Key. |
!--

CLEAR
SET CURSOR 2, 2
INPUT PROMPT "Enter the person's last name .. ": LastName$

LET LastName$ = UCASE$ (LastName$)

36 The TB-Tree Library

01/01

!--
! The following B-Tree subroutine builds a list of Data Base keys. |
! The subroutine stores the keys in alphabetical order. |
! InitNext must be called if the program is going to be using the |
! B-Tree subroutine (GetNext). |
!--

CALL InitNext

!--
! The following lines of code cycle through the list of keys created |
! by the (InitNext) subroutine. |
! |
! The B-Tree subroutine (GetNext) gets the next Key from the |
! list, and stores it in variable (NextKey$). |
! |
! If variable (NextKey$) is equal to CHR$(127), then either the |
! Data Base is empty, or there are no more Keys in the list. |
! If this happens, then the program is finished. |
! |
! The (LET) statements extract the last name field from the |
! (NextKey$) string. |
! |
! If (NextKey$) has the same last name as the name you specified |
! then the Key is displayed. |
! |
! Once (NextKey$) is past the name you specified, then the program |
! is finished. |
!--

PRINT

DO UNTIL KeyLastName$ > LastName$

CALL GetNext (NextKey$, #1)

IF NextKey$ = CHR$(127) THEN EXIT DO
LET PositionSpace = POS (NextKey$, " ", 1)
LET LastChar = PositionSpace - 1
LET KeyLastName$ = NextKey$ [1: LastChar]
IF KeyLastName$ = LastName$ THEN PRINT " "; NextKey$
LOOP

Displaying Keys 37

01/01

PRINT
PRINT " Press any key to end the program .. ";
DO WHILE KEY INPUT

GET KEY KeyPressed
LOOP

GET KEY KeyPressed

CALL BtClose (#1)
CLEAR
END

The Bt-Find programs use five new B-Tree command, GetFirst, GetLast,
GetNearest, InitNext, and GetNext.

GetFirst is a B-Tree subroutine which will store in variable Key$, the first key in
the data base.

Call GetFirst (Key$, #1)

The first Key is the Key which would come first, if the Keys in the data base were
sorted alphabetically.

GetLast is a B-Tree subroutine which will store in variable Key$, the last key in
the data base.

Call GetLast (Key$, #1)

The last Key is the Key which would come last, if the Keys in the data base were
sorted alphabetically.

GetNearest is a B-Tree subroutine which will store in variable NextKey$, the data
base Key which is nearest to the value stored in variable Key$.

Call GetNearest (Key$, NextKey$, #1)

The nearest Key is the Key which would come next, if the Keys in the data base were
sorted alphabetically.

InitNext is a B-Tree subroutine which builds a list of data base Keys.

Call InitNext

The keys are stored in the list in alphabetical order. The keys are used by the B-Tree
subroutine (GetNext).

GetNext is a B-Tree subroutine which will store in variable Key$, the next key in
the data base.

Call GetNext (Key$, #1)

38 The TB-Tree Library

01/01

The next Key is the Key which would come next, if the Keys in the data base were
sorted alphabetically.

The B-Tree subroutine (InitNext) must be called prior to the first use of the
(GetNext) subroutine.

Another Demo Program
Your TB-Tree Library disk contains another sample program to demonstrate the use
of the routines contained in this Library. The sample program, BTManage, is a
simple, but complete, command-driven utility for creating and maintaining a B-tree
file. All of the fundamental operations you will need to include in any program
utilizing the TB-Tree Library are demonstrated in this rather simple program. In
fact, you may later find that it offers a nice framework upon which to build your own
application. For the present, you may wish simply to examine the listing of this file
to acquaint yourself with its structure and logic.

Displaying Keys 39

01/01

40 The TB-Tree Library

01/01

	BTree_TK_Cover.pdf
	BTree.pdf

